
Profit Optimization in Commercial Ridesharing

(Extended Abstract)
Arpita Biswas

Indian Institute of Science
arpita.biswas@csa.iisc.ernet.in

Ragavendran Gopalakrishnan
Conduent Labs India

Ragavendran.Gopalakrishnan@conduent.com

Theja Tulabandhula
University of Illinois Chicago

tt@theja.org

Koyel Mukherjee
IBM Research-India
kmukherj@in.ibm.com

Asmita Metrewar
Apple India

asmita_metrewar@apple.com

Raja Subramaniam Thangaraj
Conduent Labs India

Rajasubramaniam.T@conduent.com

ABSTRACT
Ridesharing is undoubtedly appealing from a sustainability per-
spective; however, profit optimization is very important for com-
mercial providers. As such, ridesharing offers a valuable oppor-
tunity to garner profit by reducing the number of driver-miles that
need to be paid for in order to serve the same set of passengers. In
this paper, we study profit optimization for commercial ridesharing
service providers such as UberPool and LyftLine.

CCS Concepts
•Applied computing→Transportation; Economics; Multi-criterion
optimization and decision-making;

Keywords
Profit optimization; ridesharing; computational sustainability

1. INTRODUCTION
Ridesharing reduces harmful emission of greenhouse gases, and

hence, is an important means to move into a sustainable future. In
this work, we focus on commercial ridesharing service providers
such as UberPool and LyftLine, that hold a significant share of the
ridesharing population, and whose continued existence is important
to further enhance the adoption of ridesharing. While ridesharing
is undoubtedly appealing from a sustainability perspective, profit
maximization is key to commercial providers. Thus, it is crucial to
model the real-time ridesharing problem and match streaming trip
requests into shared rides efficiently, while maximizing profit.

2. RELATED WORK
A rich body of literature has surveyed and studied several op-

timization problems related to ride sharing [1, 3, 8]; however, the
problem of profit optimization for commercial ridesharing providers
has been rarely discussed. Banerjee et al. [2] study pricing in ride
sharing platforms; however, their work is focused on characteriz-
ing the pros and cons of static versus dynamic pricing, with re-

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

spect to (a) profit earned, and (b) robustness to fluctuating sys-
tem parameters. Jung et al. [4] provide methods and heuristics for
(a) minimizing passenger wait times and detours, and (b) maxi-
mizing profit, while ensuring that passenger wait times and detours
are bounded. While our work resembles theirs, unlike them, we
do not explicitly bound detours. Instead, we handle detours by
proposing a detour-based discount scheme for passengers, and then
match passengers for ridesharing to maximize profit for the service
provider. Nguyen [7] proposes a dynamic, demand-responsive ride
sharing system through an auction mechanism, where customers
are offered a discount that is dependent on the detour incurred;
however, the discount is additive in contrast to the multiplicative
detour-based discount suggested in our work.

3. RIDESHARING SYSTEM MODEL
We assume that all passengers requesting rides are willing to

share their ride against a given discount function. Our model han-
dles both kinds of ride requests: (a) “Ride Now” requests (passen-
gers who are ready to leave as soon as possible from the time of
the request and (b) “Ride Later” requests (passengers opting to ride
at a later point of time). For “Ride Later”, we delay processing
their requests until a few minutes before the requested departure
time. Requests from multiple passengers arrive at the system dy-
namically and continuously. Request i arrives into the system at
time ai, and is associated with a source-destination pair (Si, Di),
and a time duration ti that denotes the maximum amount of time
that the passenger is willing to wait for a cab to pick them up at
source Si. We assume that a matching algorithm runs frequently
and on a predetermined schedule.

At any time t, given the geographical distribution of cabs with at
least one vacant seat that is available for ridesharing, an expected
time duration for passenger i to be picked up, τi(t), can be esti-
mated as

τi(t) = αi(t) + βi(t)

where αi(t) denotes the expected time duration from t until the
next time the matching algorithm will be run, and βi(t) denotes the
expected time duration from t + αi(t) for a cab to reach Si if all
the requests waiting to be processed by the next run of the matching
algorithm were to be assigned dedicated cabs with no ridesharing,
on a first-come-first-served basis. τi(t) is continuously updated on
the user interface so that it ensures ti > τi(ai) when request i is
submitted and arrives at the system at time ai.

1481



At a high level, whenever the matching algorithm is scheduled
to be run (say at time T ), we do the following:

(1) We run the matching algorithm with all the waiting requests
up to time T , subject to the constraints that each request i gets
picked up no later than time ai + ti. Since we ensure that
ti > τi(ai), the trivial matching (where there is no ridesharing
and every request is assigned a separate cab) is always feasible.

(2) At the end of the matching algorithm, after the matched re-
quests have been assigned cabs, if any unmatched requests have
a large enough ti that they can afford to wait until the next run
of the matching algorithm, i.e., if ti > T +τi(T )−ai, then we
keep such requests in the system, since they may be matched
with the next batch of requests that arrive. Otherwise, we as-
sign each of them to a dedicated cab.

The points above describe, at a high level, how a standard com-
mercial ridesharing platform (such as UberPool, LyftLine) may be
expected to work. The core aspect of these platforms involves run-
ning a matching algorithm at regular time intervals whose input is
a pool of waiting requests, and whose output is a set of matched re-
quests. The matching algorithm should provide the set of matched
requests in real time (within fraction of a second).

4. HEURISTICS FOR REAL-TIME RIDE
MATCHING

In this section, we describe a class of real-time greedy heuristics
that run frequently and on pre-determined schedules. The algo-
rithm takes as input n cabs, each with a dedicated request assigned
to it initially, and returns a set of at most nmatched cabs, each with
one or more requests assigned to it. We define the capacity con-
straint of a cab to be the maximum number (say, C) of passengers
it can serve at a time. We also define “positive gain constraint” to
be the restriction that the incremental profit (the difference between
the profit gained on merging two cabs over the sum of individual
profits of the cabs) is always positive.

The matching algorithm starts by creating a list of the n cabs
according to a certain order (e.g., increasing or decreasing order of
total distance traveled, total time taken, net profit earned, etc.). The
method initializes a set of “fully allocated” cabs to the empty set
and repeatedly performs the following steps:

(a) Remove the cab at the top of the list, designating it as the cab
that could potentially be merged with another cab in the list.

(b) Traverse the new list (examining the remaining cabs) from the
top and select the first cab that can be merged with the desig-
nated cab in Step (a), subject to the capacity constraint, positive
gain constraint, and any routing constraints, i.e., all the requests
must be served within their respective waiting time thresholds
according to the best merged route.

(i) If such a cab is found, remove it from the list, and merge
the requests in the two cabs into a single new cab. If
there is still space for one or more additional requests that
could potentially be served in this new cab, insert the new
cab into the list of cabs at the appropriate location accord-
ing to the order, and if not, the new cab is added to the set
of “fully allocated” cabs.

(ii) If such a cab is not found, then the designated cab in
Step (a) cannot be merged with any other cab, so, add
it to the set of “fully allocated” cabs.

Since every iteration of the above procedure decreases the size of
the list of cabs by at least one, it will eventually become empty,
at which point the method terminates and returns the set of “fully
allocated” cabs as the output.

5. EXPERIMENTAL EVALUATION
We perform an extensive evaluation of the greedy heuristics on

publicly available New York taxi trip data [9]. The dataset has logs
for trips in New York for the entire year of 2013. Each trip in
the dataset specifies pickup and dropoff coordinates, pickup time,
dropoff time, trip distance and travel time, and the trip can be con-
sidered as a taxi request in the simulation. We use this data to rep-
resent a real-time ridesharing platform with ride requests arriving
and getting matched to cabs. We assume that each cab has a capac-
ity C = 3. The values for base cost, cost per unit distance, cost per
unit time, and driver’s payment are taken from publicly available
LyftLine prices [5, 6].

Spatial considerations: We map the pickup and dropoff locations
of each trip to the closest location point among a predefined set
of approximately 2500 location points. For this purpose, we have
considered only those trips which both originate and end in New
York City (for example, some trips in the original dataset originate
in New York, and end in New Jersey; we exclude such requests).

Temporal considerations: We consider a time window of 10 min-
utes. In a given time window, we match requests regardless of their
requested pickup times. Thus, in the time window 10:00 - 10:10
am, a passenger requesting a ride at 10:00 am can be matched with
a passenger requesting a ride at 10:08 am. In online scenarios, this
window could be as small as desired and our methods will still ex-
hibit similar properties.

For comparison of our heuristics, we consider an optimal algo-
rithm that exhaustively checks all possible ride-matches and groups
the requests into shared rides that yield the highest net profit.

We consider 10 different sets of 20 trip requests, each between
10:00 - 10:10 am (rush hours) from the New York City taxi trip
data. We then run various matching methods on each data set and
compare the total profit and total time taken by each method aver-
aged over 10 sets, against the optimal solution. Figures 1a and 1b
show the total profit and time taken by “Order 1” (non-increasing
order of distance travelled by each cab), “Order 2” (non-decreasing
order of profit earned by each cab), and the optimal algorithm.

(a) Total profit averaged over 10
different datasets.

(b) Time taken averaged over 10
different datasets.

Figure 1: Comparison of greedy heuristics against the optimal

We observe that the total profit obtained by using our heuristic
methods is up to 92% optimal and runs 106 times faster than the
optimal algorithm on a machine with a quad Intel Core i7 processor
with 32GB RAM.

1482



REFERENCES
[1] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang.

Optimization for dynamic ride-sharing: A review. European
Journal of Operational Research, 223(2):295–303, 2012.

[2] S. Banerjee, R. Johari, and C. Riquelme. Pricing in
ride-sharing platforms: A queueing-theoretic approach. In
Proceedings of the Sixteenth ACM Conference on Economics
and Computation, pages 639–639, 2015.

[3] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet,
X. Wang, and S. Koenig. Ridesharing: The state-of-the-art and
future directions. Transportation Research Part B:
Methodological, 57:28–46, 2013.

[4] J. Jung, R. Jayakrishnan, and J. Y. Park. Design and modeling
of real-time shared-taxi dispatch algorithms. In Proc.
Transportation Research Board 92nd Annual Meeting, 2013.

[5] LyftLine. Lyft Line Driver Pay.

https://help.lyft.com/hc/en-us/articles/
213582268-Lyft-Line-Driver-Pay, 2016.

[6] LyftLine. Lyft Line Pricing.
https://help.lyft.com/hc/en-us/articles/
213815178-Lyft-Line-Pricing, 2016.

[7] D. T. Nguyen. Fair cost sharing auction mechanisms in last
mile ridesharing. PhD thesis, Singapore Management
University, 2013.

[8] D. Pelzer, J. Xiao, D. Zehe, M. H. Lees, A. C. Knoll, and
H. Aydt. A partition-based match making algorithm for
dynamic ridesharing. IEEE Transactions on Intelligent
Transportation Systems, 16(5):2587–2598, 2015.

[9] C. Whong and A. Monroy-Hernández. New York City taxi
trips. http://www.andresmh.com/nyctaxitrips.

Last accessed: 2016-06-18.

1483

https://help.lyft.com/hc/en-us/articles/213582268-Lyft-Line-Driver-Pay
https://help.lyft.com/hc/en-us/articles/213582268-Lyft-Line-Driver-Pay
https://help.lyft.com/hc/en-us/articles/213815178-Lyft-Line-Pricing
https://help.lyft.com/hc/en-us/articles/213815178-Lyft-Line-Pricing
http://www.andresmh.com/nyctaxitrips

	Introduction
	Related Work
	Ridesharing System Model
	Heuristics for Real-Time Ride Matching
	Experimental Evaluation



