
Model-Based Testing of an Industrial Multi-Robot
Navigation System

(Extended Abstract)
Clemens Mühlbacher and Gerald Steinbauer
Institute for Software Technology, Graz University of

Technology
Graz, Austria

{cmuehlba, steinbauer}@ist.tugraz.at

Stefan Gspandl and Micheal Reip
incubedIT

Hart bei Graz, Austria
{s.gspandl, m.reip}@incubedit.com

Keywords
model-based testing; multi-robot navigation; test-case cov-
erage

1. MOTIVATION
Nowadays multi-robot system getting more and more de-

ployed in industrial settings. The usage of such a system is
motivated by the fact that it allows flexible solutions which
scale well with the current work load. One example of such
a multi-robot system is a fleet of transport robots in a ware-
house. The use of planning and scheduling algorithm allow
such a fleet to maximize the throughput in the warehouse
with a minimum of interference. To maximize the utility of
such systems they have to operate on a 24/7 basis. There-
fore, these systems need to show a high degree of depend-
ability.

The multi-robot system we are addressing in this work is
motivated by a real industrial use case of a fleet of transport
robots in a warehouse. The robots execute transportation
tasks which are assigned to them in an automated way. To
perform this transportation task without interference within
the fleet and to respect operational restrictions of the envi-
ronment a hierarchical planning approach is used [5]. The
approach uses traffic areas which are defined by the user to
model the allowed behavior of a robot within a particular
area of the environment. This is done by treating areas like
shared resources with different options for their utilization.

A proper functioning of the navigation component is cru-
cial for the dependability of the complete robotic fleet. Thus
to ensure the high degree of dependability one needs to take
proper measurements during the complete life cycle of this
component. One way which allows to treat all phases of
the development in a unified way and offers the possibility
of a high degree of automation is model-driven engineer-
ing [2]. To apply the idea of model-driven engineering to
autonomous robots one can follow the idea outlined in [7].
The authors propose to use model-based techniques during
the life cycle of the robot ranging from model-based testing
to model-based supervision. With the help of model-based
techniques tedious tasks such as testing and supervision can

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

be automatized. In this paper we will outline how to ad-
dress the problem of properly testing the system using a
model-based testing approach [9, 10].

In order to show how to model the robotic fleet and how
to derive a test case from this model we will use a simple
running example which is a simplified version of the robotic
fleet from the warehouse. The environment of the robotic
fleet is divided into several convex areas which are disjoint.
Each of this traffic areas may be of a certain combination
of types which restrict its utilization. The following types
of a traffic area are possible: (1) forbidden area, (2) one-
way area, and (3) single robot area. An area which is a
forbidden area forbids any robot to be within this area. A
one-way are restrict the direction to moving within this area
to one predefined direction. A single robot area allows only
one robot to be within this area at any time.

To ensure that the robotic fleet traverses the environment
efficiently while respecting the restrictions of the areas a cen-
tral server is used. This central server distributes the cur-
rent environment map and manages reservations of robots
for certain areas. These reservations are used to coordi-
nate the robotic fleet by enforcing that the robot needs to
reserve every area it traverses. In the navigation scenario
the robot needs to properly move from a given start lo-
cation to a defined end location. This is done by consid-
ering the reservations and the environment map. As the
robotic fleet should operate efficiently each robots needs to
plan the fastest path through the environment respecting all
the reservations. Thus the robot may need to take a detour
if it is faster than waiting until it is allowed to enter a certain
area.

2. MODEL-BASED TEST CASE GENERA-
TION

As we want to automatically derive test cases we will use
model-based testing. This requires that we have a model
of the desired behavior of the robotic fleet and its environ-
ment. As a model we use a set of constraints CDOMAIN . The
set is the composition of three different sets of constraints
CDOMAIN := CMAP ∪ CPATH ∪ CRESERVE .

CMAP describes the environment of the robot in a topo-
logical way. The environment consists of n areas A :=
{A1, A2, ..., An}, which are vertices in a labeled directed
graph G := (A, E). The set E describe the set of edges in the
graph and describe the possible transitions between areas.
As each area in the environment has a subset of types as-

1652



(a) Graph template used
for the test case generation

(b) Generated environ-
ment for the test case

(c) Generated start and
end area for the test case.
Together with the shortest
path

(d) Generated test case
with shortest and fastest
path. The test case crite-
ria impose a detour.

Figure 1: Test case generation

signed to it we use the function type : A → 2T to represent
this mapping. Besides the constraints which are imposed
by the type we need to impose constraints such that the
graph can be drawn on a plain using only convex polygons.
A graph which can be drawn on a plan needs to be at least
planar [8] but with the additional restriction to convex poly-
gons further constraints need to be applied [3].

CPATH describes the path the robot takes through the en-
vironment. A path is defined as a sequence of area tran-
sitions (edges) in G : P = {〈a0

s, a
0
e〉, 〈a1

s, a
1
e〉, ..., 〈ak

s , a
k
e〉}

with 〈ai
s, a

i
e〉 ∈ E and ∀i = 0...k − 1, ai

e = ai+1
s . As the

robot needs to find the fastest path one assigns to each
path a traversal time through the function travel(P ) =∑

i=0...k−1 leave(a
i
s, a

i
e) + wait(ai

s, a
i
e) + enter(ai

s, a
i
e).

leave(ai
s, a

i
e) defines the time it takes to leave area ai

s to-
wards area ai

e. wait(ai
s, a

i
e) defines the time the robot needs

to wait till it can enter the area ai
e from area ai

s. enter(ai
s, a

i
e

defines the time it takes to enter area ai
e from area ai

s. As
the robot needs to move as fast as possible we use the fastest
path defined as P ∗.∀P 6= P ∗ → travel(P ∗) ≤ travel(P ).

CRESERVE describes the constraints imposed by the reser-
vations done by other. This is represented by the set I which
describes which intervals are reserved by another robot.
Each interval is a tuple I := 〈a, ts, te, r〉 where a represents
the reserved area, ts describes the start time, te the end
time, and r the reserving robot. To describe the constraints
on the usage of the different traffic areas with respect to the
type of the area we use Allen’s interval algebra [1].

Beside the domain of the robot CDOMAIN we use an addi-
tional set of constraints CCRITERIA to describe which test
case should be derived. This description allows to steer
the test case generation into a certain direction. One could
for example derive a test case which forces that the path
starts in an area of type ’single robot’ through the constraint
Tsinglerobot ∈ type(a0

s).
Combining the two constraint sets CDOMAIN and

CCRITERIA the test case can be derived automatically by

solving the resulting CSP. Unfortunately, due to the com-
plexity of the resulting constraint problem one cannot use
a standard constraint solver to derive a test case. Instead
we split up the problem into three steps and solve the sub-
problem with a standard constraint solver separately. The
method to derive a test case is depicted in Figure 1. In order
to ensure that the graph can be realized in an environment
we use a seed graph (Figure 1(a)). This graph specifies which
areas and connections are possible. The environment is now
derived by assigning to each area a type and choosing the
connections according to the constraints of the environment
(Figure 1(b)). After creating the environment, a start and
end area is determined such that the constraints from the
test case criteria which concern the area traversal are ful-
filled (Figure 1(c)). Finally, the intervals are generated to
ensure that the test case criteria are fulfilled (Figure 1(d)).
If one of the steps fails a back tracking is performed and an
alternative solution from the previous step is used to derive
the test case.

3. EVALUATION AND CONCLUSION
We implemented the outlined system using the program-

ming language Java and the CSP solver library Choco [6].
The test case generation for the experiments ran on an i5
with 8GB of RAM running Ubuntu 14.04 and Java 1.7. The
generated test cases where used to test the multi-robot nav-
igation system proposed in [5]. To perform this tests a test
suite comprises 14 test cases where the generation took 1.6
seconds on average. Using this test suite 68.14 % of the
lines of code of the complete navigation system were cov-
ered. Moreover, 31.07 % of the branches of the complete
navigation system were tested. Most of the not covered
lines of code and branches were either used to cover cases
of dynamics in the environment which we have ignored for
simplicity during the test case generation or were used to
cope with faults in the configuration or communication with
other software components.

To further check if the generated test cases can detect a
fault we created 92 mutated versions of the navigation sys-
tem following the idea of mutation testing [4]. 98.92 % of
these mutated versions were correctly identified to be faulty.
Thus the test suite has a high chance to detect real imple-
mentation flaws. Additionally, during the execution one flaw
in the implementation was found causing an illegal memory
access.

With the method outlined in this paper it is possible to au-
tomatically generate a test suite which tests the navigation
system of a fleet of transport robots. Due to a divide and
conquer approach the generation of the test cases is done in
reasonable time allowing to simply create new tests if nec-
essary. To steer the test case generation, the method uses a
test case criterion which is described with the help of con-
straints in an abstract manner. For simplicity the method
only specifies the behavior of the system for a static envi-
ronment. To extend the method to dynamic changes is left
for future work.

Acknowledgments
This work is supported by the Austrian Research Promotion
Agency (FFG) under grant 843468.

1653



REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal

intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] D. Brugali and A. Shakhimardanov.
Component-Based Robotic Engineering (Part II) -
Systems and Models. Robotics Automation Magazine,
IEEE, 17(1):100–112, 2010.

[3] A. L. Buchsbaum, E. R. Gansner, C. M. Procopiuc,
and S. Venkatasubramanian. Rectangular layouts and
contact graphs. ACM Transactions on Algorithms
(TALG), 4(1):8, 2008.

[4] R. G. Hamlet. Testing programs with the aid of a
compiler. IEEE Transactions on Software Engineering,
SE-3(4):279–290, July 1977.

[5] S. Imlauer, C. Mühlbacher, G. Steinbauer, M. Reip,
and S. Gspandl. Hierarchical planning with traffic
zones for a team of industrial transport robots. In
ICAPS Workshop on Distributed and Multi-Agent
Planning (DMAP-2016), pages 57–64, 2016.

[6] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco
Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S., 2016.

[7] G. Steinbauer and C. Mühlbacher. Hands Off - A
Holistic Model-Based Approach for Long-Term
Autonomy. In ICRA Workshop on AI for Long-term
Autonomy, 2016.

[8] R. J. Trudeau. Introduction to graph theory. Courier
Corporation, 2013.

[9] M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

[10] M. Utting, A. Pretschner, and B. Legeard. A
taxonomy of model-based testing approaches. Softw.
Test. Verif. Reliab., 22(5):297–312, Aug. 2012.

1654




