
Multi-Channel Marketing with Budget Complementarities

Haifeng Zhang
Vanderbilt University

haifeng.zhang@vanderbilt.edu

Yevgeniy Vorobeychik
Vanderbilt University

yevgeniy.vorobeychik@vanderbilt.edu

Ariel D. Procaccia
Carnegie Mellon University

arielpro@cs.cmu.edu

ABSTRACT
Utility maximization under a budget constraint is a classical
problem in economics and management science. It is com-
monly assumed that the utility is a “nice” known analytic
function, for example, continuous and concave. In many
domains, such as marketing, increased availability of com-
putational resources and data has enabled the development
of sophisticated simulations to evaluate the impact of allo-
cating a fixed budget among alternatives (e.g., marketing
channels) on outcomes, such as demand. While simulations
enable high resolution evaluation of alternative budget al-
location strategies, they significantly complicate the associ-
ated budget optimization problem. In particular, simulation
runs are time consuming, significantly limiting the space of
options that can be explored. An important second chal-
lenge is the common presence of budget complementarities,
where non-negligible budget increments are required for an
appreciable marginal impact from a channel. This intro-
duces a combinatorial structure on the decision space. We
propose to address these challenges by first converting the
problem into a multi-choice knapsack optimization problem
with unknown weights. We show that if weights (corre-
sponding to marginal impact thresholds for each channel)
are well approximated, we can achieve a solution within a
factor of 2 of optimal, and this bound is tight. We then
develop several parsimonious query algorithms for achiev-
ing this approximation in an online fashion. Experimental
evaluation demonstrates the effectiveness of our approach.
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1. INTRODUCTION
The emergence of digital media, such as the world wide

web, search engines, and online social networks, has opened
up tremendous opportunities for today’s marketers to look
for prospects and engage existing customers. A mix of these
innovative channels with traditional ones, such as TV, di-
rect mailing, and door-to-door marketing, has been widely
adopted by many companies to generate more sales, main-
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tain stronger customer relationships, and achieve a higher
customer retention rate [20]. Despite its benefits, this prac-
tice has also significantly increased operational complexity,
making marketing one of the key managerial challenges [16,
17]. The demand for effective budget allocation solutions in
multi-channel marketing campaigns has in turn given rise to
major software products aimed towards this goal, including
those developed by SAS and IBM, among others.

In order to determine the optimal budget allocation among
the marketing channels, the marketer needs a way to evalu-
ate the effectiveness of alternative budget splits. Advanced
simulation models, and abundant data that can be used to
calibrate them, allow doing just that. The use of simu-
lations, as compared to analytic objective functions (such
as concave and continuous utility being maximized), intro-
duces an important technical challenge: simulations are of-
ten slow, and parsimony is therefore crucial in query-based
black-box optimization methods. A second technical chal-
lenge arises from the fact that the response function for each
channel (such as the number of individuals who buy the
product) commonly exhibits budget complementarities, re-
quiring a non-trivial added expense on a channel to make
a significant impact on the response function. For example,
in door-to-door marketing, a budget increment needs to be
sufficient to hire another salesman, or increase their working
hours by a discrete amount. Similarly, in keyword auctions,
moving up a slot requires a discrete added investment, the
amount of which depends on specific pricing strategies and
competition among bidders.

To address these challenges, we present a novel and pow-
erful discrete budget optimization framework to generate
near-optimal budgeting strategies when the budget alloca-
tion response is a step function represented by a simula-
tor. We first show that the budget optimization problem
can be readily cast into a multi-choice knapsack problem
(MCKP), which admits effective state-of-the-art algorithms.
Since the step-wise response function is represented using a
simulator, the thresholds which identify the discrete jumps
(serving as weights in the MCKP) are unknown, and a fi-
nite number of simulator queries can at best isolate these
to small intervals. Consequently, the MCKP can at best be
solved approximately. We show that under mild conditions,
for sufficiently small bounds on weights, solving the MCKP
with weight upper bounds yields a 2-approximation, and this
bound is tight. Surprisingly, this bound holds even when the
thresholds are not fully explored. Next, we develop two effi-
cient query algorithms that allow us to obtain tight intervals
around MCKP weights (as well as associated response val-
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ues). The first, Generalized Binary Query (GBQ) is a gen-
eralization of the classic binary search applied to the case of
multiple thresholds, which we show to be more efficient than
simple linear search. The second approach, namely, Heuris-
tic Binary Query (HBQ), is designed to reduce the number
of queries needed per iteration, with the help of the solu-
tion of an auxiliary optimization problem that corresponds
to the best possible payoff in the next round.

Our framework is implemented in a simulated marketing
environment that mimics a real-world multi-channel cam-
paign in a targeted geographical area. We use this simu-
lator to conduct extensive experiments to demonstrate the
usability of the proposed framework and compare the per-
formance of two query algorithms as well as a Simulated
Annealing (SA) algorithm, which is a well-known stochastic
local search method typically used for problems with highly
non-linear objectives. Our results show that HBQ achieves
payoffs only slightly lower than GBQ, but using significantly
less time. Moreover, both HBQ and GBQ outperform SA
in all experiments, reaching competitive payoff levels signif-
icantly faster.

In summary, we make the following contributions:
1. A novel discrete budget optimization problem with an

application to multi-channel marketing, transformed
into a multi-choice knapsack problem;

2. A theoretical analysis of the resulting problem in which
weights (corresponding to steps in the response func-
tion) can only be bounded, showing that solving the
approximate MCKP with upper bounds on weights
yields a tight 2-approximation;

3. Two novel simulation query strategies for obtaining
upper and lower bounds on MCKP weights: General-
ized Binary Query and Heuristic Binary Query;

4. A simulation platform to evaluate the multi-channel
marketing algorithms;

5. Extensive experiments across different marketing sit-
uations and a variety of budgets demonstrating the
usability of the proposed framework and efficacy of
proposed query methods, compared to a simulated an-
nealing algorithm.

2. RELATED WORK
Budget optimization is a classical problem in economics,

operations research, and management science. The prob-
lem is traditionally tackled by maximizing specific objec-
tives, e.g., sales, profit, or customer equity, based on a set
of pre-specified constraints [16]. In practice, the real-world
markets involve considerable complexity, for example, as a
consequence of social interactions and influence [13]. Con-
sequently, simulation-based optimization methods, such as
system dynamic models, are often used to aid decision mak-
ing [11]. Interestingly, most previous work assumes a con-
tinuous objective and solves the problem by smooth tech-
niques which rely on computing a gradient or Hessian of the
objective. In contrast, we present a novel combinatorial op-
timization framework in a setting where channel payoff ex-
hibits strong budget complementarities which we model by
considering a stepwise response function. Note that the non-
smooth optimization techniques [3] such as the sub-gradient
methods fail in our setting since the sub-gradient is not in-
formative in step functions.

Recently, extensive work focused on budget optimization
for a single marketing channel. For example, Yang et al. pro-

pose a hierarchical budget allocation framework for online
advertising that links decisions at different decision levels,
such as system, campaign, and keyword [22]. Using individ-
ual data, several authors model user responses to marketing
actions as a Markov Chain and solve the budget optimiza-
tion problem using a constrained Markov Decision Process
(MDP). For instance, Abe et al. develop an MDP framework
with reinforcement learning for direct mailing campaigns [1].
Under the assumption of positive carryover effects, Archak
et al. propose an optimal greedy algorithm for online advert-
ing in an MDP framework [2]. Boutilier and Lu address the
allocation of a budget among multiple MDPs representing
different types of users or groups [8]. Zhang and Vorobeychik
develop a route planner for door-to-door marketing based
on submodular optimization [23]. These specialized budget
optimizers based on empirical data are quite effective for
targeted marketing, but are still specialized sub-problems of
the overall problem of optimally allocating a budget among
a collection of marketing channels, which we address.

The multi-choice knapsack problem (MCKP) is a variant
of the simple knapsack problem in which a class can have
multiple items but only one can be chosen, and has been
extensively explored in the literature [21, 19, 9]. Our theo-
retical analysis of approximation bounds is related to sen-
sitivity analysis in operations research [5], which examines
the sensitivity of the optimal solution to changes in the co-
efficient matrix, cost, price, and budget. Hifi et al. provide
sensitivity intervals for the 0-1 knapsack problem subject to
changes of item weights [12]. In contrast, we address the
question about the worst-case performance of the MCKP in
which weights are tightly bounded, as a means to a broader
end of multi-channel marketing budget allocation. Finally,
our work is related to, but distinct from robust optimiza-
tion [4, 18, 15, 10]. This line of work usually imposes a limit
for the number of uncertain parameters (e.g., weights) to
avoid overly conservative solutions, while we use the upper-
bounds for all weights to secure a feasible solution. Goerigk
et al. study query strategies for a robust knapsack problem,
rather than a general MCKP as in our case [10]. They as-
sume that a single query returns “true” weight; by contrast,
we design a sequence of queries to efficiently approximate
weight bounds, but cannot in general obtain true weights,
as is commonly the case when marketing response is simu-
lated.

3. PROBLEM STATEMENT
Suppose that a marketer is given a fixed budget B to

advertise a new product over n marketing channels. Let
x = (x1, . . . , xn) represent a budget split with xi the amount
of the budget allocated to channel i. Let r(x) be the net
reward to the marketer (e.g., in terms of overall product up-
take) given a budget split x. Our goal is to solve the follow-
ing multi-channel marketing optimization (MCMO) prob-
lem:

max
x

r(x) (1a)

s.t. :

n∑
i=1

xi ≤ B, (1b)

that is, we aim to optimally split the budget B across the
n channels to maximize the total net payoff. If r(x) are
concave and known and the budget divisible, as is com-
monly assumed in numerous related formulations, Problem 1
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is straightforward to solve with the standard convex opti-
mization methods (indeed, this is just the standard budget-
constrained utility maximization problem in consumer the-
ory [14]). What has not received much attention, and is
of interest to us, is this problem in which (a) r(x) exhibits
strong, but imperfect, complementarities, and (b) r(x) is
not a priori known, but specified by a time consuming sim-
ulation model. For example, r(x) may capture a complex
social influence diffusion process which cannot be analyti-
cally characterized and is evaluated in simulations, as is the
case for many important social influence models in the lit-
erature [13, 24]. Moreover, making a non-negligible impact
on a given agent’s decision (e.g., in seeding them by pro-
viding this agent a product at a low cost) incurs a non-zero
cost which may be a complex function of contextual factors
also embedded in a simulation, and therefore unknown a pri-
ori. As another example, online auction-based advertising
channels (such as keyword auctions) require a sufficiently
high investment to move into a higher priority slot, which
makes a discontinuous impact on the expected number of
clicks and, thus, conversions, and the precise amount of this
investment is a complex function of bidding behavior by a
collection of agents which can be captured in a simulation
environment, but could be difficult to characterize in closed
form.

In order to model such complementarities, we begin by
assuming that r(x) =

∑
i ri(xi), with ri(xi) increasing and

ri(0) = 0. For each channel i, we suppose that there is
a collection of thresholds wij so that crossing a threshold
results in a jump in ri(xi). Formally, we assume that ri(xi)
is a step function of the following form:

ri(xi) =


0, xi < wi1

ri1, wi1 ≤ xi < wi2

. . . , . . .

riJi , xi ≥ wiJi

where there are Ji(≥ 1) thresholds {wij}j=1,...,Ji and non-
zero payoff levels {rij}j=1,...,Ji .

As the first step, we transform Problem 1 with the struc-
ture just described into an equivalent multi-choice knapsack
problem (MCKP). Since in our model any investment level
not corresponding to a threshold is wasteful, the decision
problem is to determine at which threshold level j we should
allocate the budget for each channel i. We encode this deci-
sion as a binary variable yij , which is 1 whenever we allocate
budget at threshold level j for channel i. The MCKP is then

max
yij∈{0,1}

n∑
i=1

Ji∑
j=1

rijyij (2a)

s.t. :

n∑
i=1

Ji∑
j=1

wijyij ≤ B (2b)

∀i ∈ {1, . . . , n},
Ji∑
j=1

yij ≤ 1, (2c)

where the first inequality is the budget constraint, and the
second implies that at most one budget level can be picked
for any channel. Note that Problem 1 with known thresholds
is harder than the MCKP, as a polynomial oracle for it can
solve an arbitrary instance of MCKP. Throughout, it will be

useful to denote the above MCKP as MCKP (Ji, wij), with
a specified set of Ji weights for each i; the corresponding rij
will be clear from context.

Armed with the MCKP formulation, we can now identify
the key technical challenges: (1) wij can only be approx-
imately determined from a finite number of queries, since
these lie on a continuous interval, and (2) the problem pa-
rameters wij and rij must be obtained using time consuming
simulations. We address these challenges below.

4. APPROXIMATE MULTI-CHOICE
KNAPSACK

We begin by addressing the first challenge above: the
threshold values wij cannot be identified exactly. Surpris-
ingly, despite considerable prior work on approximate and
robust knapsack problems, this particular problem remains
open, to the best of our knowledge. Our analysis of approxi-
mate MCKP may thus be of independent interest, but for us
it is just an important piece of the puzzle. We subsequently
take up the complementary piece: efficient query strategies
for achieving good MCKP approximations.

Formally, suppose that wij are not known, but we have
lower and upper bounds so that wij ∈ [wij , wij ], and let
ε := maxij{wij−wij} > 0, which implies that wij−wij ≤ ε
for all i, j. Since wij are unknown, we propose to approx-
imate the associated MCKP with MCKP (Ji, wij). Next,
we demonstrate that under a set of conditions which can
be guaranteed with sufficiently many simulation queries, we
can obtain a 2-approximation of MCKP (Ji, wij), and this
approximation is tight unless the weights are known exactly.

First, notice that we have thus far implicitly assumed that
every interval contains exactly one threshold wij . This is a
significant challenge: even if we can guarantee that for a par-
ticular fixed ε all thresholds are bounded within intervals of
length at most ε, we would still be unable to distinguish
thresholds that all cluster within some such interval. Fortu-
nately, even in such a case we do know that all such thresh-
olds are in one of the intervals we have identified. This turns
out to be sufficient to obtain the approximation guarantees.

Formally, suppose that there are J ′i ≤ Ji thresholds for
channel i, and we solve MCKP (J ′i , wij). For ease of ex-
position, let us denote the optimal value of Problem 2 as
OPT (Ji, wij), while the optimal value of MCKP (J ′i , wij)
will be denoted by OPT (J ′i , wij). Finally, let OPT (J ′i , wij)

be the optimal value of the problem MCKP (J ′i , wij), which
uses lower-bound weights {wij} but upper-bound payoffs

{ri(wij)} of J ′i intervals. The following is our key result:

Theorem 4.1. Assume that wij ≤ B,∀i ∈ 1, . . . , n, ∀j ∈
1, . . . , J ′i and denote wmin = min{wij}i=1,...,n;j=1,...,J′i

. If

ε ≤ wmin/n, then, 1) OPT (J ′i , wij) ≥ 1
2
OPT (Ji, wij); and

2) the bound is tight.

We prove this theorem in a series of steps.

Lemma 4.2. OPT (Ji, wij) ≤ OPT (J ′i , wij),∀J
′
i ≤ Ji.

Proof. Since payoff increases with respect to weight, for
channel i, any unexplored threshold h must be in one of
the intervals we already discovered. Suppose it is in the in-
terval [wij , wij ], where, r(wij) < r(wij). Clearly, option h
(wih, r(wih)) (corresponding to threshold h) is dominated
by option (wij , r(wij)), as the latter has lower cost but
higher payoff. As to multiple channels, this suggests that
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OPT (Ji, wij) is always upper-bounded by OPT (J ′i , wij), al-
though the number of intervals we identified is at most the
number of thresholds: J ′i ≤ Ji.

Lemma 4.3. Assume that wij ≤ B,∀i ∈ 1, . . . , n, ∀j ∈
1, . . . , J ′i and denote wmin = min{wij}i=1,...,n;j=1,...,J′i

. If

ε ≤ wmin/n, then, OPT (J ′i , wij) ≤ 2OPT (J ′i , wij), ∀J ′i ≤
Ji.

Proof. Let Ẏ = {ẏij} and Ŷ = {ŷij} be the optimal so-
lution that corresponds to OPT (J ′i , wij) and OPT (J ′i , wij)
respectively. Note that ε ≥ wij − wij , thus, we have

n∑
i=1

J′i∑
j=1

wij ẏij ≤
n∑

i=1

J′i∑
j=1

wij ẏij + ε

n∑
i=1

J′i∑
j=1

ẏij ≤ B + nε (3)

where the last inequality holds due to the fact that Ẏ = {ẏij}
is the optimal solution for OPT (J ′i , wij), which satisfies the
budget constraint. By the definition of wmin and the as-
sumption

ε ≤ wmin

n
(4)

we have nε ≤ wmin ≤ wij , ∀i ∈ 1, . . . , n, ∀j ∈ 1, . . . , J ′i .
Consider dropping any non-zero item s in Ẏ , the resulting

solution must be feasible for the problem MCKP (J ′i , wij)
according to inequality (3), and bounded by OPT (J ′i , wij).

Thus, we have
∑n

i=1

∑J′i
j=1 rij ẏij − rs ≤

∑n
i=1

∑J′i
j=1 rij ŷij ,

and by rearranging we get that

n∑
i=1

J′i∑
j=1

rij ẏij −
n∑

i=1

J′i∑
j=1

rij ŷij ≤ rs (5)

We have assumed that wi ≤ B, ∀i ∈ 1, . . . , n, ∀j ∈
1, . . . , J ′i , so ws ≤ B, which implies rs ≤

∑n
i=1

∑J′i
j=1 rij ŷij .

By inequality (5) we know that

n∑
i=1

J′i∑
j=1

rij ẏij −
n∑

i=1

J′i∑
j=1

rij ŷij ≤
n∑

i=1

J′i∑
j=1

rij ŷij

and thus
∑n

i=1

∑J′i
j=1 rij ẏij ≤ 2

∑n
i=1

∑J′i
j=1 rij ŷij . Hence,

OPT (J ′i , wij) is a 2-approximation of OPT (J ′i , wij).

Proof of Theorem 4.1. Part 1 of the theorem follows
directly from Lemmas 4.2 and 4.3. For Part 2, we show
that the factor-2 bound is tight. Consider a simple exam-
ple, in which we are given a budget of 1 to advertise in only
two channels, such that, w1 = 1/2 − δ, w2 = 1/2 + δ, and,
r1 = r2 = 1, and 0 < δ < 1/2. Recall that in our setting,
both w1 and w2 are unknown, but instead we use their upper
bounds w1 and w2. If the upper bounds are not identical
to the actual weights, we can only choose one of the chan-
nels. Therefore, the approximate problem gives us at most
a payoff of 1, whereas we can get a payoff of 2 when exact
weights are known by choosing both channels. Moreover,
the example also suggests that one will never be able to get
a better than 2-approximation no matter how small ε is.

Note that MCKP (J ′i , wij) is also an NP-hard problem.
Suppose that we use a c-approximation algorithm to solve
MCKP (J ′i , wij), then the statement below naturally follows
from Theorem 4.1.

Corollary 4.4. Assume that wij ≤ B,∀i ∈ 1, . . . , n,
∀j ∈ 1, . . . , J ′i and denote wmin = min{wij}i=1,...,n;j=1,...,J′i

.

If ε ≤ wmin/n, a c-approximation algorithm for MCKP (J ′i , wij)
achieves at least 1/2c of the optimal value of MCKP (Ji, wij).

Proof. Let G be the near-optimal solution value given
by the c-approximation algorithm for MCKP (J ′i , wij), then
G ≥ 1

c
OPT (J ′i , wij). From Theorem 4.1, we know that

OPT (J ′i , wij) ≥ 1
2
OPT (Ji, wij). Thus, it must be the case

that G ≥ 1
2c
OPT (Ji, wij).

5. QUERY STRATEGIES FOR BUDGET
ALLOCATION

Our analysis so far assumed that we have been given a
set of intervals for MCKP weights wij (that is, thresholds
at which the response function jumps in value) which are
sufficiently tight, in the sense of Condition (4), to ensure a
2-approximation using just the interval upper bounds in an
MCKP. The key next question, which we now address, is how
to obtain such intervals efficiently using a sequence of simu-
lation queries. First, observe that there is a straightforward
query mechanism which can produce intervals of arbitrary
width in linear time: finely discretize each channel in the
interval [0, B], and query each discrete value for each chan-
nel independently. However, this approach can be extremely
wasteful: for example, one channel can yield a small response
and require a minimal investment of B; in most cases, we
can quickly discover this and ignore this channel altogether.
We will propose a more intelligent query algorithm which
interleaves MCKP computation with queries. This allows
more efficient exploration of the allocation space, and early
termination once a near-optimal allocation is found.

5.1 Iterative Budgeting Algorithm

Data: maximum iteration K, total budget B,
parameter θ

Result: budgeting plan Pb = {bi}i=1,...,n

Ii ← ∅, ∀i = 1, . . . , n;
bi ← 0, ∀i = 1, . . . , n;
k ← 0;
foreach channel i ∈ 1, . . . , n do

v0 ← (0, 0);
vB ← (B, ri(B));
Ii ← Ii ∪ (v0, vB);

end
while k < K do
{wij} ← Ubs(Ii), ∀i ∈ 1, . . . , n;
{wij} ← Lbs(Ii), ∀i ∈ 1, . . . , n;

¯
y ←MCKP (J ′i , wij);

ȳ ←MCKP (J ′i , wij);
Pb ←

¯
y ◦ w̄;

if ȳ · r −
¯
y · r ≤ θ then

break;
end
foreach channel i ∈ 1, . . . , n do

updateIntervals(Ii);
end
k ← k + 1;

end
return Pb

Algorithm 1: Iterative Budgeting Algorithm.
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Now we present our primary algorithm, termed Iterative
Budgeting (IB); it is given as Algorithm 1. In Algorithm 1,
Ii stands for the set of intervals for channel i. Moreover,
an interval is represented as a tuple (vl, vu), consisting of
a lower bound vl = (wl, r(wl)) and an upper bound vu =
(wu, r(wu)). ri(·) is the step-wise payoff function for channel
i evaluated by simulation. For any Ii, Ubs(·) and Lbs(·)
are simply functions that return a set of upper-bound and
lower-bound weights respectively.

¯
y and ȳ are the solutions

for MCKP (J ′i , wij) and MCKP (J ′i , wij) respectively (e.g.,
using CPLEX). Each round, a new budget allocation plan
Pb =

¯
y ◦ w̄ = {bi =

∑
j
¯
yijw̄ij} is computed. The method

updateIntervals(·) updates the set of intervals by sending
more queries to the specified channel simulator, which will
be described in more details in the next section.

The algorithm starts with one interval per channel and
uses the upper-bound weights and payoffs to compute an ini-
tial solution. Next, in each iteration, it sends more queries
to each channel and updates Ii with returned payoffs, and
computes a new solution. As it runs more iterations, and the
set of intervals is further refined, generally, the solved payoff
(
¯
y · r) will approach its upper-bound of the optimum (ȳ · r),

where the notation a · b is the dot product of two vectors.
θ is a parameter that controls the solution quality. Specifi-
cally, Lemma 4.2 shows that OPT (J ′i , wij) is an online upper
bound for OPT (Ji, wij). This bound is very useful, since
OPT (Ji, wij) is unknown; we can compute OPT (J ′i , wij)
(suppose this is computationally feasible) and use

∆OPT = OPT (J ′i , wij)−OPT (J ′i , wij)

to assess the quality of the approximate solution. In partic-
ular, when ∆OPT ≤ OPT (J ′i , wij), we are guaranteed to
have a 2-approximation. This is because: OPT (J ′i , wij) −
OPT (J ′i , wij) ≤ OPT (J ′i , wij) and thus OPT (J ′i , wij) ≤
2OPT (J ′i , wij). As OPT (Ji, wij) ≤ OPT (J ′i , wij), we have

OPT (Ji, wij) ≤ 2OPT (J ′i , wij). Consequently, we are guar-
anteed to get a 2-approximation if we set θ = ȳ · r =
OPT (J ′i , wij). In practice, we set a much smaller θ to obtain
a better solution.

5.2 Query Strategies
Now we discuss how Algorithm 1 updates intervals by

queries. We first notice that in the case of a single thresh-
old per channel, binary search is more efficient than linear
search. Given budget B, using binary search to obtain an
interval width ε, one has to send at most blog(B/ε)c + 1
queries (1 initial query for ri(B) and ri(0) = 0). In partic-
ular, if ∃i ∈ Z+, such that ε = B( 1

2
)i, then we need exactly

i+1 queries to guarantee ε, where i = log(B/ε). In contrast,
using linear search, we need B/ε queries to achieve an inter-
val width of ε, which is clearly less efficient than the binary
search. The task is to extend binary search to handle the
case that a channel could have a finite number of thresholds.

5.2.1 Generalized Binary Query Algorithm
We propose a Generalized Binary Query (GBQ) Algo-

rithm (see Algorithm 2) to implement updateIntervals(·),
which extends the binary search method to the case of mul-
tiple thresholds.

The algorithm scans each interval and creates a new query
using a weight that is halfway between the lower and upper
bound weights. In other words, it takes one binary search
action within each interval available at an iteration. If the

Data: a set of intervals Ii
Result: updated Ii
I′i ← ∅
foreach interval (vl, vu) in Ii do

w′ ← (wl + wu)/2;
r′ ← (w′);
if r′ = rl then

vl ← (w′, rl);
else if r′ = ru then

vu ← (w′, ru);
else

v′ ← (w′, r′);
I′i ← I′i ∪ (vl, v

′);
I′i ← I′i ∪ (v′, vu);
Ii ← Ii\(vl, vu);

end
return I′i ∪ Ii

Algorithm 2: Generalized Binary Query (GBQ) Algo-
rithm: updateIntervals(Ii).

queried payoff equals to the lower (upper) bound payoff,
then it updates the lower (upper) bound weight accordingly.
Otherwise, a new interval is added to the current set of in-
tervals Ii. Therefore, the query action has two effects: 1)
narrowing existing intervals, and 2) identifying new intervals
(thresholds).

Note that, to obtain an interval width of ε, we could
also send B/ε queries using a simple linear search. Sup-
pose a channel has J thresholds, {wi}i=1,··· ,J , such that,
w1 < w2 <, · · · , < wJ . Define dmin = minj{wj − wj−1},
which is the minimum distance between two adjacent thresh-
olds. Theorem 5.1 states that GBQ is more efficient than
linear search.

Theorem 5.1. Assume ε = B( 1
2
)i, where i ∈ Z+. If

ε ≥ dmin, in the worst case, GBQ uses the same number of
queries as linear search; however, if ε < dmin, GBQ always
uses fewer queries.

Proof Sketch. 1 First, we notice that for a given ε
that satisfies ε = B( 1

2
)i, besides the linear search with B/ε

queries, we can use a naive binary search as follows: first,
we query r(B); next, r(B/2); then, r(B/4) and r(3B/4),
and so on. In total, we need i + 1 iterations to achieve ε.
In terms of queries, we need: 1 + 1 + 2 + . . . + 2(i−1) = 2i,
which is exactly B/ε.

When ε ≥ dmin, it is possible that each query will find
a new interval, and thus at most 2i queries are required to
obtain intervals of width ε. However, when ε < dmin, we are
guaranteed that GBQ has captured all thresholds at some it-
eration î < i. For any iteration after î, it only sends a fixed
number of queries (equal to the actual number of thresh-
olds), as the generalized binary search will skip intervals
that do not have thresholds. By contrast, the naive binary
search (equivalent to linear search as we have shown) has to
explore all intervals available for each iteration. Therefore,
if ε < dmin, GBQ always uses fewer queries.

Notice that as the IB algorithm iterates using the GBQ
strategy, in each iteration it maintains several intervals for
each channel with uniform length (ε in Section 4). We would

1A complete proof is available at: https://github.com/
haffwin/mcmo/blob/master/mcmo/mcmo_append.pdf
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expect that in some iteration, it will satisfy Condition (4)
and ensure the 2-approximation in Theorem 4.1. Formally,
we show this to be the case in Corollary 5.2, where k is the
number of iterations of IB.

Corollary 5.2. When k ≥ log Bn
wmin

, IB algorithm with

GBQ strategy achieves a 2-approximation of MCKP (Ji, wij),
where k is the number of iteration.

Proof. Based on GBQ, we know that ε, the width of
any interval satisfies: ε = B/2k. As Condition 4 requires
that: ε ≤ wmin/n, we have B/2k ≤ wmin/n, which is k ≥
log Bn

wmin
.

5.2.2 Heuristic Binary Query Algorithm
Notice that using the query Algorithm 2, Algorithm 1

needs to send an increasing number of queries for each chan-
nel in each iteration. Although the number of queries re-
quired for an iteration will eventually be bounded by the
actual number of thresholds, most queries are wasteful, es-
pecially when the solution approaches its optimum. To im-
prove efficiency of the query search we propose a Heuristic
Binary Query Algorithm (HBQ), described in Algorithm 3.
Notably, as distinct from GBQ, HBQ only sends one query
per channel to the “most profitable” interval in each itera-
tion, where this channel is determined by ŷ, computed as:

ŷ ←MCKP (J ′i , (wij + wij)/2).

That is, ŷ is the solution of MCKP which uses the average of
lower-bound and upper-bound weights, but the upper-bound
payoffs of all intervals. Intuitively, ŷ gives the highest payoff
we would obtain in the next iteration if we query all current
available intervals in a binary manner. Notably, if IB is to
use HBQ, it is modified by using ŷ in place of ȳ.

Data: a set of intervals Ii, solution of best payoff in
next iteration ŷ

Result: updated Ii
I′i ← ∅
foreach interval (vl, vu) in Ii do

if item l is not selected in ŷ then
continue;

end
w′ ← (wl + wu)/2;
r′ ← (w′);
if r′ = rl then

vl ← (w′, rl);
else if r′ = ru then

vu ← (w′, ru);
else

v′ ← (w′, r′);
I′i ← I′i ∪ (vl, v

′);
I′i ← I′i ∪ (v′, vu);
Ii ← Ii\(vl, vu);

end
return I′i ∪ Ii

Algorithm 3: Heuristic Binary Query (HBQ) Algorithm:
updateIntervals(Ii, ŝ).

6. EXPERIMENTS
In order to evaluate our approach we developed a multi-

channel marketing simulator. In this simulator, a fixed bud-
get is allocated to advertise a technology over four channels:

door-to-door, keyword auction, direct mailing, and broadcast,
where the payoff for each channel is modeled by a step func-
tion of the allocated budget and corresponds to the total
number of adopters of the technology. One of the sources
of complexity is that response is a function not merely of
those reached by marketing directly, but also by those indi-
rectly affected through social influence. Below we describe
the details of the simulator.

The target population was comprised of 536 households in
San Diego county, CA which is shared among the marketing
channels.2 The full marketing campaign was restricted to
3 months. As our baseline we implemented the well-known
simulated annealing (SA) algorithm which was tuned to our
problem domain [6]. Our algorithm used CPLEX 12.6.1
through a Java API to solve MCKP, and experiments were
run on an Ubuntu Linux 64-bit PC with 32 GB RAM and
four 8-core Intel Xeon 2.1 GHz CPUs.3

6.1 Marketing Simulator

Door-to-Door Marketing.
In door-to-door marketing, a sales agent knocks on a cus-

tomer’s door and attempts to initiate a discussion that could
eventually lead to a sale. To simulate relevant marketing de-
cisions, we adopt the door-to-door marketing route planner
developed by [23], which uses an independent cascades (IC)
model of social influence [13] to model the spread of suc-
cessful adoptions by individuals to their geographic neigh-
bors. The key parameter in the IC model is the transmission
probability p representing the likelihood of a newly adopted
customer affecting its socially-connected neighbors. For a
fixed budget allocated to this channel, we follow Zhang and
Vorobeychik in approximately computing the optimal routes
for sales people to maximize influence using a greedy al-
gorithm [23]. The step-function nature of the channel re-
sponse arises from the fixed cost needed to add a sales person
with sufficient allocated time to cover at least one household
which has not already been covered by others.

Keyword Auction.
The keyword auction simulator mimics bidding decisions

in a search engine keywords auction, analogous to Google
AdWords. In the simulation, a marketer is given a fixed
budget b to bid on k predefined keywords (relevant to the
promoted product). A higher bid may help secure a higher
position for one’s advertised content in the search results
page, and thus a higher click-through rate. However, the
bid needs to be increased sufficiently to jump to a higher
slot—hence the step-function nature of the response.

A keyword i is represented by a tuple (ci, fi), where ci
is its cost-per-click and fi the fraction of users in the tar-
geted region who click on the ads each day. ci and fi are
determined as follows: ci = i + e1i and fi = α(i + e2i ) for
all i, where, α is a pre-defined coefficient, and e1i and e2i
are random variables drawn from the uniform distribution
on [0, 1] i.i.d. for each i. In expectation, ci is approximately
proportional to fi. Finally, let Road be the conversion rate,
or fraction of clicks on an ad that result in a purchase.

2Population was restricted primarily to restrict the time for
each simulation run to enable a sufficient number of total
runs for meaningful comparisons.
3Implementation of the marketing simulator and algorithms
is available at: https://github.com/haffwin/mcmo.git.
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We assume that for a given budget b, the marketer splits
it equally over the 3-month period, and solves the following
fractional knapsack problem every day to maximize the total
number of clicks (since conversion rate is constant):

max
x

k∑
i=1

xifi (6a)

M

k∑
i=1

xicifi ≤ b/d ∀ i, (6b)

where x is the vector corresponding to the budget split, M
is the total population size, and b/d the daily budget.

Direct Mailing.
A direct mailing marketer typically starts with a dataset

of customer demographic information and purchase records,
builds statistical models to predict response rate, and then
ranks customers in descending order of response rate to
send solicitations [7]. Our direct mailing simulator uses this
strategy after randomly assigning a response rate to each
customer from a uniform distribution on [0, 2r̄], where r̄ is
the pre-defined average response rate. In the simulation,
an advertiser runs a direct mailing campaign weekly using
an identical budget (i.e., the total budget is split equally
among the 13 weeks comprising 3 months). In addition, we
use a channel-specific conversion rate Rdml (probability of
response to the ad).

Broadcast Marketing Simulator.
A marketer can also choose to advertise a product over a

broadcast channel, such as TV or radio. In the simulation,
we assume the marketer is facing Jb broadcast advertising
options. Each option is represented by a tuple (cj , rj), with

cost cj = ejB̄ and response rate rj = 1−e
−βcj

1+e
−βcj for each ad-

vertising option j, where, ej is a random number drawn from
a uniform distribution from 0 to 1, and B̄ is the maximum
budget allowed in the system. The distribution of rj follows
a tanh function with respect to cj (essentially, a rescaled
logistic function to ensure output is within [0,1] for positive
values of cost cj), with an exogenously specified coefficient
β. The final parameter, conversion rate, is denoted by Rbrc.

Similar to the other simulators, an advertiser divides the
budget b equally into w ≤ 13 weeks. Each week, with a
budget b/w, the marketer chooses the best option (in terms
of rj). The expected response each week is the response rate
multiplied by the market size. Finally, the marketer decides
on an optimal duration of the marketing campaign in weeks,
w∗.

6.2 Results
This section presents experimental results for 7 simulation

configurations reflecting variability of relative channel effi-
cacy for two channels, door-to-door marketing and keyword
auctions. The parameter values are the transmission proba-
bility p in the former and conversion rate Road for the latter.
The values of these for each configuration are given in Ta-
ble 1.4 Throughout, the conversion rates of direct mailing
and broadcast marketing are 0.05 and 0.1 respectively.

4Experimental results regarding other parameters are pro-
vided in a supplement at: https://github.com/haffwin/
mcmo/blob/master/mcmo/mcmo_append.pdf.

configuration (ID) door to door (p) online ads (Road)
0 0.1 0.05
1 0.08 0.05
2 0.12 0.05
3 0.12 0.03
4 0.12 0.07
5 0.12 0.01
6 0.14 0.05

Table 1: Parameter configurations.

Figure 1 shows the simulated payoffs as a function of bud-
get for each channel for configuration 0, where thresholds
correspond to the “steps”, and each step-wise line is consists
of the simulated payoffs for the corresponding budget. The
step-wise output suggests the strong combinatorial nature
of our optimized objective.
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Figure 1: Simulated payoffs for Configuration 0 of four chan-
nels: door-to-door, online ads, direct mail and broadcast.

Figures 2 and 3 compare utility (overall rewards of the
four channels) and running time of GBQ, HBQ and SA for
different budgets, varying channel parameters of door-to-
door marketing and keyword auction channels respectively.
In all experiments, GBQ achieves the highest payoffs, but at
a significant computational cost. Notably, HBQ is typically
by far the most efficient in terms of computation time, and
achieves utility that is always nearly optimal. In addition,
GBQ is typically significantly more time efficient than SA,
which does eventually achieve a near-optimal utility as well,
but after considerable computing time.

7. CONCLUSION
We presented a novel discrete optimization framework to

address the budget allocation challenge faced in multi-channel
marketing, where channel-wise payoffs exhibit strong budget
complementarities. We showed that the budget optimization
problem in our setting can be transformed into a well-known
multi-choice knapsack problem, which can be solved effec-
tively using state-of-the-art MILP solvers. We then intro-
duced effective approximation and query schemes (GBQ and
HBQ) when the response function of multi-channel market-
ing is represented using a simulation model, where weights
of knapsack items can only be bounded through queries. We
showed that the transformed (multi-choice) knapsack prob-
lem using the upper-bound knapsack weights is a tight 2-
approximation to the optimum with exact thresholds, when
the weights satisfy mild conditions. We implemented our
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Figure 2: Payoff (a)-(d) & run time (e)-(h) comparison
among algorithms over different budgets for different door-
to-door marketing parameters. (a), (e) p = 0.08. (b), (f)
p = 0.1. (c), (g) p = 0.12. (d), (h) p = 0.14.

framework in a simulated marketing platform motivated by
real-world multi-channel marketing campaigns in a real ge-
ographical area. We conducted extensive experiments on
different marketing configurations and showed that the pro-
posed query algorithms significantly outperform a simulated
annealing baseline.
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Figure 3: Payoff (a)-(d) & run time (e)-(h) comparison
among algorithms over different budgets for different online
ads marketing parameters. (a), (e) Road = 0.01. (b), (f)
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