
Analysis of Meta-level Communication for Distributed
Resource Allocation Problems

(Extended Abstract)
Matthew Saponaro

Computer and Information Sciences
University of Delaware

Newark, Delaware
mattsap@udel.edu

Keith Decker
Computer and Information Sciences

University of Delaware
Newark, Delaware

decker@udel.edu

ABSTRACT
We examine the effects of meta-level-communication in the
DSRAP (Distributed Sequential Resource Allocation Prob-
lem). In DSRAP, independent tasks are categorized into
different types, where each task belonging to a particular
task type shares a known distribution of task arrivals, dura-
tions, reward rates, maximum waiting times, and resource
demands. We first look at a single task type DSRAP (SD-
SRAP) and develop an analytical model of the effect of meta-
level communication about load on system performance for
first-in-first-out (FIFO) local scheduling agents that forward
tasks based on load. Through our analytical models and
empirical results, we show how the frequency of communi-
cation affects performance for SDSRAP problems with one
resource and task type. We then quantitatively measure
the impact of meta-level communication on system perfor-
mance with respect to the global measures of the system’s
load balance. We validate our analytical model’s predictions
experimentally, showing, e.g., as system load becomes unbal-
anced, performance decreases; organizational structure sig-
nificantly impacts agent performance; and agents that can
communicate and distribute tasks to neighbors significantly
outperform agents working individually. Through our anal-
ysis on FIFO, routing algorithms, and our policy agents,
we provide a framework for analyzing more complex task
schedulers and task routing algorithms.

1. INTRODUCTION
Warehouse shipping, cloud computing clusters, and dis-

tributed sensor networks—all are large-scale systems requir-
ing disparate entities working together to achieve goals. Par-
ticipating entities are usually physically distributed and ex-
cessive communication is not always ideal due to overhead,
network message saturation, and inefficient utilization of re-
sources. Zhang et. al defines and provides several solutions
to the DSRAP, but does not explore the problem analyt-
ically [7, 6, 8]. In order to optimize the amount of com-
munication, we must understand how communication af-
fects system performance. We provide a method that allows
for organizations to describe system characteristics without

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

spending resources testing system configurations by mathe-
matically modeling system behavior. Our DSRAP model is
comprised of a local task allocation mechanism and a task
routing mechanism. We provide a general framework that
allows for each component to be modeled individually. We
analyze FIFO task allocation with both a meta-level commu-
nication router and then an evenly-distributed router. This
paper’s analyzed routing algorithms extend Arpaci-Dusseau
and Culler’s centralized proportional routing algorithm by
combining it with meta-level communication to make a de-
centralized solution [1]. Meta-level communication has been
extensively studied and is efficient in the sense that it sum-
marizes necessary state information [2, 4]. Our agents com-
municate the number of tasks (load) with adjacent agents.

2. ANALYTICAL MODEL
We provide a set of difference equations to analytically

describe the SDSRAP. The following equations describe the
number of waiting, wt

i , allocated, xti, and failed, F t
i , tasks

at a given time t, and the number of available resources, Rt
i,

for an arbitrary agent, Ai.

wt
i = wt−1

i −xt−1
i −F t−1

i +Ei+
∑

j∈adjacent

S
t−dij
j→i −S

t−1
i→j (1)

where wt−1
i is the number of tasks that were previously wait-

ing, xt−1
i is the number of previously allocated tasks, F t−1

i

is the number of failed tasks from the previous time unit,

S
t−dij
j→i is the number of tasks that Aj sent to Ai that have

just arrived at Ai, S
t−1
i→j is the number of tasks Ai just pre-

viously sent away to Aj , and Ei is the number of new tasks
that have arrived from the environment. At the beginning
of an episode there are no tasks waiting—that is, w0

i = 0.
We represent the number of tasks allocated at time t, xti

as the sum total of tasks allocated at time t that arrived at
some earlier time a ≤ t (xti [a]). We can also represent St

i→j

and wt
i that are described below similarly.

xti =

t∑
a=1

xti [a] (2)

A FIFO agent will allocate tasks that arrive earlier first.
The number of allocated tasks from a particular time is con-
strained by the number of waiting tasks from that time,
wt

i [a], and the number of resources still remaining after serv-
ing tasks that arrived before time a, Rt

i [a].

xti [a] = min
(
wt

i [a] , Rt
i [a]

)
(3)

1728

Rt
i [a] = max

(
Rt

i −
a−1∑
k=1

wt
i [k] , 0

)
(4)

An agent will have as many resources as it had in the
previous time unit that have not been allocated in addition
to the resources freed from completed tasks, xt−s

i , where s
is the service time of a task:

Rt
i = Rt−1

i − xti + xt−s
i (5)

We describe the number of failed tasks at a particular
time, t, as the number of tasks that have exceeded their
maximum waiting time, m. A task has exceeded its maxi-
mum waiting time if it arrived m time units before t, and
has not been serviced. Therefore, the number of failed tasks
at time t, F t

i , is wt
i [t−m].

We use Hamilton’s apportionment algorithm in order to
route tasks [3]. Essentially, the number of sent tasks, St

i→j ,
that each neighboring agent, Ai, will be sent is a propor-
tional whole value,

⌊
ptj→i

⌋
; additionally, any remaining tasks,

Ot
j→i [a] will be divided to the agents with highest fractional

component of p.
For evenly-routing agents, we describe ptj→i [a] as the pro-

portion of excess tasks that should be sent to a neighboring
agent based on the number of neighbors.

ptj→i [a] =
1

|adjacent| ∗O
t
j [a] (6)

For proportional-routing MLC agents, we describe ptj→i [a]
as the proportion of excess tasks that should be sent to a
neighboring agent based on its beliefs, Bt

ij , about its current
availability of resources.

ptj→i [a] =
Bt

ji∑
l∈adjacent

Bt
jl

∗Ot
j [a] (7)

Agent Aj will update Ai’s belief about the resources Aj

has when the difference between its current available re-
sources and whatAj previously communicated toAi is larger
than a threshold, θ.

Bt
ij =

{
Rt

j , if
∣∣Rt

j −Bt−1
ij

∣∣ ≥ θ
Bt−1

ij , otherwise
(8)

The number of excess tasks that Ai has at time t that
arrived the remaining tasks in the waiting queue after its
resources have been allocated.

Ot
i [a] = max

(
wt

i [a]−Rt
i [a] , 0

)
(9)

3. EXPERIMENTS AND RESULTS
We consider a k-connected topology in DSRAP where the

first half of agents are heavily loaded and the other half are
lightly loaded and examine under which connectivity levels
the evenly-route algorithm outperforms the proportional-
route algorithm. For this experiment, we investigate a 30
agent system where each agent has 120 resource A units
and 140 resource B units. The average system load is kept
at 20 where each agent’s individual load is pulled from a
uniform distribution centered on 35 or 5 with a variance of
4
3
. Our proportional-route agents always communicate (i.e.

θ is 0). We show the effect of connectivity of the system
with respect to system performance in figure 1. Our experi-
ments show the best performance is when the heavily loaded

2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
#Neighbors

0

20

40

60

80

100

A
v
e
ra

g
e
 S

y
st

e
m

 R
e
w

a
rd

 R
a
te

System Connectivity vs. Reward

proportionally-route
evenly-route
no coordination

Figure 1: Utility Rate for a k-connected topology
where the first half agents are heavily loaded and
the other half are lightly loaded.

agents may be able to shed their excess tasks to a lightly
loaded agent without their tasks competing with others to
be allocated (i.e. k is 3). We note the low performance
spikes is when heavily loaded agents are not connected to
many lightly loaded agents. We notice that the proportion-
ally routing agents’ performance converges to a value in be-
tween the least connected system (i.e. k = 2) and the best
connectivity level (i.e. k = 3). Highly-connected systems
may experience inconsistency with actual load due to the
high flux of sent tasks. We note that the evenly routing sys-
tem’s performance increases since the heavily loaded agents
have more of an opportunity to forward tasks to more lightly
loaded agents.

We demonstrate the versatility of our equations by con-
sidering the k-connected topology such that agents alter-
nate between heavy loads and light loads. We show that
the percentage of sent tasks completed for this system using
the evenly-routing algorithm. All tasks sent from a heavily
loaded agent to a lightly loaded agent would be completed;
thus, if we calculate the number of connections, we can cal-
culate the number of completed tasks. The number of con-
nections for a single heavily loaded agent to a lightly loaded
agent follows a variation of the even numbers repeated se-
quence where the nth term is 2 ∗

⌊
n
2

⌋
[5]. For this system,

if k is even, each heavily loaded agent will be connected to

2∗
⌊ k

2
+1

2

⌋
lightly loaded agents and, if k is odd, there would

be 1 more lightly loaded agent. Our equation for the per-
centage of sent tasks completed follows for when k is odd.
Consider that k is 8; Each heavily loaded agent will have
4 lightly loaded neighbors and 4 heavily loaded neighbors,
thus half the tasks can be completed.

2 ∗
⌊ k

2
+1

2

⌋
+ 1

k
(10)

By understanding the schedulers performance analytically,
we can determine when certain schedulers and routing algo-
rithms are useful for a given environment.

1729

REFERENCES
[1] A. C. Arpaci-Dusseau and D. E. Culler. Extending

proportional-share scheduling to a network of
workstation. 1997.

[2] K. Decker and V. Lesser. An approach to analyzing the
need for meta-level communication. In Proceedings of
the 13th International Joint Conference on Artifical
Intelligence - Volume 1, IJCAI’93, pages 360–366, San
Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[3] J. Gonzalez and N. Lacourly. A family of hamilton type
methods for congressional apportionments. Revue
française d’automatique, d’informatique et de recherche
opérationnelle. Recherche opérationnelle, 26(1):31–40,
1992.

[4] D. E. Neiman, D. W. Hildum, V. R. Lesser,
T. Sandholm, et al. Exploiting meta-level information
in a distributed scheduling system. In AAAI, pages
394–400, 1994.

[5] J. Sellers. Encyclopedia(at) pommard.inria.fr,
https://oeis.org/a052928, 2000.

[6] C. Zhang and V. Lesser. Coordinating multi-agent
reinforcement learning with limited communication. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages
1101–1108. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[7] C. Zhang, V. R. Lesser, and P. J. Shenoy. A
multi-agent learning approach to online distributed
resource allocation. In IJCAI, pages 361–366, 2009.

[8] C. Zhang and J. A. Shah. Fairness in multi-agent
sequential decision-making. In Advances in Neural
Information Processing Systems, pages 2636–2644,
2014.

1730

