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ABSTRACT

This work focuses on a robot’s task of predicting the navi-
gation intent of human teammates using Inverse Reinforce-
ment Learning. The purpose of this study is to introduce the
On-the-fly Maximum Margin Planner (OTF-MMP) method
which estimates a predictive navigation model in real-time
from the observed actions of a human teammate. We include
an experiment to test the predictive ability of the method
using simulation.
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1. INTRODUCTION

Increasing desire for robotic applications that situate au-
tonomous robots as human partners in cooperative and tightly
interactive tasks beckons rapid advancement in several areas
[18, 16, 6]. Although recent advances in sensors and percep-

tion methods—measuring the current state of the environment—

have improved human-robot interactive capabilities, infer-
ring the plans, strategies, and intentions of agents around
robots would enable them to have better decision-making
abilities [8, 12, 17]. The ability to recognize plans and goals
of the other agents may enable robots to reason about what
these agents are doing, why they are doing it, and what they
will do next. This fundamental cognitive ability is critical
for human-robot interaction because teammate coordination
presupposes the ability to understand the motivations of the
coordinating participants.

For this work, we focus on the task of understanding the
path-finding process and predicting navigation actions of hu-
man teammates—a highly unpredictable and ambiguous cog-
nitive process. The purpose of this study is to present an
approach to learn a predictive navigation model “on-the-fly”
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from observation of the human teammate’s actions—which we
call On-The-Fly Maximum Margin Planner (OTF-MMP).
To this end, we propose a novel adaptation of the Maximum
Margin Planner (MMP) [15] by adjusting how we encode
and calculate parameters.

Previous behavior prediction studies have been verified
only on relatively short-term horizons [13, 19, 20, 9, 10]. To
improve long-term predictability, “goals” have to be postu-
lated assuming that they are following the “shortest path”
[4, 23, 2]. Recent interest in autonomous vehicles brought
about developments in pedestrian path prediction for track-
ing and avoidance [5, 23], and navigation assistance [21, 22,
7). In a recent published work, Karasev et al. [5] presented
a method to predict the long-term motion of pedestrians as-
suming that agents have predetermined feature biases (e.g.
pedestrians prefer sidewalks). This study aims to predict
long-term path-finding actions of pedestrians in “one-shot”
without previous knowledge of historical paths. Further-
more, unlike previous work, this study avoids restricting hu-
man agents to a predetermined feature preference.

We ground this work within the framework of Inverse
Reinforcement Learning’s (IRL) Maximum Margin Planner
[15], which learns policies from observing the actions of a
teacher [11, 1, 14, 15]. Assuming that the human agents act
in an optimal manner, IRL can be used as a tool for the
human agent to teach a robot its path-finding principles.

Humans can navigate to a known location in an infinite
amount of ways due to the continuous nature of the real-
world. In order to keep the inference computation tractable,
we model the navigation problem as a discrete Markov Deci-
sion Process (MDP) organized as a grid world with rewards
for each state (or cell) the agent enters [3]. We assume that
the goal of the agent is to seek sequences of optimal actions
that maximize the collected reward. Thus, in order to un-
derstand an agent’s path-finding strategy, we must be able
to infer the reward, R(s), at every state s € S.

While Ratliff et. al. [15] introduced batch learning and
online (or incremental) learning MMP methods to estimate
the reward function, R(s), this study adapts the MMP method
to make inferences on R(s) by observing a single incomplete
path (i.e. the agent is still en route to the goal location) and
estimating reward functions on-the-fly. For more details on
the MMP notation and formulation, See [15].

Before the agent’s path-finding process begins, we initial-
ize u(s,a) and p*(s,a) as a zero vector of size (m *n) * |A|,
where |A| is the number of actions per state (e.g. |A] =4



for a = {north, south, east, west}), and m and n are the
sizes of the z-axis and y-axis of the grid world, respectively.
Note that (m xn) corresponds to the size of the state space
S. Let w be initialized as a non-zero vector.

To adapt the MMP in an “on-the-fly” fashion, we present
three adjustments to the algorithm (a)-(c):
(a) Encode the observed trajectory u:
Let O = {(so0, @o), --., (St,a¢)} be a sequential list of observed
visited states s; € S and the corresponding observed actions
a; € A, for all i = {0,...,t}. As the agent performs action
a; in state s;, we update the sparse vector pu(si, a;) = 1.
(b) Encode optimal planner p*:
Given the current estimate of w, we run the value iteration
algorithm to produce an optimal policy, 7 : S — A, repre-
senting the optimal action a* at each state s;. After each
observed transition, we update u*(s,a"):

L (siai) = (s, a7), V(si,0:) € O
, o))
otherwise
(¢) Define Loss function:
We define a loss function that is stricter than that of [15].
Our loss function L(p*, p1) is a function that counts the num-
ber of dissimilar state-action policies.

Using these three elements (a)-(c), we iteratively solve for
w as the partial-path OTF-MMP objective function defined
as

minimize %HwH2 + B8¢? @
s.t. w ' Fp+¢>w Fu' + L(p", p)
2. RESULTS

In this section, we analyze the predictive ability of the
OTF-MMP when exposed to different levels of an agent’s
path-finding noise. This experiment simulates noisy scenar-
ios of an agent traversing a map to a known goal. The fea-
tures are: Road, Side Walk, Low Vegetation, Medium Vege-
tation, High Vegetation, Buildings, Water, Distance.

For this experiment, we considered two strategies: 1. Road

Strategy: “least-effort” path on roads (i.e. Wroea = 1, oth-
erwise w; = 0 for all other weights not corresponding with
road). 2. Concealed Strategy: difficult but hidden route with
high vegetation to remain invisible (i.e.
WHighVeg, WMedvVeg = 1, otherwise w; = 0 for all other
weights not corresponding with HighVeg and MedVeg).
We determine the agent’s policy using value iteration to de-
termine the optimal action to take a every state s. Thus,
the road and concealed strategy would each have one exact
optimal policy.

We simulate an agent’s paths imposing 5 levels of obe-
dience levels P = {100%, 95%, 90%, 85%, 80%}. Obedience
levels are defined as the probability that the agent would fol-
low the optimal strategy at each state. For each obedience
level per strategy, we simulate 30 distinct example paths.
Figure 1 shows the test terrain overlaid by three representa-
tive paths. The red line shows the optimal path using road
strategy. The green line shows the optimal path using the
concealed strategy. The yellow line shows an example sub-
optimal path using concealed strategy which diverged from
the optimal strategy due to errors in transitions.

We divide each simulated path into two sets with equal
number of transitions: the first half of the path will be used
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Figure 1: Example tra-
jectories for road strat-
egy (red), and concealed
strategy (green—optimal,
yellow—sub-optimal).
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as our training set and the latter half will be used as our
test set. We use OTF-MMP to build a model-using the
training set—whose predictability will be compared to the
test set. We count the number of transitions that were pre-
dicted incorrectly and normalized with the number of total
transitions observed. Figure 2a and 2b summarizes the re-
sults. We see that error rate increases at a faster rate as the
obedience level decreases which signifies a deterioration of
model reliability. Since the obedience level dictates the pro-
portion of reliable observed action, the OTF-MMP is highly
sensitive to the path-finding noise of the human agent.

3. CONCLUSION

In this work, we adapt the maximum margin techniques
to the problem of inferring navigation strategies of agents
on-the-fly and estimate their optimal policy, w, based on
observed actions. Using methods of maximum margin plan-
ning, autonomous robots can plan a path that is consistent
with its teammate’s strategy, evaluate the progress of the
mission, and anticipate future team location and vulnerabil-
ities. Ultimately, this method takes the step to provide the
robot with information it needs to be a better teammate.
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