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ABSTRACT
We investigate the relation between money and memory in
computational systems. To do so, we introduce a model
in which agents have a state associated with them that is
known to those interacting with them. The joint states of
agents who interact successfully change according to some
prescribed probability distribution. We show that such mech-
anisms can in fact encode and generalize a rich variety of
monetary mechanisms, while requiring very little memory
per agent to represent state, possibly even a single bit. We
explore how monetary considerations like the total amount
of money apply in our model, and seek memory-based mech-
anisms that increase social welfare. We examine the natural
encoding of a token-based system in memory, in which to-
kens are exchanged and conserved during each transaction.
We find that mechanisms that use price discrimination or
do not conserve tokens can provide higher social welfare.

CCS Concepts
•Theory of computation → Algorithmic mechanism
design; Computational pricing and auctions;

Keywords
Economic mechanisms, Money, Memory

1. INTRODUCTION & MODEL
In this paper we generalize the idea of money to general

states of memory [4]. Money acts to encode the debt that
society owes to a particular individual who provided services
to others: a memory state, which may reflect the number of
tokens an agent is holding, is updated after each trade and
serves to remember past behavior. While money is restricted
to limited state transition rules (e.g., those that conserve the
number of coins held by agents), we expand the exploration
to other mechanisms as well. Our work, which is based
on economic models for money [7, 5] thus contributes to
the study of scrip systems [1, 2, 3, 6] and their use within
computational systems.

The Model. Our model consists of a unit mass of non-
atomic players that trade a service. Trade is performed in
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rounds, in which players are randomly paired off and as-
signed the role of ‘buyer’ or ‘seller’. A successful transaction
between the pair provides utility U to the buyer and costs
the seller C units of utility (we assume U > C > 0) and
future rewards are discounted by a factor of 0 < γ < 1 for
each round they are delayed: The utility of an agent is thus∑∞

t=0 γ
trt where rt ∈ {+U, 0,−C}. Note that due to the

cost incurred by the seller, it is not in its interest to provide
the service unless some future reward is expected.

Each player is associated with a memory cell that may be
in one of the states in T . We denote the fraction of players
in state n ∈ T at round t by f t

n. The initial distribution f0
n

is provided by the designer of the system.1

The actions of agents are encoded as follows: When a
buyer in state x meets a seller in state y its willingness
to perform a trade is denoted by Bx,y ∈ {0, 1}. Similarly
Sx,y ∈ {0, 1} denotes a seller’s willingness to trade. A trans-
action occurs iff Bx,y · Sx,y = 1. If the transaction did not
take place, the states of agents remain the same and they do
not gain or lose any utility. If a transaction does take place,
the agents transition to new states a, b correspondingly, with
probability P a,b

x,y , and rewards are given as described above.
The probability distribution P effectively encodes the mech-
anism (incl. prices) and is assumed to be known.

The Solution Concept. We are eventually interested in
equilibria of the system at which the fractions f t

i remain
constant, and in which the strategies of players are the best
response. We restrict our interest to symmetric, pure, time-
independent, sub-game perfect strategy profiles. One such
equilibrium profile always exists: when no agents engage in
trade (∀x, y Bx,y = Sx,y = 0). We will be interested in
cases in which other equilibria also exist, specifically those
that induce trade.

If one denotes by V t
n the expected utility of playing strat-

egy profile σ, we may write the utility of agents recursively
using Bellman equations: Denoting SBx,y ≡ Sx,y ·Bx,y, we
obtain V t

n =∑
i

1
2
fi

(
SBi,n

(∑
j,k

P k,j
i,n γV

t+1
j − C

)
+ (1− SBi,n)γV t+1

n

)
+

∑
i

1
2
fi

(
SBn,i

(∑
j,k

P j,k
n,i γV

t+1
j + U

)
+ (1− SBn,i)γV

t+1
n

)
Incentive compatibility is then described as follows:

1We are interested in the behavior of f t
n once equilibrium is

reached, but issues pertaining to the amount of money in the
system may sometimes be determined by initial conditions.
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Bi,j =

{
1 U +

∑
n∈T

∑
k∈T γP

n,k
i,j Vn ≥ γVi

0 otherwise

Si,j =

{
1 −C +

∑
n∈T

∑
k∈T γP

n,k
i,j Vk ≥ γVj

0 otherwise

For the fraction of the population at each state to con-
stant, we must have
fk =

∑
i,j∈T

1
2
fifj(SBi,j

∑
a,b∈T P

a,b
i,j (δa,k + δb,k)+

(1− SBi,j)(δi,k + δj,k))
Where δx,y = 1 if x = y and 0 otherwise.

Social Welfare. We would ideally like to maximize the
total welfare of the population. The utility of interacting
pairs increases by γk−1(U −C) for every transaction occur-
ring in round k. Let D denote the expected fraction of pairs
that transact in the population: D = 1

2

∑
i,j∈T fifjSBi,j

The social welfare is then proportional to this value.

Token-Conserving Mechanisms. Our model can be
used to encode tokens that are conserved:

Definition 1.1. A state transition probability distribu-
tion P is token-conserving if for all x, y, a, b, if P a,b

x,y > 0
then x+ y = a+ b.

Intuitively, we regard different states as amounts of the same
token, and all possible transitions conserve the total amount
of tokens between the two players.

In token-conserving mechanisms, we can consider the no-
tion of the total amount of money in the population M =∑

n∈T n · fn. We further refine the class of token conserving
mechanisms to those that transfer at most a single token per
transaction:

Definition 1.2. Single-token transfer conserving mech-
anisms are token-conserving mechanisms in which whenever
P a,b
x,y > 0, then a ∈ {x − 1, x, x + 1}. As a consequence,
b ∈ {y − 1, y, y + 1}.

We note that even in the context of mechanisms of the
above form, it is possible to encode a notion of different
“prices” by the probability that the token is transferred dur-
ing the deal (i.e., a lower probability is similar to a lower
price). We adopt the terminology of “price” in this context
to refer to this probability (the precise mapping to price in
regular contexts is not well defined, especially since we have
departed from the quasi-linear utility model).

In most economies the price of a specific commodity is
not dependent on the financial status of the buyer or of the
seller. The following definition reflects this sort of notion.

Definition 1.3. A single-token transfer conserving mech-
anism is non-discriminating if the transition probabilities are
independent of the value of x: P a,b

x,y = P a+1,b
x+1,y (given that

x+ 1, a+ 1 are states in T ).

2. RESULTS
In the two-state model, we show that there exists a mech-

anism that induces trade.

Theorem 1. For |T | = 2, There exist values of U , C and
γ for which there are (token conserving) mechanisms and
corresponding equilibria with positive social welfare. Fur-
thermore, optimal social welfare in the two-state token-conserving
mechanism is achieved when f0 = f1 = 1/2.

Several empirical simulations and partial results lead us
to the following conjecture.

Conjecture 1. The mechanism for two states that max-
imizes social welfare is the conserving mechanism.

Assuming this conjecture, the two-state case is in a sense
solved by conserving tokens; thus we turn to three states,
and prove the following.

Theorem 2. There exist mechanisms in three states that
achieve better social welfare than the non-discriminating ones.
In particular, price-discrimination - a higher probability of
transfer for buyers with more tokens - is one of them.

The effect of the price-discriminating mechanism is shown
in Figure 1. In the figure, q1 is the probability that a poor
buyer (with one token) keeps the token after the transaction;
a rich buyer (with two tokens) always loses a token.
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Figure 1: Social Welfare vs. Price with U = 5, C = 3,
γ = 0.99. Beyond q1 ≈ 0.1507, some of the incentive
compatibility inequalities fail.

To prove Theorem 2, we start by studying the conserva-
tion model, and show the following lemma.

Lemma 3. For non-discriminating single-token transfer
with p = 1 in 3 tokens, the ratios yielding the best welfare
are f0 = f1 = f2 = 1/3.

After empirically verifying that similar results occur with
more states, we turn to scenarios with infinite memory.

Theorem 4. In a non-discriminating single token trans-
fer mechanism in an infinite number of tokens, if there is
positive social welfare, then there exists k such that fj = 0
for all j > k.

Thus in the case of non-discrimination, infinite memory de-
generates to a finite model. We further show that the as-
sumption of non-discrimination is necessary, and finish with
a conjecture for future work.

Conjecture 2. For any given U ,C, γ, for every mech-
anism with an infinite number of states and a probability
function P there exists a corresponding mechanism on a fi-
nite number of states that achieves at least the same social
welfare.
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