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ABSTRACT
We describe a novel method for ensuring cooperation be-
tween human and robot. First, we present a flexible and
hierarchical framework based on POMDPs. Second, we in-
troduce a set of cooperative states within the state-space of
the POMDP. Third, for ensuring an efficient scalability, the
framework partitions the overall task into independent plan-
ning modules. Lastly, for a robust execution of the POMDP
policies we use Petri Net Plans, which have already been
used to execute MDP policies. To this end, we describe how
to convert a POMDP policy into an executable Petri Net
Plan. We implement our approach and develop experiments
on simulation and on a real robot in an escorting task where
the robot guides a customer to the desired place in a public
space.

1. INTRODUCTION
Autonomous robots have to face several issues in order to

perform their task in crowded public spaces such as malls[6],
hospitals and museums[1]. Service robots often need to in-
teract and cooperate with humans in a dynamic and unpre-
dictable environment, for example to initiate and achieve
a task. This kind of cooperation, however, has a weaker
level of commitment w.r.t. other application fields, such as
cooperation with professional workers in an industrial envi-
ronment. We aim at generating policies that account for the
uncertainty of the human’s behavior and his possible lack of
commitment to a shared task directly within the planning
phase and at providing methods for ensuring a robust exe-
cution of such policies.

2. PROPOSED FRAMEWORK
The proposed model has a hierarchical structure based on

three independent layers, following the framework proposed

∗fabio-valerio.ferrari@unicaen.fr
†laurent.jeanpierre@unicaen.fr
‡abdel-illah.mouaddib@unicaen.fr

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

in [2]: a Primitive layer, a Cooperation layer, modeled as a
Partially Observable Markov Decision Process (POMDP)[8]
[5], and a Task Status layer. The hierarchical structure is
built through an abstraction process, from the Primitive
layer (less abstracted) to the Task Status layer (more ab-
stracted) (Figure 1). Within the Cooperation layer, we de-
fine two sub-systems, each meant to perform planning on a
subset of the Cooperation layer state-space.

2.1 Primitive layer
The Primitive level takes information from sensors and

executes low-level reacting. Actions taken at this level are
primitive actions. During execution, it provides observa-
tions and decomposes macro-actions provided by the upper
layer into primitive actions. In the Escort Task application
it mainly performs robot navigation, but it also needs to
generate spoken dialogue plans when interacting with users.

2.2 Cooperation layer
The Cooperation level abstracts the state space of the

Primitive layer in order to focus on the variables which define
the current mental state of the human. It generates plans
of macro-actions for both achieving the task goal and re-
establishing cooperation when needed.

We adopt a model similar to [7] and divide our Cooper-
ation layer into two sub-systems: the Cooperation and the
Task systems. While the latter aims at achieving the mission
goals, the first aims at re-establishing the human-robot co-
operation and reinforce the beliefs over his intentions. The
decision as to which sub-system activate and hence which
action perform during execution is taken at the Task Status
level. Given the set of state variables at the Cooperation
layer, we define two groups:

Task variables pertain to the overall task, regardless of
the human’s level of commitment and mental state. These
variables are irrelevant for establishing the status of coop-
eration among agents.

Cooperation variables are those variables which have
been introduced explicitly to deal with the human’s commit-
ment. For the Escort Task application, we use the following
features as Cooperation variables:
Attention level : We define three values to determine how
much the human is concentrated on following the robot:
Focused, Distracted and Lost. They can be estimated by
performing face tracking on the cameras data and checking
whether the human is looking at the robot or not.
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Figure 1: Structure of the framework

Proxemic Interaction Distance: From the camera data, we
compute the human’s coordinates and use the human-robot
distance to estimate his state of cooperation. We use the
study on Proxemics [3] to define a set of human-robot social
distances: Intimate, Personal, Social, Public.
Human Relative Position: Still from the human’s coordi-
nates, we use a discrete set of positions of the human w.r.t.
the robot, such as Left, Right, Front etc.

For more flexibility, we model the Cooperation module as
a POMDP independently from the Task module.

2.3 Task status layer
The Task status layer checks which is the current overall

state of the system and chooses whether executing actions
from the Task or Cooperation sub-system. At it simplest,
it consists of a set of execution rules and switching condi-
tions allowing to switch from one sub-system to the other.
At each execution step, the system updates its belief on the
state of Cooperation variables. Within the state-space S, we
define a set of Cooperative states CS ⊂ S where the joint
intention between human and robot is preserved. As long
as the current state s ∈ CS, then all agents are trying to
achieve the common goal: everything is going well and the
robot can proceed with the task. Otherwise, the agent needs
to bring the system back to a CS state. In other words, CS
is the set of states where no action is required specifically to
repair the missing cooperation between human and robot.
Whether s belongs to CS or not depends on the current val-
ues of Cooperation variables. If s ∈ CS, then the system
activates the Task sub-system which will provide the action
to be executed. Otherwise, the system will select the action
from the Cooperation sub-system’s policy to ensure cooper-
ation.

3. IMPLEMENTATION AND RESULTS

3.1 Implementation
We implemented the presented framework for the Escort

Task scenario. The Cooperation module POMDP was im-
plemented as a discretized Belief-MDP and solved using

Value Iteration. In order to ensure robust execution of the
generated policy, we implemented the Primitive layer as a
Petri Net Plan (PNP)[9]. We have extended the approach
presented in [4], which describes how to translate a MDP
policy into a PNP, to POMDP policies. By solving the
Belief-MDP, we obtain a policy π which associates an ac-
tion a to each belief point b of the discretized Belief-MDP.
Then we explicit the outcoming belief point b′ for each ob-
servation o, with action a given by the Belief-MDP policy.
We can therefore implement the policy as a PNP, by treating
the POMDP observations as conditions for PNP transitions
and the Belief-MDP belief points as PNP states.

3.2 Experimental results
The PNP plan generated from the POMDP policy for the

Escort task was tested in simulation. The tests were per-
formed using Stage1, using our lab’s map as testbed envi-
ronment. The position and orientation of the human were
controlled by the user. To simulate the attention level of the
human, we check whether he is looking at the robot or not
by using his orientation in the simulation environment.

We have then tested the full framework on a real robot in
our lab. Currently, the cameras are able to detect the posi-
tion, distance and orientation of a person using test patterns.
We plan on soon performing further tests using online face
tracking techniques.

Through the GUI, the robot first offers to provide assis-
tance and suggests a list of possible destinations. Once the
user selects the destination, the Escort Task starts. When-
ever the human stops looking at the robot, but is still de-
tected by a camera, the robot will speak to him to draw
his attention by inviting him to keep following. When the
cameras stop detecting the person, the robot stops its nav-
igation. It then starts turning around hoping to detect the
human with its front or rear camera. Once the user is de-
tected again, the robot restarts the navigation module.

The full video of the demonstration, showing the described
behaviors, is available on YouTube 2

4. CONCLUSIONS
We have presented a novel approach to address the prob-

lem of ensuring cooperation between a human and a robot
agent within a collaborative task.

Our approach makes distinction between Task state vari-
ables which pertain to the specific application and Cooper-
ation variables which exclusively deal with the joint inten-
tion between agents. While we have described our frame-
work using the Escort Task scenario, adapting the proposed
framework in other applications only requires adapting the
Cooperation variables to the new task.
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Bailly, G., BrÃĺthes, L., Cottret, M., DanÃĺs,
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