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ABSTRACT
We introduce a technique for model checking multi-agent
systems against temporal-epistemic specifications expressed
in the logic CTL∗K. We present an algorithm for the ver-
ification of explicit models and use this to show that the
problem is PSPACE-complete. We show that the technique
is amenable to symbolic implementation via binary decision
diagrams. We introduce MCMAS∗, a toolkit based on the
open-source model checker MCMAS which presently sup-
ports CTLK only, implementing the technique. We present
the experimental results obtained and show its attractive-
ness compared to all other toolkits available.
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1. INTRODUCTION
Over the past 10 years considerable attention has been

given to the problem of verifying multi-agent systems (MAS)
against AI-inspired specifications, typically based on vari-
ants of temporal-epistemic logic. A key consideration for
advances in this area has been the efficiency of the underly-
ing methodology employed. Explicit techniques, where the
state-space of the system is represented explicitly, were ini-
tially optimised by using SAT-based [29, 21] or BDD-based
approaches [15, 31]; these have then been further enhanced
by means of abstraction methodologies, including partial or-
der reduction [20] and symmetry reduction [9].

While additional agent-based modalities have been added
enriching the specification languages supported, including
commitments [2] and various strategic operators [1], the un-
derlying model of time has predominantly been the one of-
fered by CTL, the branching-time computation tree logic [10].
This is in contrast with most work on reactive systems in
which linear time logic, or LTL, is predominantly used [30].
While there are several reasons why MAS may require rich
specifications including knowledge, commitments, etc., there
seems to be no compelling reason for the underlying tempo-
ral model to be branching.

It is well known that LTL and CTL have different expres-
sivity. While CTL permits expressions such as AGEXreset
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representing “in all paths in the future it is possible to per-
form a reset in the next step”, LTL admits statements such
as GF request expressing the fact that “a request is made
infinitely often”. MAS benefit from the power of LTL-based
specifications just as distributed systems do. Indeed, new
powerful logics introduced in AI such as LDL [16] have linear
time features. There are clear advantages if both temporal
variants are supported. Indeed, model checkers widely used
for the analysis of reactive systems such as NuSMV [5] do
so already.

The present apparent emphasis on CTL of some MAS
techniques may be purely accidental. Indeed, the very first
contributions on verification of MAS against temporal-epis-
temic specifications used LTL as the underlying model of
time [28, 17]. In contrast, the first actual model checking
toolkits for the verification of MAS supported, at least ini-
tially, CTL as the underlying temporal logic [24, 19]. In
particular, MCMAS [22], released as open-source from 2004
onwards still supports CTLK only.

In this paper we introduce a technique for the verification
of MAS against specifications in CTL∗K. CTL∗K is the com-
bination of CTL∗ [11] with the epistemic logic S5 [14]. As is
known, CTL∗ strictly subsumes both CTL and LTL; hence,
by providing a technique for CTL∗ we also support LTL.
The algorithm we report is based on the recursive descent
based approach for CTL∗ and extends it by adding support
to knowledge modalities. We show that the algorithm runs
in polynomial space and has runtime exponential only in the
size of the formula. We implemented the technique as an ex-
tension of the MCMAS model checker, thereby obtaining a
toolkit that supports the whole of CTL∗K. The experimen-
tal results we report indicate that the present checker suffers
no penalty against the current MCMAS release and is the
most efficient tool for verifying CTL∗K specifications under
observational semantics.

Related Work. The algorithm we introduce here is
based on the method for reducing model checking of full-
branching time logics to model checking of the respective
linear-time logics introduced in [12], combined with the use
of LTL model checking techniques such as that presented
in [7, 33]. The method presented combines and extends
these techniques by adding support for individual knowl-
edge, distributed knowledge and common knowledge [14].

Our implementation is based on the open-source model
checker MCMAS [22]. While the implementation for CTL∗K
uses a different labelling algorithm, we show that this does
not impact the performance on the CTL fragment which is
already supported by the checker. The implementation we

114



here report significantly extends the specification language
supported.

MCK [25] supports the full logic CTL∗K, although only
the LTLK fragment is discussed in [15]. Differently from
MCMAS, MCK supports a variety of semantics, including
perfect recall (for one agent only) and clock semantics. Un-
der observational semantics and all the scenarios we consid-
ered, the performance of the toolkit introduced in this paper
was superior to that of MCK. The reasons for the difference
in performance may be due to the different labelling algo-
rithm employed. In addition the tools have different func-
tionalities. For example we have also implemented support
for counterexample generation relying on the techniques in-
troduced in [8], which does not appear to be supported by
MCK v1.1.0 in this setting.

In other work [27] introduced an approach to the verifi-
cation of MAS against LTL and knowledge. However, this
work is based on bounded model checking and supports only
the existential fragment of the logic. Given this, it is not
comparable to the present approach.

2. BACKGROUND
In this section we introduce the formalism of interpreted

systems, which we use to model MAS. We then present the
syntax and semantics of CTL∗K.

2.1 Interpreted Systems
Interpreted systems, introduced in [14], are a well-known

formalism for MAS. They provide a convenient means for
reasoning about time and knowledge. Here we follow the
presentation given in [22], where agents have locally de-
fined transition relations, and the global transition relation
is given by the composition of these. We assume a set of
agents A = {1, . . . , n} and an environment e.

Definition 1 (Interpreted Systems). An interpreted
system is a tuple IS = 〈{Li, Acti, Pi, τi}i∈A∪{e}, I, h〉, where:

• Li is a finite set of possible local states of agent i.

• Acti is a finite set of possible actions of agent i.

• Pi : Li → 2Acti\{∅} is a local protocol for agent i ∈ A,
specifying which actions agent i can take from each
local state.

• τi : Li×Act1× . . .×Actn×Acte → Li is a local transi-
tion function, returning the new local state of agent i ∈
A after the agents and environment act in a given way.
We assume that the agents’ actions are be consistent
with their protocols; i.e., if l′i = τi(li, a1, . . . , an, ae),
then for each i ∈ {1, . . . , n}, we have that ai ∈ Pi(li).

• I ⊆ L1×. . .×Ln×Le is the set of initial global states.

• h : AP → 2L1×...×Ln×Le , where AP is a set of atomic
propositions, is a valuation function identifying the
global states in which an atomic proposition is true.

The environment e is similarly associated with a local
transition function τe : Le×Act1×. . .×Actn×Acte → Le and
local protocol Pe : Le → 2Acte\{∅}. We often consider the
set of reachable global states G ⊆ L1×. . .×Ln×Le, reachable
from I by applying the composition of the local transition
functions. We also introduce the notion of an evolution path

for an interpreted system IS, consisting of an infinite se-
quence of global states g0, g1, . . . such that for every i, gi ∈
G, and if i > 0 then there exists actions a1, . . . , an, ae such
that for every local state l′j in gi, l

′
j = τj(lj , a1, . . . , an, ae)

for each possible agent j ∈ A ∪ {e} (where lj is the local
state of agent j in state gi−1). Furthermore, we denote with
π(i) the i-th state of a path π = g0, g1, . . .; we denote with
πi the i-th suffix of a path π; i.e., πi = gi, gi+1, . . .. Observe
that because paths are infinite sequences, a suffix of a path
is also a path.

For i ∈ A we also define a projection operator li : G→ Li
denoting the local state of agent i from each global state.

Intuitively, interpreted systems describe a finite-state tran-
sition system consisting of multiple agents, which may syn-
chronise with one another using joint actions [22]. We refer
to [14] for more details.

2.2 The Logic CTL*K
We first introduce the syntax of CTL∗K. This is an exten-

sion of full branching time logic with epistemic modalities,
and allows us to quantify arbitrarily over paths and make
assertions about agents’ knowledge. For example, by us-
ing CTL∗K we can express the property “on every path in
which p is true infinitely often, it is always eventually possi-
ble for agent 1 to know that q is permanently true” (written
as A((GFp) → G(E(FK1(Gq))))). Formally, the syntax of
CTL∗K is defined as follows, where ψ refers to a path for-
mula which may or may not hold on a given path, and φ
refers to a state formula which may or may not hold at a
given state.

〈ψ〉 ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

〈φ〉 ::= > | p | ¬φ | φ ∧ φ | Eψ | Kiφ | EΓφ | DΓφ | CΓφ

where p is an atomic proposition, i ∈ A ∪ {e} is an agent,
and Γ ⊆ A ∪ {e} is a set of agents. We allow the standard
abbreviations from propositional logic, for both state and
path formulae (⊥ = ¬>, φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), φ1 →
φ2 = ¬φ1 ∨ φ2 and φ1 ↔ φ2 = (φ1 → φ2) ∧ (φ2 → φ1)),
for path quantification (Aψ = ¬E¬ψ), and for the temporal
modalities (Fφ = (>Uφ), Gφ = ¬F¬φ).

We now inductively define the semantics of CTL*K formu-
lae. We first define this for path formulae. In what follows
we assume that IS is an interpreted system, and π is a path
in IS. We define satisfaction of a path formula as follows:

• IS, π |= φ iff IS, π(0) |= φ, where φ is a state formula.

• IS, π |= ¬ψ iff it is not the case that IS, π |= ψ.

• IS, π |= ψ1 ∧ ψ2 iff both IS, π |= ψ1 and IS, π |= ψ2.

• IS, π |= Xψ iff IS, π1 |= ψ.

• IS, π |= ψ1Uψ2 iff ∃j ≥ 0 such that IS, πj |= ψ2 and
for 0 ≤ k < j we have IS, πk |= ψ1.

Intuitively, Xψ holds if ψ is true in the next state; ψ1Uψ2

holds if ψ1 is true until ψ2 becomes true.
Observe that the first condition states that a state formula

φ is satisfied on a path if it is satisfied in the first state of
the path. Satisfaction for state formulae φ on states g ∈ G
is given as follows.

• IS, g |= >.
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(1, 1)p (2, 1) (3, 1) p

(1, 2)p (2, 2) (3, 2)

Figure 1: A simple interpreted system IS. The ini-
tial states are (1, 1) and (1, 2); h(p) is true at precisely
the states labelled with p.

• IS, g |= p iff g ∈ h(p).

• IS, g |= ¬φ iff it is not the case that IS, g |= φ.

• IS, g |= φ1 ∧ φ2 iff both IS, g |= φ1 and IS, g |= φ2.

• IS, g |= Eψ iff there exists a path π with π(0) = g
such that IS, π |= ψ.

• IS, g |= Kiφ iff for every state g′ ∈ G if li(g) = li(g
′),

then IS, g |= φ.

• IS, g |= EΓφ iff for every state g′ ∈ G if li(g) = li(g
′)

for some agent i ∈ Γ, then IS, g |= φ.

• IS, g |= DΓφ iff for every state g′ ∈ G if li(g) = li(g
′)

for all agents i ∈ Γ, then IS, g |= φ.

• IS, π |= CΓφ iff for every state g ∈ G if g1, . . . are
states such that li(g) = li(g1), lk1(g1) = lk1(g2), . . .,
lj(gn) = lj(π(0)) for some agents i, j, k1, . . . ∈ Γ and
positive integer n, then IS, g |= φ.

Intuitively, we have Eψ if there exists a path on which ψ
is true. We use observational semantics for the epistemic
modalities; hence the agents’ knowledge is a function of their
instantaneous private local state only: an agent knows φ if
φ holds in every possible state of the world consistent with
its local state. The group modalities E, D and C intuitively
correspond to φ being known by everyone in a group, φ being
distributed knowledge in the group, and φ being common
knowledge in the group, respectively. We refer to [14] for
more details.

We now introduce a small example to illustrate some sub-
tleties of the semantics of CTL∗K. Consider an interpreted
system IS with global states G = {(x, y) | x ∈ {1, 2, 3}, y ∈
{1, 2}} where for agent 1, l1(x, y) = x. The global tran-
sition relation of IS is illustrated in Figure 1; we assume
I = {(1, 1), (1, 2)} and h(p) = {(1, 1), (1, 2), (3, 1)}. Con-
sider the CTL∗K formula E(GF (K1¬p)). First observe that
(2, 1) and (2, 2) are the only states satisfying K1¬p. It fol-
lows that IS, s 6|= E(GF (K1¬p)) for any s ∈ G, since any
path going through either of (2, 1) or (2, 2) subsequently
transitions to and remains in (3, 1) or (3, 2) respectively. So
the formula is false on IS as it is satisfied in none of its
initial states.

Notice that the formula considered is not directly express-
ible in LTLK, and is also semantically different from the

CTLK formula EG(EF (K1¬p)) in CTLK. Indeed, observe
that IS, s |= EF (K1¬p), where s ∈ {(1, 1), (1, 2), (2, 1),
(2, 2)}. It follows that IS, (1, 1) � EG(EF (K1¬p)) and also
IS, (1, 2) � EG(EF (K1¬p)). Therefore the specification
EG(EF (K1¬p)) is true in IS, because it is satisfied at all
the initial states.

The specification language CTL∗K is very expressive. It
includes both CTLK and LTLK: CTLK is equivalent to the
subset of CTL∗K where path formulae are restricted to Xφ
and φUφ, where φ is a state formula; LTLK is equivalent to
the subset of CTL∗K composed of Aψ formulae. CTL∗K is
more expressive than the union between LTLK and CTLK
as it can freely mix path and and state formulae. For ex-
ample, it can express properties such as “there is a run of
the system in which if at some point agent 1 knows that p,
then at some later point in that run p becomes commonly
known by the agents in Γ”, expressed by the CTL∗K formula
EF (Kip → FCΓp). This is an example of a specification
that may be useful, for example, when reasoning about co-
operation whereby knowledge might evolve from private to
common in a computation path of interest. Note that our
previous example E(GF (K1¬p)) is also not readily express-
ible in CTLK or LTLK.

In terms of practical usage, specifying properties in CTL∗K
offers the ability to freely mix path and state formulae thereby
addressing many of the limitations of using CTLK or LTLK
alone. These include the inability to express some fairness
properties directly at specification level and to perform more
complex quantification over paths, respectively. For exam-
ple, consider a variant of the train, gate and controller sce-
nario from [18]. We have N trains travelling on looping
tracks, all of which go through a tunnel that can only ac-
commodate one train. A controller gives signals to the trains
indicating whether they may proceed or not. We assume
that trains at any state might develop a fault by performing
a break action causing them to skip their current turn (and
remain in the current state). We keep track of whether a
train i has performed the break action at the previous time
step by using the proposition brokeni; we extend the con-
troller C’s responsibilities with the ability to evict trains
from the tunnel. Similar scenarios are often used in safety-
analysis, both in epistemic and temporal settings [3, 13],
e.g., advanced avionics and autonomous vehicles. The logic
CTL∗K allows us to investigate properties, such as “on ev-
ery path, it eventually becomes the case that when a train
is broken, the controller knows about this and can evict the
train on the next turn”, expressed by:

N∧
i=1

AFG((¬brokeni) ∨ (KC(brokeni) ∧ EX¬tunneli))

This is a property of interest if it is desired that the system
is fault-tolerant and can perform fault diagnosis correctly.
This property is not expressible in either CTL nor LTL, as it
uses both universal and existential path quantifiers. Further
CTL*K specifications are discussed in Section 5.

Given an interpreted system IS, a state g and a CTL∗K
formula φ, the model checking problem involves determining
whether IS, g |= φ.

3. MODEL CHECKING CTL*K
We now present an algorithm which, given an arbitrary

CTL∗K formula φ and an interpreted system IS, computes
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[φ]IS , the set of states of IS in which φ holds. We prove
the correctness of the algorithm and show that it runs in
polynomial space and with time exponential only in the size
of the formula.

To do so, we use two mutually recursive functions Label
and Trans. The function Label(φ, IS) ultimately outputs
the set of states in which the CTL∗K state formula φ holds;
Trans(ψ, IS) outputs an LTL formula which holds precisely
in the same set of states in which the CTL∗K path formula ψ
holds. The translation introduces a fresh atomic proposition
p for each path formula which includes an epistemic modality
or E as a principal connective; this is sufficient because both
knowledge and path existence with respect to a formula are
only dependent on the current state.

In the algorithm we assume the known procedures SATK ,
SATE , SATD and SATC for computing the set of states
satisfying the corresponding epistemic modalities; see, e.g.,
[31]. We also use the procedure Exist-Path returning the
states in IS from which there exists a path on which the LTL
formula φ holds [7]. Finally the algorithm uses the proce-
dure New-Proposition returning a fresh atomic proposi-
tion when called. Finally, to check whether a CTL∗K for-
mula φ is satisfied at a given state g in a model IS, we check
whether g ∈ Label(φ, IS).

Algorithm 1 Labelling Algorithm

INPUT: CTL∗K state formula φ, interpreted system IS
OUTPUT: [φ]IS
1: function Label(φ, IS)
2: if φ is an atomic proposition p then
3: return h(p)
4: else if φ = > then
5: return G
6: else if φ = ¬φ1 then
7: return G \ Label(φ1, IS)
8: else if φ = φ1 ∧ φ2 then
9: return Label(φ1, IS) ∩ Label(φ2, IS)

10: else if φ = Kiφ1 then
11: return SATK(Label(φ1, IS), i)
12: else if φ = EΓφ1 then
13: return SATE(Label(φ1, IS),Γ)
14: else if φ = DΓφ1 then
15: return SATD(Label(φ1, IS),Γ)
16: else if φ = CΓφ1 then
17: return SATC(Label(φ1, IS),Γ)
18: else . φ = Eψ for some path formula ψ
19: return Exist-Path(Trans(ψ, IS), IS)
20: end if
21: end function

Observe that all functions naturally lend themselves to a
symbolic implementation, as set operations, the SAT proce-
dures for the epistemic modalities [31], and Exist-Path [7]
can all be implemented symbolically. We now prove the
correctness of the algorithm by showing that Label(φ, IS)
returns precisely the set of states in which φ is true in IS.

Theorem 1. For any g ∈ G, g ∈ Label(φ, IS) if and
only if g ∈ [φ]IS.

Proof. By structural induction on φ.

• The propositional cases follow directly from the CTL∗K
semantics, and the inductive hypothesis (for ¬ and ∧).

Algorithm 2 Translation Algorithm

INPUT: CTL∗ path formula ψ, interpreted system IS
OUTPUT: LTL formula ψ′ where for any path π,

IS, π |= ψ ↔ IS, π |= ψ′

1: function Trans(ψ, IS)
2: if ψ is an atomic proposition p then
3: return p
4: else if ψ = > then
5: return >
6: else if ψ = ¬ψ1 then
7: return ¬(Trans(ψ1, IS))
8: else if ψ = ψ1 ∧ ψ2 then
9: return Trans(ψ1, IS) ∧Trans(ψ2, IS)

10: else if ψ = Xψ1 then
11: return X(Trans(ψ1, IS))
12: else if ψ = ψ1Uψ2 then
13: return Trans(ψ1, IS)U Trans(ψ2, IS)
14: else . ψ is an epistemic modality or Eψ′

15: p′ = New-Proposition()
16: h(p′) = Label(ψ, IS) . ψ is a state formula
17: return p′

18: end if
19: end function

• For the epistemic modalities, by the inductive hypoth-
esis, Label(φ1, IS) returns [φ1]IS . Furthermore, the
SAT procedures for the epistemic modalities follow
those presented in [31], which were shown to be cor-
rect.

• For Eψ, we rely on the correctness of Exist-Path
from [7]. We show that Trans preserves the seman-
tics of ψ, i.e., for any path π, IS, π |= ψ if and only if
IS, π |= Trans(ψ, IS). Observe that the semantics of
E as well as the epistemic modalities are dependent on
the current state only, as a suitable atomic proposition
p′. By inductive hypothesis the set of states in which
p′ holds for a given subformula ψ′ is computed cor-
rectly by Label(ψ′, IS). No other changes are made
to the path formula ψ.

This concludes the analysis of all the inductive cases.

We now explore the complexity of the verification prob-
lem. We assume an interpreted system to be given explicitly
if all reachable states and epistemic and temporal relations
are provided directly and need not be computed.

Theorem 2. Verifying explicit interpreted systems against
CTL∗K specifications is PSPACE-complete.

Proof. Hardness follows from CTL* model checking, which
is PSPACE-hard [6].

To show membership, consider Algorithm 1. The total
number of calls to Label(φ, IS) is polynomial in the size of
the formula (and hence the size of the input), since we only
call Label up to twice for each instance of an epistemic
modality, path quantifier, ¬ or ∧. Calls to Trans(ψ, IS)
do not introduce any of the above constructs. We can thus
safely store all intermediate labellings computed by the al-
gorithm. Since each labelling is bounded by O(|IS|), we
obtain O(|φ||IS|) space overall.

It remains to show that Label, the epistemic procedures,
Exist-Path and Trans run in polynomial space.
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• Label – We make polynomially many calls to the other
procedures, which are in polynomial space, and per-
form polynomially many set operations. It follows that
the procedure runs in polynomial space.

• Epistemic procedures – By assumption all states and
relations, including all epistemic accessibility relations,
are given in the input. Following the algorithms in [31],
we can iterate through the reachable states and main-
tain an accumulator for the result. We may need to
maintain another temporary set for SATC when com-
puting fix-points. In all cases, this is bounded by size
2|IS| and is thus polynomial.

• Exist-Path – By using Büchi automata we can deter-
mine the set of states from which there exists a path
satisfying a given LTL formula in polynomial space;
see, e.g., [33] for more details.

• Trans – The number of epistemic modalities or path
quantifiers present is polynomial, and thus we only in-
troduce polynomially many additional atomic propo-
sitions. We also only call Label, which is polynomial
space, polynomially many times.

We conclude that model checking interpreted systems against
CTL∗K specifications is PSPACE-complete.

Note that model checking explicit models against CTL∗

specifications is also PSPACE-complete [6]; therefore adding
epistemic modalities (under observational semantics) does
not increase the worst case verification complexity.

We now show that Label and Trans have a runtime
which is exponential only in the formula size. We first intro-
duce Lemma 1 to show that we can recursively check sub-
formulae of our initial formula whilst preserving this com-
plexity.

Lemma 1. Suppose that for i ∈ {0, . . . , k} we have f(yi, n) =
O(p(n)2yi) with 0 ≤ yi, where p(n) is a polynomial which is

positive for positive n. Also suppose that
∑k
i=0 yi ≤ x and

that f(x, n) =
(∑k

i=0 f(yi, n)
)

+O(p(n)2x). Then f(x, n) =

O(p(n)2x).

Proof. From the definition of big-O notation we have
that for each i, f(yi, n) ≤ cin2yi for some positive ci. Then,
observe that

f(x, n) =

(
k∑
i=0

f(yi, n)

)
+O(p(n)2x)

≤

(
k∑
i=0

cip(n)2yi

)
+O(p(n)2x)

≤

(
Cp(n)

k∑
i=0

2yi

)
+ dp(n)2x

≤ (Cp(n)) 2x + dp(n)2x

= (C + d) p(n)2x

for some positive constants C (e.g., the maximum of the ci)
and d. Thus, we obtain f(x, n) = O(p(n)2x).

We can now state the main complexity result of this sec-
tion.

Theorem 3. Verifying explicitly specified interpreted sys-
tems against CTL∗K specifications by means of Algorithm 1
is in O(p(|IS|)2|φ|) time for some polynomial p(|IS|).

Proof. We apply Lemma 1, where f(|φ|, |IS|) is the time
taken to compute Label(φ, IS). We consider the various
cases:

1. Propositional cases (lines 2–9). These require up to 2
recursive calls to Label(φ, IS), as well as possibly 1 set
operation. The set operation can clearly be computed
in O(|IS|) time by iterating through the sets of states
involved, each of which is bounded by size O(|IS|).

2. Epistemic modalities (lines 10–17). Each SAT proce-
dure involves determining the states in which φ1 does
not hold (thus there is one subproblem), looking for
states related to these, and then complementing the
result. The second and third steps can be bounded by
O(p(|IS|)) time.

3. Eψ (lines 18–19). Trans calls Label, but the sum of
the sizes of the subformulas it is called on is clearly less
than the size of the original formula. The procedure
returns an LTL formula with size bounded by |φ|. We
have from [33] that Exist-Path can be performed in

O(|IS|2|φ|) time.

We observe that in all cases, we have a finite number of
subproblems with total size bounded by the original for-
mula, and additional computation that is O(p(|IS|)2|φ|).
Thus Lemma 1 applies and the overall time complexity is
O(p(|IS|)2|φ|).

Having derived the model checking algorithm and studied
its complexity, we now proceed to implement it.

4. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We implemented the algorithms of Section 3 on top of
version 1.2.2 of MCMAS [22], a symbolic model checker
that uses BDD-based technology to perform verification. In
the following the resulting implementation is referred to as
MCMAS∗.

For usability reasons, MCMAS∗ implements all the ab-
breviations from Section 2.2. These are used to convert
input formulae and use only the minimal set of operators.
MCMAS∗ uses Algorithm 1 on the converted input formula
(say φ) to determine the states in which φ holds. MCMAS∗

then checks the validity of InitStates → φ, returning true
if φ holds in every initial state of the model.

For Algorithm 1, the sets of states used throughout Label
are represented using BDDs. We implemented Algorithm 2
by using recursive descent; the call New-Proposition is
readily supported by CUDD, the package used by MCMAS
to perform operations on BDDs.

To realise MCMAS∗ we also implemented Exist-Path, as
this is not provided within MCMAS. We did so by using the
symbolic tableau construction in [7]. This involved encoding
symbolically the tableau and the fairness constraints, and
then performing model checking on the formula EG> with
the relevant fairness constraints. We remark that MCMAS∗

performs the construction differently from the approach used
in [7] in that this construction is done internally within
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MCMAS∗. In contrast, the approach in [7] reported the re-
processing of the user’s input file, generating a separate SMV
program for each specification. This enabled us to improve
the performance of our implementation, since model check-
ing CTL∗K specifications would normally require multiple
calls to Exist-Path for each specification to be checked.
Had we followed the approach in [7], we would have gener-
ated separate ISPL files for each LTL formula, which would
have required unnecessarily rebuilding the model at each
recursive call, thereby resulting in a less efficient implemen-
tation. Observe that this issue does not arise in the context
of LTL formulae as in that case, only one such translation
step would be needed. Moreover, by maintaining the same
model throughout the verification step, we also benefit from
the CUDD cache and dynamic variable reordering features
over multiple calls whilst only paying their cost once, thereby
further boosting the performance of the checker.

A further issue we encountered is that the tableau algo-
rithm maintains the consistency between the model and the
tableau variables by using the same instance of the BDD
variables; this is generally not possible in MCMAS, because
its Evaluation variables need not correspond to single BDD
variables in the model. Furthermore, by executing Algo-
rithm 2, we may also generate fresh atomic propositions that
are not part of the model itself. To reconcile these aspects,
we explicitly augmented the tableau with a set of consis-
tency rules to enforce this correspondence. Formally, before
computing the verification step, for a given proposition p,
we added a Boolean equality constraint between the tableau
variable for the elementary formula p and the states of the
model in h(p).

In addition to the model checking algorithms, we also im-
plemented the generation of counterexamples and witnesses
for several classes of CTL∗K formulas. The build and re-
sulting code are available from [26]. MCMAS∗ inherits the
support of fairness constraints from MCMAS.

Experimental Setup. To evaluate the proposed algo-
rithms, we ran experiments on virtual machines with two
2.70GHz CPUs and 16 GB of RAM, running Ubuntu v15.10.
We evaluated the performance of MCMAS∗ in two ways:

1. For specifications readily expressible in CTLK (which
is subsumed by CTL∗K), we compared the performance
of the proposed CTL∗K algorithm against the CTLK
algorithm already implemented in MCMAS.

2. For specifications not expressible in CTLK, we com-
pared the performance of MCMAS∗ against MCK ver-
sion 1.1 [15], a state-of-the-art model checker support-
ing verification of CTL∗K properties using symbolic
model checking.

We verified specifications concerning the well-known din-
ing cryptographers scenario [4], and considered how the al-
gorithms scaled to different numbers N of cryptographers.

Comparison with MCMAS (CTLK fragment). We
compared MCMAS∗ with MCMAS by verifying two equiv-
alent safety properties: φ0 (CTLK) and φ′0 (CTL∗K):

φ0 = AG

N−1∧
i=0

∧
j∈{0,...,N−1},j 6=i

¬Kipaidj


φ′0 = A

G
N−1∧

i=0

∧
j∈{0,...,N−1},j 6=i

¬Kipaidj



time (s) BDD memory
N reach CTLK CTL∗K CTLK CTL∗K
3 0.022 0.001 0.003 8.81 9.07
4 0.057 0.002 0.005 8.97 9.34
5 0.090 0.002 0.008 9.17 9.77
6 0.172 0.004 0.013 9.55 10.42
7 0.223 0.006 0.020 10.03 11.24
8 0.287 0.009 0.030 10.31 11.95
9 0.493 0.012 0.041 10.80 12.86

10 0.662 0.015 0.058 11.48 14.14
12 2.001 0.037 0.135 15.56 21.34
15 3.544 0.183 0.511 27.13 38.74
20 22.270 0.468 1.280 49.12 45.49
25 38.071 0.847 3.036 46.75 57.72
30 60.966 SO 9.180 SO 59.25
40 151.075 SO 34.553 SO 91.88
50 633.898 SO 120.298 SO 179.47

Table 1: Verification results for MCMAS’s CTLK
and MCMAS∗’s CTL∗K algorithms on the Dining
Cryptographers protocol, for specifications φ0 and
φ′0 respectively. All results for memory usage are
presented in MB. We experienced stack overflows
with MCMAS, owing to the large size of the formu-
lae for N ≥ 30.

These properties hold for any value of N ≥ 3; they express
that no cryptographer should ever know that any other cryp-
tographer has paid. The results are presented in Table 1.

We observe that the CTLK algorithm performs better
than the CTL∗K algorithm, though both algorithms require
time that is on the same order of magnitude. This is to
be expected as the model checking problem for CTLK is P-
complete [23] while the corresponding problem for for CTL∗K
is PSPACE-complete (from Theorem 2). Our implemen-
tation of LTL model checking requires us to construct the
symbolic tableau and compose this with the model; as previ-
ously discussed, this involves CTL model checking of EG>
on a larger model with an additional fairness constraint.
Nonetheless, we observe that the algorithm still scales rea-
sonably well (the protocol for N = 50 has approximately
1.94 × 1032 reachable states). This validates the findings
in [7] where a similar performance differential was reported
on the SMV model checker when comparing CTL specifica-
tions and the tableau algorithm for LTL. Also note that we
do need to compute first the sets of states in which Kipaidj
holds for each pair i 6= j, though this is also done for CTLK.
Indeed, the SATK algorithm used to determine this is the
same for both CTLK and CTL*K.

Further observe that in any case, the total runtime is con-
sistently dominated by the computation of the reachable
state space; so any difference in the labelling times is not
significant in practical usage. In addition to the one here
presented, we have conducted further experiments, leading
us to conclude that the increase in expressivity has been
obtained without a significance performance penalty.

Comparison with MCK (Full CTL∗K). To compare
the performance of MCMAS∗ to that of MCK, we used both
model checkers to verify the liveness property φ1 of the din-
ing cryptographers scenario above. Throughout our exper-
iments, we restricted ourselves to observational semantics
only. Note that, while MCK offers some support for al-
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time (s)
N MCMAS∗ MCK
3 0.033 4.163
4 0.072 142.917
5 0.110 240.713
6 0.201 Seg Fault
8 0.338 Seg Fault

10 0.735 Seg Fault
15 4.131 Seg Fault
20 23.511 Seg Fault
30 61.826 Seg Fault
40 159.949 Seg Fault
50 551.877 Seg Fault

Table 2: Verification results for MCMAS∗ and MCK
on the Dining Cryptographers protocol for the prop-
erty φ1. We encountered segmentation faults when
using MCK to verify φ1 with N ≥ 6 cryptographers.

ternative semantics, neither tool supports clock semantics
nor perfect recall for the specification we checked. Further-
more, we forced both tools to use the sifting algorithm for
dynamic variable reordering. This avoids uneven overheads
from the underlying BDD packages, even if both tools use
the CUDD package as BDD handler. Since MCK does not
support counterexample generation in the following we focus
on verification only.

Finally, we ensured that the explicit models encoded for
each tool were bisimilar. The sources are accessible from [26].

φ1 = A (G (¬paid0 → F (ψnone ∨ ψsomeone)))

ψnone = K0

(
N−1∧
i=0

¬paidi

)

ψsomeone = K0

(
N−1∨
i=1

paidi

)
∧
N−1∧
i=1

¬K0 (paidi)

In the specifications above φ1 holds for any value of N ≥
3; it expresses that if cryptographer 0 has not paid, then
he eventually either knows that no one has paid or knows
that some other cryptographer has paid, but does not know
whom. The results are presented in Table 2.

The tests reported suggest that MCMAS∗ appears able
to cope better than MCK on larger state spaces; this is
consistent with previous results concerning the scalability
of MCMAS and MCK for verifying CTLK properties [22].
Further tests on different specifications (sources at [26]) sug-
gest the same conclusion. We observe that both MCMAS∗

and MCK use the symbolic tableau construction to verify
CTL∗ properties, which involves a reduction to potentially
multiple CTL model checking problems with fairness con-
straints.

We also considered a variant of the dining cryptographers
scenario, which allowed us to express further CTL∗K spec-
ifications as well as to evaluate MCMAS∗’s performance on
those. The modified scenario consists of an iterated ver-
sion of the protocol whereby the cryptographers play in-
finitely many rounds of the protocol. In this variant we
further allowed the possibility of intruders being part of
the group; specifically, the paying cryptographer may non-
deterministically violate the protocol when making the an-
nouncement of the parity of the coins. We defined the propo-

sition obeyi to represent that cryptographer i is currently
following the protocol, i.e. he declares “same” or “different”
according to what the protocol rules; ¬obeyi represents the
fact that the cryptographer i is stating the opposite of what
prescribed by the protocol. Non-paying cryptographers are
assumed to follow the protocol throughout their executions.
Under these circumstances, we can verify the CTL∗K prop-
erty φ2:

φ2 = (paid0)→ AG(ψnone → E (ψarbitrary ∧G (ψnone))

ψarbitrary = GFobey0 ∧GF¬obey0

ψnone =

N−1∧
i=1

¬Kipaid0

φ2 states that “If no one else knows the paying cryptogra-
pher has paid, then it is always possible for her to arbitrarily
follow or violate the protocol (when announcing “same” or
“different”), without any other cryptographer being able to
deduce she is the payer”. In the specification, we exploited
the symmetry of the protocol and used cryptographer 0 as
the payer.

We found that, assuming N ≥ 3, the specification φ2

holds. This is because the other cryptographers cannot share
any information and, under observational semantics, they
do not remember past announcements. Observe that φ2 is
not expressible in CTLK nor in LTLK. This may indicate a
weakness of the protocol as it is somewhat non-tolerant to
an element of disruption in the protocol. We can use this
fact to derive variations of the protocol that are resistant to
tampering. The results of the tests against φ2 are presented
in Table 3.

Notice that it is actually inevitable that distributed knowl-
edge between cryptographers N − 1 and 1 of the identity of
the intruder (i.e., that cryptographer 0 must have paid) is re-
alised since the remaining cryptographers collectively know
the value of both coins that cryptographer 0 has seen. It can
be checked that upon her first lie (which must happen at
some point, since we require GF¬obey0) distributed knowl-
edge of this fact is created. We do not report the verification
results for this specification as distributed knowledge is not
currently supported by MCK.

By comparing the algorithms’ performance over φ1 and
φ2, we observe that for the same value of N , both MCMAS∗

and MCK require noticeably more time to verify φ2 than
φ1. We observe that the iterated protocol has a significantly
larger state space, owing to the ability of the payer to dis-
obey the protocol, as well as the possibility of having many
more legitimate intermediate states during iterations. For
example, for N = 50 the reachable state space for the iter-
ated model has 3.25×1062 states as compared to 1.94×1032

of the original model. Since our algorithms scale linearly
with increases in model size, verifying similar properties
over larger models is expected to take longer. Furthermore,
building the model (which involves iterating through its full
depth) is also significantly slower for the modified version of
the protocol. We were unable to obtain a comparable step-
by-step overview of the time spent in each step of verification
for MCK, and thus we based all reported results on the total
run-time. This would include not just labelling the states
in which the properties hold, but also parsing and building
symbolic representations of the models being specified.

The results reported suggest that MCMAS∗ appears bet-
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time (s)
N MCMAS∗ MCK
3 0.116 172.020
4 0.207 Timeout
5 0.370 Seg Fault
6 0.613 Seg Fault
8 2.111 Seg Fault

10 2.692 Seg Fault
15 32.371 Seg Fault
20 41.339 Seg Fault
30 416.815 Seg Fault
40 631.159 Seg Fault
50 1042.779 Seg Fault
60 Timeout Seg Fault

Table 3: Verification results for MCMAS∗ and MCK
on the iterative Dining Cryptographers protocol for
the property φ2. We encountered segmentation
faults when using MCK to verify φ2 with N ≥ 5
cryptographers. We ran our tests with a timeout
of 6 hours.

ter able to scale to larger state spaces than MCK on formulae
that exploit the additional expressivity provided by CTL∗K.
This may be owing to different BDD representations or al-
gorithms used, or other undocumented implementation de-
tails.

5. CONCLUSIONS
As we argued in the Introduction, a considerable amount

of research in verification of MAS assumes a branching model
of time. This is in contrast with work in reactive systems,
distributed systems, and mainstream Software Engineering
where time is assumed to be linear.

In this paper we have introduced verification algorithms
for MAS against CTL∗K specifications. This language al-
lows us to refer to linear time, branching time and extensions
of both, as well as the epistemic states of the agents in the
system. We have shown that the verification problem is no
harder than that of plain CTL∗. We have also described
MCMAS∗, an extension of MCMAS, that supports CTL∗K
specifications and therefore significantly extends the range
of problems that MCMAS-based techniques can be applied
to. We have shown that the extension comes at little com-
putational penalty against MCMAS.

In terms of future work, the technique we currently use
for Exist-Path, though adopted from other state-of-the-art
model checking tools such as MCK [15] and NuSMV, could
potentially be optimised further. This could involve adopt-
ing relatively recent improvements in LTL model checking
approaches, such as considering multiple symbolic tableau
encodings in parallel [32]. The overall verification approach
is modular with respect to the actual implementation of
Exist-Path; therefore, any further subsequent improvements
to LTL model checking performance should also be read-
ily applicable to our algorithm. To improve the perfor-
mance even further, we could investigate tuning aspects of
the CUDD package (such as its cache parameters, variable
ordering strategies, etc.) as well.

While MCK [15] also supports the verification of CTL∗K
properties. In our comparison we found MCMAS∗ more ef-

ficient in conducting verification. VerICS [27] also supports
a fragment of CTL∗K. However, since VerICS is based on
bounded model checking, the underlying technique is tai-
lored to the existential fragment of CTL∗K only.

By significantly extending the specification language sup-
ported, we believe that a number of applications ranging
from services, to security, robotics and beyond that use MC-
MAS as their underlying validation toolkit can be analysed
in more detail, or in variants that could not be considered
until now. Furthermore, advanced verification techniques
built on MCMAS can now potentially be extended to sup-
port CTL∗K specifications. We leave both subjects for fur-
ther work.
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