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ABSTRACT
Model-driven engineering (MDE) is an approach for improv-
ing productivity in software development. This approach
was exploited in the context of agent-based modeling and
simulation (ABMS) only to a certain extent. Previous work
has not shown real evidence of the benefits that MDE pro-
motes in ABMS. This paper thus explores the use of MDE in
ABMS with a case study in the traffic domain. We propose
a domain analysis method to identify domain concepts and
a modeling language that provides building blocks for them.
Our evaluation gives evidence that our MDE approach re-
duces the effort to develop agent-based simulations.
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1. INTRODUCTION
Building simulations in which there are multiple interact-

ing agents situated in an environment is a challenging task,
which has been widely investigated in the context of agent-
based modeling and simulation (ABMS). Alternatives for de-
veloping agent-based simulations (ABSs) include platforms,
such as NetLogo [21]. However, these platforms demand
expertise both in ABMS and programming, thus making
ABS development a difficult task for people with little or
no ABMS expertise to execute. Researchers have already
demonstrated the importance of providing tools and build-
ing blocks to ease the development of ABSs [10, 19].

Model-driven engineering (MDE) [2, 16] is a software de-
velopment approach whose goal is to make domain concepts
available for modeling, reducing the abstraction gap and
thus increasing the productivity in software development.
In MDE, models are first-class citizens, from which source
code can be automatically generated [17].

There are MDE approaches for ABMS [5, 7, 9, 11, 13],
but these are limited to particular MDE aspects and usually
model only high-level ABMS concepts, leaving much left to
be further done by developers. Moreover, there is a lack of
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concrete evidences of the real benefits that MDE approaches
promote for developing ABSs.

In this paper, we address these issues by further explor-
ing the use of MDE in the context of ABMS. We present a
case study of the development of an MDE approach in the
adaptive traffic signal control domain [3]. Previous work on
MDE showed that the more specific the application domain,
the higher the chance of success [12]. We propose a domain
analysis method to identify domain concepts, which is ap-
plicable to other domains. The proposed MDE approach
provides a modeling language and a code generator, to sup-
port the development of ABSs in the investigated domain,
and potentially in similar domains.

2. MDE FOR ABMS
To create an MDE approach, one must first identify the

existing domain concepts, and then make them available for
modeling. We propose a domain analysis method to iden-
tify key concepts using a set of ABSs in the same domain,
given that existing methods [5, 11], despite providing valu-
able guidelines for identifying agents, do not provide sup-
port for identifying the simulation aspects of ABMS. Our
domain analysis is composed of the following steps: i) to
build a preliminary list of agent-related concepts (follow-
ing [5] and [11]); ii) to refine the identified concepts using
the Overview, Design concepts, and Details (ODD) proto-
col [8] to incorporate simulation aspects and additional agent
capabilities; iii) to find the essence behind each identified
concept, abstracting it as a single, essential concept, or gen-
eralizing it to a parent concept; and iv) to build the domain
model, specifying constraints and relationships between the
enumerated concepts.

The proposed domain analysis method was applied to
identify concepts in the domain of adaptive traffic signal
control. Existing work on self-organizing traffic lights [4, 6]
and reinforcement learning for traffic light control [14, 15,
20] was used as domain knowledge source. Consequently,
our domain analysis was performed using a bottom-up ap-
proach, to reduce the bias of individual experts’ views while
identifying domain concepts. The following are the identi-
fied concepts that are related to traffic lights: environment,
stages, phases, plans, agents and their capabilities and per-
ceptions, adaptation, and learning.

We provide a modeling language, DSL4ABMS, to facil-
itate the development of ABSs. The language was built
following existing methods for building domain-specific lan-
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Figure 1: Example of the DSL4ABMS Language Concrete Syntax.

guages [18], in order to make the identified domain con-
cepts available for modeling as building blocks. We adopted
a graphical representation to reduce the effort required to
identify model elements and their relationships. Figure 1
shows an overview of the concrete syntax of DSL4ABMS.
To illustrate all the features of DSL4ABMS, the depicted
model shows a (partial) combination of existing simulation
elements: traffic signal stages, phases, and plans from [15],
and the learning technique used by Mannion et al. [14].

Entities and agents are represented as boxes, with name,
attributes, and a creational strategy (to setup how they are
created and located in the environment). Such representa-
tion is inspired by the Unified Modeling Language (UML)
class diagram. Besides name and type, attributes specify
how they are initialized and updated during the simulation.
The specification is by means of static values, expressions, or
other sources. A list of all the available creational strategies
and sources of values is available elsewhere [1].

The agent recurrent behaviors and its decision making
ability are represented as agent capabilities. Concepts re-
quired by an agent capability are represented as elements
connected to the agent by an arrow. In Figure 1, the Traf-
fic Signal Controller agent has a flow control capability,
which abstracts the behavior of regulating the flow of a set
of streams by means of actuators. Such capability requires
actuators (which may be arranged into actuator groups) and
their corresponding actuator states.

Decision capabilities are represented as boxes with their
content describing the elements required by each particular
capability. Supported decision capabilities are: state ma-
chine, adaptation, and learning. The input and output of
a decision capability are represented by a semicircle and
a filled circle connector, respectively. The input that is
provided to a decision capability is represented as a con-
nection between the capability’s semicircle and any model
element that represents a decision option, which includes
actuators, their states and groups, and other decision ca-

pabilities. In addition to its type and name, each decision
capability has specific parameters that must be set: states,
reward, and learning parameters for learning capabilities;
states and transition rules for state machines; and an adap-
tation criterion for adaptation capabilities.

Automated code generation is fundamental to reduce the
effort to develop ABSs and thus to exploit the benefits of an
MDE approach. We provide a code generator that, given a
model specified using our DSL4ABMS language, generates
code for the NetLogo [21] platform. The produced code is
ready-to-use, as opposed to existing MDE approaches for
ABMS that usually generate only code skeletons.

3. CONCLUSION AND FUTURE WORK
In this paper, we presented an MDE approach for devel-

oping ABSs in the adaptive traffic signal control domain.
An empirical study was conducted to evaluate the effort to
develop ABSs using our approach. Adopted metrics con-
sider the human effort employed to create a simulation, in
terms of lines of code and modeling elements, manually and
automatically produced. Results show that our approach
requires 60-86% less effort than the NetLogo and ITSUMO
simulation platforms. One simulation was considered for
each decision capability, and the source code related to traf-
fic lights was fully automatically generated for all of them.
This result provides evidence that an MDE approach gives
helpful support for developing ABSs.

It is our ongoing work the addition of other agent capabil-
ities and aspects from other domains to our MDE approach.
Our long-term goal is to use MDE to allow people with little
or no ABMS expertise to build agent-based simulations.
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