
Designing Learning Algorithms over the Sequence Form of
an Extensive-Form Game

(Extended Abstract)
Edoardo Manino

University of Southampton
em4e15@soton.ac.uk

Nicola Gatti
Politecnico di Milano

nicola.gatti@polimi.it

Marcello Restelli
Politecnico di Milano

marcello.restelli@polimi.it

ABSTRACT
We focus on multi-agent learning over extensive-form games. When
designing algorithms for extensive-form games, it is common the
resort to tabular representations (i.e., normal form, agent form, and
sequence form). Each representation provides some advantages and
suffers from some drawbacks and it is not known which represen-
tation, if any, is the best one in multi-agent learning. In particular, a
wide literature studies algorithms for the normal form, but this rep-
resentation is prohibitive in practice since it is exponentially large
in the size of the game tree. In this paper, we show that some learn-
ing algorithms defined over the normal form can be re-defined over
the sequence form so that the dynamics of the two algorithms are
realization equivalent (i.e., they induce the same probability distri-
bution over the outcomes). This allows an exponential compression
of the representation and therefore makes such algorithms employ-
able in practice.

Keywords
Extensive-form games; sequence form; multi-agent learning.

1. INTRODUCTION
Multi-agent learning is a long-standing challenging problem in

the multi-agent community. A classic model is to have the agents
learn the strategy of a one-shot game through repeated interaction.
Hence, the goal is designing algorithms that are able to converge to
an equilibrium in self-play, and exploit at best the opponent’s strat-
egy when paired against other algorithms. A large portion of the
literature mainly investigates games where the players act simul-
taneously (aka normal-form games), whereas when the interaction
unfolds over several consecutive actions (extensive-form games)
many issues are left open. As we argue below, in order to work
on this more complex case it is necessary to cast the game to one
of several possible alternative representations. Nowadays it is not
known which one is the best.

State of the art. The first option is to transform the extensive-
form game into its normal-form equivalent, thus allowing the ac-
cess to a large collection of algorithms including Cross’ Learn-
ing [3], GIGA [19], Exp3 [1] and Q-learning [17]. For many of
these, we have a full characterisation of their learning dynamics,
which is tipically modeled as a replicator dynamics with a specific
mutation term [13, 7, 18] or as a gradient ascent algorithm [8]. The

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

main drawback is that the normal form is exponentially large in the
size of the game tree, thus making the learning process exponen-
tially long as the algorithm has to sort through a large number of
alternative plans.

The second option is to use the agent form, where a different
fictitious agent plays at each information set. An example that is
closely related to this form is the counterfactual regret (CFR) min-
imization algorithm [20], which has been successfully applied to
very large games (e.g. Poker) [11]. CFR is known to converge
to a Nash equilibrium in two-player zero-sum games [20] and has
been evaluated on other categories of games [9, 12]. In the case of
general-sum games, it is only known that strictly dominated actions
will be played with probability zero [6], but no result characteriz-
ing its dynamics is known. More in general, the main drawback
of the agent form is that learning is performed independently at
each information set. As a result, even though the strategy space is
exponentially smaller with respect to the normal-form, it is possi-
ble to have more chaotic learning dynamics, and long delays in the
propagation of the optimal behaviour along the tree.

Finally, there is a third option that involves the use of the sequence-
form instead. This less-common representation does not require
fictitious agents and is linear in the size of the game tree. As an
example, Leduc Hold’em, a small variant of Poker, has 337 se-
quences per player compared to about 1014 different actions in the
normal-form. On the other side, its strategy space is not a simplex
anymore, but a convex set defined by a set of linear constraints.
The first applications of this approach in multi-agent learning are
described in [5, 10] where a sequence-form replicator dynamics
and a Q-learning algorithm are introduced respectively. However,
as remarked in [2], the use of the sequence form in multi-agent
learning is largely unexplored.

Original contributions. In this paper, we provide new results on
multi-agent learning over the sequence form. More precisely, we
propose the sequence-form as a bridge to regain access to the col-
lection of normal-form algorithms for extensive-form games. To
this end, we design the sequence-form equivalent of three algo-
rithms, each based on a different principle: a replicator dynamics
algorithm (Cross’ Learning), a gradient ascent one (GIGA) and a
bandit one (Exp3). In doing so, we show how to solve a recurring
technical issue, i.e. the problem of efficiently counting the number
of normal-form plans that include a specific sequence.

2. PRELIMINARIES
We focus here on the description of the normal-form and the

sequence-form. For a definition of extensive-form game see [4].
(Reduced) Normal form This is a tabular representation [15] in

which each plan p ∈ Pi specifies one action a per information set.
We denote by σi the mixed strategy of player i, which specifies the

1622



Algorithm 1 PlanCount(i,Γ, x)
1: if x ∈ Qi then
2: if x is a terminal sequence then
3: return 1
4: else
5: temp = 1
6: for h ∈ Hi s.t. ∃a ∈ ρ(h) : xa ∈ Qi do
7: temp← temp · PlanCount(i,Γ, h)

8: if x ∈ Hi then
9: temp = 0
10: for a ∈ ρ(x) do
11: temp← temp + PlanCount(i,Γ, q(x)a)

12: return temp

probability σi(p) associated with each plan p. The reduced normal-
form is obtained by deleting replicated strategies [14], therefore
decreasing the total number of plans |Pi|. Although the reduced
normal form can be much smaller than normal form, it is still ex-
ponential in the size of the game tree.

Sequence form This representation is constituted by a sparse
payoff matrix and a set of constraints [16]. A sequence q ∈ Qi is
a set of consecutive actions a ∈ Ai by player i. We denote by q∅
the initial sequence of every player, by qa the extended sequence
obtained by appending action a to sequence q, and by q(h) the se-
quence leading to information set h ∈ Hi. Finally we denote by ri
the sequence-form strategy of player i. Well-defined strategies are
such that, for every information set h ∈ Hi, we have the constraint
ri(q) =

∑
a ri(qa) where q = q(h) and a ∈ h. The player i’s

utility is represented as a sparse multi-dimensional array, denoted,
with an abuse of notation, by Ui, specifying the value associated
with every combination of sequences of all the players.

Realization equivalence Two strategies σi and ri are realization
equivalent if they induce the same probability distribution over the
outcomes for every strategy of the opponents. Given a game and
a player i, a sequence-form strategy ri and a normal-form strategy
σi are realization equivalent if and only if, for every qa ∈ Qi,
ri(qa) =

∑
p∈Pi:a∈p

σi(p) holds.

3. REDEFINING ALGORITHMS OVER THE
SEQUENCE FORM

In this section we present a summary of our results. First we
explain how to produce a uniform strategy, that is a strategy real-
ization equivalent to σi(p) = 1/|Pi|. Then we move to the details
of our multi-agent learning algorithms.

Uniform Strategy By definition of realization equivalence we
have:

runi
i (qa) =

∑
p∈Pi:a∈p

σi(p) =
1

|Pi|
∑

p∈Pi:a∈p

1 (1)

However, counting the number of plans p that include the sequence
qa has exponential complexity in the size of the game tree. We
propose instead a procedure that can compute the result in poly-
nomial time (see Algorithm 1): for each sequence qa, call Plan-
Count(i,Restrict(Γ, qa), x), where Restrict(Γ, qa) returns a mod-
ified game Γ′ in which player i always plays qa if possible.

SF-Cross’ Learning We recall that the normal-form Cross’ Learn-
ing [3] is initialised to the uniform strategy and then updated ac-
cording to:

σt+1
i = (1−Rt

i)σ
t
i +Rt

iep̂ (2)

whereRt
i is the reward obtained by playing action p̂. The sequence-

form version of this algorithm is initialized to the uniform strategy
r0i = runi

i as well. Then, at every time-step t we extract from rti a

pure realization-plan r̂ti (see [10]), play according to it, and receive
the reward Rt

i . The strategy is then updated with Cross’ original
formula, though over the sequence-form:

rt+1
i (q) = (1−Rt

i)r
t
i(q) +Rt

i r̂
t
i (3)

In the normal form, the average learning dynamics of Cross’ Learn-
ing converge to the continuous-time replicator dynamics. We can
show the same thing over the sequence form, as the expected change
in strategy rt+1

i − rti when t→ 0 is:

E[∆rt+1
i (q)|rt−i] = rti(q)(gq(rti)− rti)Uir

t
−i (4)

which is the aforementioned equation of the continuous-time repli-
cator dynamics in sequence form [5].

SF-GIGA We recall that the strategy update of the GIGA algo-
rithm in normal form is as follows [19]:

σt+1
i = P

(
σt
i + ηUie

t
p̂−i

)
(5)

where the gradient Uie
t
p̂−i

depends on the pure strategy p̂−i of the
opponent(s), and P projects back the result in the strategy space. It
must be noted that P can be written as a linear operator as long as
σt
i is in the inner of the strategy space. Under this circumstances,

we can write a realization equivalent form of GIGA:

rt+1
i (qa) = rti(qa) + η(zqaUir̂

t
−i − w̄(qa)) (6)

where the vector zqa is the sum of all the possible pure strategies
r̂i that contain qa, and w̄(qa) is the expected utility of player i
weighted by the ratio of plans insisting on qa. Both are again a
matter of counting that can be solved in polynomial time as follows:

zqa(q′a′) = PlanCount(i,Restrict(Restrict(Γ, q′a′), qa), q∅)

w̄(qa) =
(
liUir

t
−i

)PlanCount(i,Restrict(Γ, qa), q∅)

PlanCount(i,Γ, q∅)

where li(q) = PlanCount(i,Restrict(Γ, q), q∅).
SF-Exp3 We recall that the normal-form Exp3 algorithm [1] de-

fines player’s i strategy at time t as follows:

σt
i(p) = (1− γ)

αst(p)∑
p′∈Pi

αst(p′)
+

γ

|Pi|
(7)

where α > 1, γ ∈ (0, 1) regulates the amount of uniform explo-
ration, and st(p) is the sum of all the rewards obtained by playing
the plan p in the past. Given the definition of realization equiva-
lence, the sequence-form version of Exp3 follows:

ri(qa) = (1− γ)

∑
p∈Pi:a∈p α

st(p)∑
p′∈Pi

αst(p′)
+ γruni

i (8)

Notice that we only need the parameters st for the plans p effec-
tively played during the game, hence achieving an O(T ) memory
requirement. Furthermore, we can incrementally update the term∑

a∈p α
st(p) after every round t, thus keeping the time complexity

linear in the size of the game tree.

4. FUTURE WORK
In future, we will study the online version of the GIGA algorithm

defined over the sequence form, and we will compare its perfor-
mance w.r.t. the other online algorithms, including the online ver-
sion of the CFR. Furthermore, we will develop the sequence-form
version of other algorithms, among which the ε-greedy Q-learning
algorithm and the WoLF-GIGA.

1623



REFERENCES
[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.

Gambling in a rigged casino: The adversarial multi-arm
bandit problem. In FOCS, pages 322–331, 1995.

[2] D. Bloembergen, K. Tuyls, D. Hennes, and M. Kaisers.
Evolutionary dynamics of multi–agent learning: A survey. J
ARTIF INTELL RES, 53:659–697, 2015.

[3] J. G. Cross. A Stochastic Learning Model of Economic
Behavior. The Quarterly Journal of Economics,
87(2):239–266, 1973.

[4] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
Cambridge, MA, 1991.

[5] N. Gatti, F. Panozzo, and M. Restelli. Efficient evolutionary
dynamics with extensive–form games. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages
335–341, Bellevue, Washington, USA, July 14–18 2013.

[6] R. Gibson. Regret minimization in non-zero-sum games with
applications to building champion multiplayer computer
poker agents. arXiv preprint arXiv:1305.0034, 2013.

[7] E. R. Gomes and R. Kowalczyk. Dynamic analysis of
multiagent q–learning with ε–greedy exploration. In
Proceedings of the 26th Annual International Conference on
Machine Learning, pages 369–376. ACM, 2009.

[8] M. Kaisers, D. Bloembergen, and K. Tuyls. A common
gradient in multi–agent reinforcement learning. In AAMAS,
pages 1393–1394. International Foundation for Autonomous
Agents and Multiagent Systems, 2012.

[9] M. Lanctot, R. Gibson, N. Burch, M. Zinkevich, and
M. Bowling. No-regret learning in extensive-form games
with imperfect recall. In Proceedings of the Twenty-Ninth
International Conference on Machine Learning (ICML
2012), 2012.

[10] F. Panozzo, N. Gatti, and M. Restelli. Evolutionary dynamics
of Q–learning over the sequence form. In AAAI, pages
2034–2040, 2014.

[11] M. Ponsen, S. de Jong, and M. Lanctot. Computing
approximate nash equilibria and robust best-responses using
sampling. Journal of Artificial Intelligence Research,
42(1):575–605, 2011.

[12] N. A. Risk and D. Szafron. Using counterfactual regret
minimization to create competitive multiplayer poker agents.
In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pages 159–166. International Foundation for
Autonomous Agents and Multiagent Systems, 2010.

[13] K. Tuyls, P. J. Hoen, and B. Vanschoenwinkel. An
evolutionary dynamical analysis of multi–agent learning in
iterated games. Autonomous Agents and Multi-Agent
Systems, 12(1):115–153, 2006.

[14] D. Vermeulen and M. Jansen. The reduced form of a game.
EUR J OPER RES, 106(1):204–211, 1998.

[15] J. von Neumann and O. Morgenstern. Theory of games and
economic behavior. Princeton University Press, 1944.

[16] B. von Stengel. Efficient computation of behavior strategies.
Games and Economic Behavior, 14(2):220–246, 1996.

[17] C. J. Watkins and P. Dayan. Q–learning. Machine learning,
8(3–4):279–292, 1992.

[18] M. Wunder, M. L. Littman, and M. Babes. Classes of
multiagent q-learning dynamics with epsilon-greedy
exploration. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
1167–1174, 2010.

[19] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In ICML, pages 928–936, 2003.

[20] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
In Advances in Neural Information Processing Systems 20,
pages 1729–1736, 2007.

1624




