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ABSTRACT

Unmanned Aerial Vehicles (UAVs) have been traditionally
controlled via remote control or by software, which require
skill using the remote or expert programming skills. Our
goal is to develop a natural mode of directing a drone’s ac-
tions, akin to the forms of expression one finds between a
person and a pet and hence accessible to almost any person
without specialized training or expertise in using electronic
gadgets. We build on prior work on analyzing video streams
to use the video from the drone’s on-board camera to enable
gesture-based control. Our approach uses a pre-trained con-
volutional neural network for pose extraction, Haar cascades
to identify regions of interest within the UAV’s field of view,
and a finite state machine to select the drone’s action.
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1. INTRODUCTION

Existing methods for controlling UAVs have primarily re-
lied on two modalities for controlling the actions of a UAV:
(a) use of remote controls, or (b) use of software programs
to pre-configure the flight paths, movements, and other ac-
tions. Our premise is that humans are adept and efficient in
using physical gestures to communicate, particularly for di-
rectional signals. There is a rich body of work in image anal-
ysis and human-computer interaction on gesture recognition
as well as on intent inference from observed movements. To
the best of our knowledge, however, there has been little
work to develop gesture-based control of autonomous UAVs,
and even less using the on-board camera. We posit that
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(a) Joints located by con-
volutional neural network.

(b) Vector representation
of the identified joints.

Figure 1: Point and vector form of home position.

gesture-based communication can be used as the most ef-
fective UAV control mechanism by non-expert users in a
number of UAV applications, particularly those involving
Human-UAV (HUAV) collaboration.

The domain of Human-Robot Interaction is a widely re-
searched topic with a variety of applications [4, 5]. The
growth in popularity of RGB plus Depth (RGB-D) sensors
has made gesture and pose recognition a simpler task for
robots equipped with such sensors [6, 7, 12]. In several
works, researchers demonstrated this potential for gesture-
based control when aided by these RGB-D sensors [10, 11].
However, UAVs are not equipped with these sensors, making
gesture recognition a more complex task from the on-board
camera [2, 8].

2. EXPERIMENTAL FRAMEWORK

In order to extract a human pose from an RGB image, we
employ a two-step process that (1) identifies the locations of
16 key points defined by the MPII Human Pose Database [1]
then (2) maps the identified points to one of a set of prede-
fined poses that the UAV will interpret as a command.

2.1 Pose Identification

To keep the poses lightweight, we convert 8 of the points
from the output of the stacked hourglass model by Newell
et al. [9] into 5 normalized vectors, and use 4 of the dot
products of those vectors to classify the pose. The vector
and point forms are illustrated in Figure 1.

Similarly to how a pet has a name that can be used to
get its attention, the UAV needs a way to distinguish be-
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(b) UAV moves following
the gesture.

(a) Before the gesture to
move.

Figure 2: HUAYV collaboration: following gesture for
movement.

tween stray arm movements and command gestures. All
executable commands must be preceded by the Home posi-
tion to get the UAV’s attention. If the UAV is not flying, it
uses the Home position as a cue to take off.

2.2 Action Selection

With the pose identified, the UAV must decide on an ap-
propriate action to take. The maneuver the UAV undertakes
is determined by its current state and the most recently iden-
tified pose. Action selection uses a finite state machine to
determine the action to be performed. If the UAV is not lis-
tening, it will only move on to a different state if it identifies
the home position. Then, it will listen to the next pose to
determine the appropriate action.

3. RESULTS

We were able to successfully direct the UAV using only
upper-body gestures, but not to the extent of natural person-
pet interaction. Our pose recognition mechanism is evalu-
ated for detection accuracy and response time.

3.1 Upper-Body Control of UAV

The sequence of events for directing the UAV’s actions,
from taking off to landing, is as follows. First, the UAV will
take off when it identifies a person in the home position.
Once the UAV is in the air, it follows the person with its
camera by physically rotating for left and right movement
and by adjusting the camera’s direction for vertical move-
ment. While doing this, it listens for the home position,
and, if the home position is identified, it will listen for the
command. At this point, it will execute the command un-
til the command gesture is discontinued or it loses track of
the operator, at which point it will “unlock” and listen for
the home position again. This continues until the land com-
mand is given, at which point the UAV will stop flying and
the program will exit.

One such example of a gesture-based control is given in
Figure 2. The home position tells the UAV to listen to
the human’s command, and Figure 2(b) shows the resulting
leftward movement by the UAV.

There are presently ten categories of motion for which ges-
tures have been defined: takeoff, land, up, down, left, right,
forward, backward, transfer control left, and transfer control
right. Some command poses were intuitive, such as left and
right being simply pointing in the direction the UAV should
move, whereas others were less inherent in nature due to
the present limitations in our gesture recognition method,
namely the “come closer” and “go further away” commands.
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Gesture False False Misinter- | Successful
Duration | Positive | Negative preted Gestures

(s) Rate Rate Gestures

1 0.03333 0.16667 0.03333 0.8333

2 0.01667 0.06667 0.01667 0.9833

3 0.05 0.06667 0 0.9833

4 0.06667 0.18333 0.01667 0.9833

5 0.01667 0.26667 0 0.9833

Figure 3: Gesture Recognition Performance

While the natural gesture one may expect would be wav-
ing for the UAV to come near or shooing it away, our ges-
ture recognition is limited to subsequent pose identifications
at time intervals exceeding 0.5 seconds, so we developed a
slightly less natural method of communicating these intents.

3.2 Evaluation

In order to evaluate the false positive and negative rates of
the pose detection, we recorded a series of gestures from the
UAV’s video stream, manually identified the correct pose
classification, and passed the stream through the UAV’s
video processing algorithms to identify the UAV’s classifi-
cation of the gestures. The gestures were held for a spec-
ified interval ranging from 1-5 seconds. We ran two trials
with each trial consisting of 30 gestures. Figure 3 displays
the false positive and false negative rates for all five tests
aggregated across the two trials.

The false positive rate is the proportion of gestures that
the UAV identified but that were not performed by the op-
erator. The false negative rate is each frame that the UAV
failed to identify a gesture despite the operator having per-
formed it, which includes gestures the UAV lost track of
and gestures that the UAV missed completely. This was
strongly influenced by the noise from the neural network,
which caused the UAV to lose track of a gesture while it was
still being performed. As such, its value tends to get higher
as the duration of the gesture increases. Misinterpreted ges-
tures are those that the UAV misidentified as being a dif-
ferent pose than was actually performed, and successful ges-
tures represents the proportion of total gestures that were
correctly identified.

To evaluate the UAV’s response time, we used the same
video streams and calculated the delay between the manual
identification and the UAV’s recognition. On average, it
takes roughly 0.8 seconds to identify the pose.

Discussion & Conclusions:.

Our current method of pose detection is effective but slow,
and the best way to improve would be to either decrease its
run time or employ some form of an motion-tracking algo-
rithm to get an approximation of the locations in between
the outputs from the network. Lucas-Kanade optical flow [3]
would allow for tracking the joints as the person moves.

We currently have control of the UAV in all three coor-
dinate axes based solely on gestures, and its rotation can
be controlled by the position of the human controlling it as
well as by passing control to another person. As this project
continues to develop, we will attempt to allow for movement-
based gestures and to improve on the current framework.
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