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ABSTRACT

Modeling and analysis of large-scale complex adaptive sys-
tems (CAS) is critical to understanding their key proper-
ties such as self-organization, emergence, and adaptability.
These properties are difficult to analyze in real-world scenar-
ios due to performance constraints, metric design, and limi-
tations in existing modeling tools. In our previous work, we
proposed the Complex Adaptive Systems Language (CASL)
and its associated framework. In this paper, we introduce
CASL-SG, a Semantic Group extension for large-scale mod-
eling using relational hierarchies. CASL-SG permits large-
scale simulations to be executed on modest hardware by en-
abling simulations to contain approximately twice as many
agents. This achieves a 356% runtime improvement for a
Game of Life model with 4 million cells. CASL-SG also en-
ables designers to model behaviors of collectives that drive
the system and entities towards self-organization and adapt-
ability.
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1. INTRODUCTION

Complex adaptive systems (CAS) are attracting signif-
icant research interest in domains such as social networks,
supply chains, health-care networks, smart-cities and smart-
grids, the ‘Internet of Things’, and the Internet [2, 9, 15, 17],
where modeling of known systems as CAS provides valu-
able insight into behaviors, communication patterns, and
the effect of various policies. CAS are a type of complex
system where entities and the environment adapt and inter-
act in order to achieve desired properties [10, 13, 18] and
provide a realistic abstraction of real-life scenarios [15, 17].
At the same time, due to their many autonomous and in-
terconnected entities, unexpected and emergent properties
can appear [5, 13, 20]. In CAS modeling, the importance
of entity interaction, adaptation, and influence from the op-
erating environment is highlighted, enabling deeper study
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focusing on individuals and how their behaviors contribute
to higher level properties [10, 13, 18].

The study of CAS faces many modeling and implementa-
tion challenges. It is important that CAS modeling tools are
not domain specific [11, 16, 17] and also allow for the mod-
eling and subsequent investigation of key CAS properties
such as adaptability [6, 14, 21] and self-organization [7, 8,
10, 13]. Domain agnostic modeling approaches tend to use
generic paradigms such as agent-based modeling but suffer
from issues of scale [4], and do not provide a solid ground-
ing to model individual agent and environment adaptations.
Furthermore, they can only consider a single form of agent
representation, such as a network or GIS, which hinders at-
tempts at creating highly detailed realistic CAS models. We
resolve these issues by extending CASL [3] by introducing a
new class of entity called a ‘semantic group’.

2. CASTLE SIMULATION FRAMEWORK

Our prototype framework, called CASTLE, consists of the
CASL modeler, the code generator, a simulator, and the ob-
servation tool. Once a model is constructed in the CASL
modeler, code is generated only when all the required con-
straints have been adhered to. The generated code is then
executed in the simulator, which may require initialization
parameters that can be provided by a configuration file. The
observation tool is comprised of several modules that ana-
lyze various features of a CAS such as aggregation, runtimes,
interactions, and domain-specific features. It is designed to
be extensible to allow for new metrics to be added, either
designed specifically for the current simulation or for a more
domain-agnostic purpose. CASTLE is available online®.

2.1 Achieving Scale with Semantic Groups

We extend CASL and initial framework by considering
the collective relationship between entities. Each collective,
or group, consists of agents that have a semantic relation-
ship. We refer to these collectives as ‘semantic groups’. The
relationship that forms the basis of the semantic groups is
dependent on how particular agents are represented and in
many cases, how agents are represented can form the basis
for their relationship. For example, in an Emergency De-
partment, a patient has a stronger relationship with a doctor
or a nurse, than a pathology technician. Semantic groups
can be considered similar to ‘swarms’ in SWARM [12], how-
ever semantic groups allow for different representations across
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multiple groups in the same system, and permit automated
and constantly active parallelization. Semantic groups also
encourage the modeling of self-organization and adaptabil-
ity. By abstracting model components as those with collec-
tive behaviors, the focus can be on the way these collectives
interact, adapt, and create self-organized structures. Fur-
thermore, as semantic groups possess their own states and
behaviors, they can be the main drivers for the system as
a whole to undergo adaptation, and also provide assistant
functions for the agents contained within. For example, in
a Flock of Birds model [19], semantic groups could contain
previously flocked Boids, to examine how flocks comprised of
different Boids behave and interact in the same environment.
As these groups of entities are established at design-time by
the modeler, code suitable for parallel simulation can be
generated. Environments run in parallel with other envi-
ronments, and semantic groups run in parallel with other
semantic groups. Agents contained in semantic groups do
not run in parallel, but instead have their execution order
shuffled, similar to normal agent-based simulation. At sim-
ulation time, the user specifies the number and types of se-
mantic groups required, similar to other entities. At simula-
tion time, each semantic group is assigned a thread, process,
or node, which is controlled by the entity that contains the
semantic group.

To facilitate semantic groups in CASL, we introduce a new
entity type called SEMANTIC_GROUP, which contains the same
concerns as the other entities except that INTERACTIONS
are now replaced by INTERNAL_INTERACTIONS and EXTER-
NAL_INTERACTIONS. We separate the interactions for three
reasons. Firstly, semantic groups are a separate entity type,
requiring extra features for implementation and code genera-
tion, such as specific rules on how groups interact. Secondly,
some interactions involving groups may serve a maintenance-
like purpose such as information transfer or synchronization.
Finally, the separation allows semantic groups to conform
to the rules of a CASL simulation step. At simulation time,
each step is broken into three phases, namely, Setup, Ac-
tion, and Cleanup. The Setup and Cleanup phases allow for
messages to be passed between groups and environments, as
well as the execution of various agent behaviors. This al-
lows for agents contained in one semantic group to be able
to interact with agents located in a different semantic group.
The Action phase is where the bulk of low-level entity in-
teractions occur; no interactions between groups or environ-
ments are allowed. We restrict the inter-group and inter-
environment interactions to the Setup and Cleanup phases,
as the individual agents behaviors and interactions are more
computationally intensive and thus large transfers between
groups and environments are isolated. Each entity contains
separate execution queues for each phase, which allows ac-
tions to be queued and triggered at the correct time. As
there is a large emphasis on the design of modular agents,
semantic groups, and environments, CASL maintains spe-
cific rules for what is allowed to occur during step phases.
For example, transmissions between semantic groups use the
EXTERNAL_INTERACTIONS rule which can only be triggered in
an Setup or Cleanup phase.

3. RUNTIME ANALYSIS

We implement two models using CASL-SG, namely, the
Game of Life and an Emergency Department model based on
Australian Health Department guidelines [1]. For both mod-
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els we run several experiments to highlight the scalability of
CASL-SG. For the Game of Life model, we run simulations
for 1,000 steps with increasing Cell populations (up to 4
million) and compare runtimes when there are 1, 4, 25, 100,
or 400 semantic groups. For the Emergency Department
model, we run simulations for 4,380 steps, increasing the
number of Patients introduced per hour. Each simulation
is based on 6 increasingly larger scenarios from an Under
Staffed Small Hospital with 20 Nurses in 1 WaitingRoom,
8 Doctors in 1 DoctorClinic, 10 PathologyTechnician in
1 PathologyLab, increasing to an Quer Staffed Large Hos-
pital with 100 Nurses across 10 WaitingRooms, 50 Doctors
across 10 DoctorClinics, 50 PathologyTechnician across
10 PathologyLabs. Each runtime experiment is replicated
10 times and the mean runtime is presented. All experi-
ments have been executed on a commodity laptop, with a
2.8GHz Intel i7 CPU with the JVM being limited to 8 GB of

RAM. Figure 1 shows our runtime results.
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4. CONCLUSION

Large-scale CAS modeling and simulation provide signif-
icant challenges as they contain a vast number of complex,
interacting entities, in particular being able to efficiently de-
sign a model and be able to execute simulations with few
performance concerns. In this paper we propose a seman-
tic group modeling language supported by a simulation and
analysis framework. We show that when a CASL model
utilizes semantic groups, the simulation scales well, with a
Game of Life simulation with 4 million agents taking 28 min-
utes with 1 semantic group, reduced to 8 minutes with 100
semantic groups. Similarly, our largest Emergency Depart-
ment simulation took 7.5 minutes with 3 semantic groups,
which reduced to 3.5 minutes with 30 semantic groups.
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