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ABSTRACT
For the social law synthesis problem, when the agents are
rational in the sense of game theory and hold some infor-
mation we need as private information, it naturally evolves
into a setting that is perfectly addressed by the framework
of algorithmic mechanism design. In this strategic setting,
we are not only required to find out the feasible social law
for the objective, but also required to formulate the right
payment to the agents to induce incentive compatibility and
individual rationality. We design a mechanism for this set-
ting, prove that it satisfies all the required formal properties,
and characterize the conditions for the existence of feasible
mechanisms. Moreover, we show that the upper-bound of
the total payment of the proposed mechanism is high.
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1. INTRODUCTION
Social law was extensively studied in the past decades as

an off-line approach for coordinating multiagent systems by
e.g., [16, 17, 19, 21, 1]. In general, a social law is a set of
restrictions on the available actions of agents. By imposing
these restrictions, it is hoped that some desirable objectives
will emerge [2]. It is easy to see that the strategic setting
brings about some fundamental challenges to social law syn-
thesis: firstly, the agents are autonomous and self-interested.
They choose to comply with the social law if and only if it
is profitable. So, it is necessary to take the gains and costs
of every agent into consideration in the implementation of a
social law, rather than naively treat it as hard constraints.
Basically, we can try to pay each agent a proper amoun-
t which guarantees a positive profit for it. Unfortunately,
as the gains and costs of an agent may be its private in-
formation, we are not sure about how much we should pay
each agent; secondly, modifying the original system as little
as possible, i.e., minimality [9, 10], is sometimes a desired
property of social laws. In the seminal papers, minimality
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is measured by the total number of available actions deleted
by the social law. More generally, it can be defined as the
total cost of the deleted actions. Moreover, we can also for-
malize some other optimality concepts related to the gains
and costs information of the agents, but when this informa-
tion is privately held by the agents, we are not sure about
which of the social laws is the best.

The above facts mean some private information of the
agents should be properly elicited and taken into consider-
ation during social law synthesis. This issue can be natu-
rally handled by the framework of algorithmic mechanism
design [13, 14, 15]. Our approach is to extend the logic-
based framework of social laws [19] by adding game theo-
retical components that capture the utilities of the agents,
then we can propose a social law auction based on Vickrey-
Clarke-Groves (vcg) mechanisms [20, 7, 11]. This paper can
be seen as an attempt to introduce the methodology of al-
gorithmic mechanism design into the traditional logic-based
approach to ai.

2. FORMAL FRAMEWORK
The interactions of a multiagent system Ag with k agents,

a state space Q in which each state q is labeled by a set
of propositions π(q) ⊆ Π can be modeled by a Concurrent
Game Structure (cgs) S = ⟨k,Q,Π, π, ε, δ⟩, in which for each
state q ∈ Q the available actions for each agent i is specified
as a non-empty set εi(q) and a state δ(q, j1, ..., jk) ∈ Q will be
the next state if every agent i chooses action ji ∈ εi(q). We
adopt Alternating-time Temporal Logic (atl) for specifying
and verifying cgs. The language of atl is generated by bnf:

φ ∶∶= p∣¬φ∣φ1 ∨ φ2∣⟪A⟫◯φ∣⟪A⟫ ◻ φ∣⟪A⟫φ1Uφ2,

where p ∈ Π, and A ⊆ Ag = {1, ..., k} is an agent coalition.
A social law for S is a behavioral constraint η defined as
a function ∀i ∈ Ag, q ∈ Q ∶ ηi(q) ⊂ εi(q). The new struc-
ture obtained by implementing η on S, denoted S†η, is the
structure S′ = ⟨k,Q,Π, π, ε′, δ′⟩ where ∀i ∈ Ag, q ∈ Q ∶ ε′i(q) =
εi(q)∖ηi(q), and δ′ is obtained from δ by restricting the ac-
tion profiles to ε′1(q)×...×ε′k(q) in every q. We denote the set
of all the possible social laws for S as SLS , and denote the
set of all the possible cgs that can be obtained from S by im-
plementing a social law as WS = {S′ ∣ ∃η ∈ SLS ∶ S†η = S′}.
The underlying economic model can be specified as follows.

With respect to each agent, a restriction on its avail-
able actions can result in a cost [9, 10], and the struc-
tural properties of the obtained new cgs can result in a
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change in its structural valuation, which manifests the agen-
t’s preference on different system properties [2, 5]. The cost
of a social law η ∈ SL to an agent i with unit cost ci is
σi(ci, η) = ci ⋅∑q∈Q ∣ηi(q)∣, where ∑q∈Q ∣ηi(q)∣ is the number
of i’s actions restricted by the social law η. The structural
valuations of an agent i on a cgs can be defined based on a
fixed feature set Fi of state-formula pairs of the form ⟨q,φ⟩,
which is called an objective expressing its aimed properties
with respect to some of the states, and an agent’s structural
valuation on a social law equals its structural value gain
(which sometimes can be a negative number) on obtaining
the new cgs. We assume each agent i ∈ Ag has Ni ∈ N d-
ifferent structural types, denoted as the set {1, ...,Ni}, and
each type j ∈ {1, ...,Ni} is specified by a list of the for-
m ⟨(qji [1], φ

j
i [1], x

j
i [1]), ..., (q

j
i [l

j
i ], φ

j
i [l

j
i ], x

j
i [l

j
i ])⟩ where l

j
i ≤

∣Fi∣+1, ∀k ∈ {1, ..., lji − 1} ∶ (qji [k], φ
j
i [k]) ∈ Fi, x

j
i [k] ∈ R

+;
and each tuple in Fi can appear at most once in the list.
Moreover, we assume φj

i [l
j
i ] = ⊺, x

j
i [l

j
i ] = 0, q

j
i [l

j
i ] is an arbi-

trary state; and xj
i [1] ≥ ... ≥ x

j
i [l

j
i ]. Given a cgs S, if agent

i’s structural valuation type is j, then for each cgs G ∈WS ,
its structural value to agent i is ei(j,G) = xj

i [k] where k is

the smallest index in {1, ..., lji } satisfying G, qji [k] ⊧ φj
i [k];

for each social law η ∈ SLS , its structural value to agent i is
ei(j, η) = ei(j, S†η)−ei(j, S). Then the value of a social law
η ∈ SLS to an agent i with unit cost ci and structural type
ji is vi(ci, ji, η) = ei(ji, S†η)− ei(ji, S)− ci ⋅∑q∈Q ∣ηi(q)∣, i.e.,
the structural value minus the cost.
A type of agent i can be denoted as θi = ⟨ci, ji⟩ where

ci ∈ R+ and ji ∈ {1, ...,Ni}. The type space of agent i is Θi =
R+ × {1, ...,Ni}. While each agent’s actual type is assumed
to be their private information, the type space of each agent
is assumed to be public information. A social law auction
mechanism is a tuple of allocation function and payment
function ⟨a, t⟩, where a ∶ Θ1 × ... × Θk → SLS , ti ∶ Θ1 ×
... ×Θk → R, and Θi is the type space of agent i. A social
law auction proceeds in 3 steps: firstly it is announced and
asks every agent to bid their type simultaneously; then each
agent chooses a type from its type space and submits it at
the same time with the others; and finally according to the
collected bids, a social law is selected and the amount of
payment to each agent is determined.
A selected social law η can be mapped to a set of relevant

agents ξη. Agent i ∈ ξη, if and only if at least one of the
following two conditions hold: 1) ∃q ∈ Q ∶ ηi(q) ≠ ∅; 2)
∃⟨q,φ⟩ ∈ Fi ∶ S, q ⊧ ¬φ iff S†η, q ⊧ φ. So, a relevant agent is
actually an agent whose value (= structural value− cost) is
changed by the social law. We require the mechanisms to be
normalized, that is, if an agent is not in ξη, then the payment
to it is 0. Obviously, each agent outside the relevant set
will get a 0 utility, and each agent i in the relevant set will
finally get a utility ui(θ∗i , θi, θ−i) = ei(j∗i , S†η) − ei(j∗i , S) −
c∗i ⋅ ∑q∈Q ∣ηi(q)∣ + ti(θi, θ−i), where θ∗i = ⟨c∗i , j∗i ⟩ ∈ Θi is its
true type, θi ∈ Θi is its bidded type and θ−i ∈ Θ−i is the bid
vector of all the other agents.
We say a social law auction mechanism ⟨a, t⟩ is feasible for

an objective ω = ⟨q,φ⟩ if all of the following items hold: 1)

(Effective) ∀θ⃗ ∈ Θ1× ...×Θk ∶ S†a(θ⃗), q ⊧ φ, i.e., always allo-
cates an effective social law fulfilling the objective; 2) (Incen-
tive Compatible) ∀i ,∀θi, θ′i ∈ Θi, ∀θ−i ∈ Θ−i: ui(θi, θi, θ−i) ≥
ui(θi, θ′i, θ−i), i.e., to bid truthfully is the dominant strategy;
3) (Individual Rationality) ∀i ,∀(θi, θ−i) ∈ Θ: ui(θi, θi, θ−i) ≥
0,i.e., every agent will get a non-negative utility.

3. MECHANISM DESIGN
Given a cgs S, an objective ω = ⟨q,φ⟩, and a bid vector

⟨c1, j1⟩, ..., ⟨ck, jk⟩, we firstly find out the set FS,ω ⊆ SLS of
all the effective social laws; then allocate the social law in
FS,ω with the maximal social welfare, and pay each agent i
in the relevant set ξη the amount of the social welfare gain
of all the other agents brought about by it, assuming the
bids from all the agents are their true types.

Given the type vector θ⃗, the social welfare of a set of agents
A ⊆ Ag with respect to a social law η ∈ SLS is SWθ⃗(A,η) =
∑i∈A[ei(ji, S†η)−ei(ji, S)−ci ⋅∑q∈Q ∣ηi(q)∣]. After obtaining
FS,ω (which has already been studied by the literature on

social law synthesis, e.g., [19, 21]), for any bid profile θ⃗ ∈
Θ1 × ... ×Θk, the allocation can be computed as:

a(θ⃗) = arg max
η∈FS,ω

SWθ⃗(Ag, η) (1)

For an arbitrary agent i ∈ Ag in the relevant set ξa(θ⃗), we
can compute the payment as

ti(θ⃗) = SWθ⃗ (̄i, a(θ⃗)) − max
η∈FS,ω

[vi(+∞, j∞i , η) + SWθ−i (̄i, η)]

(2)
We call the mechanism composed by the allocation func-
tion defined by equation 1 and the payment function defined
by equation 2 as the VCG Social Law Auction Mechanism
(vcg-sla). Moreover, the following results can be proved.

Theorem 1. Given a cgs S, vcg-sla is feasible for the
objective ω iff FS,ω is nonempty and monopoly-free.

Note that, monopoly-free means for every agent i there is
always a social law according to which i is not in the relevant
set, i.e., ∀i ∈ Ag,∃η ∈ FS,ω ∶ i ∉ ξη.

Corollary 2. There exists a feasible social law mecha-
nism if and only if vcg-sla is feasible.

Therefore, the proposed mechanism has soundly and com-
pletely solved the social law synthesis problem for rational
agents defined in this paper. Finally, the high total payment
of vcg-sla can be manifested by the following result.

Proposition 3. There are instances where the best social
welfare V ≥ 0 and the total amount of payment is (∣ξa(θ⃗)∣ −
1)V , and instances where the second best social welfare V ′ ≤
0 and the total amount of payment is −Θ(∣ξa(θ⃗)∣)V

′.

So the proposed setting potentially relates to and intro-
duces an interesting new problem to the research of frugal
mechanisms [3, 18, 4, 8, 12, 22, 6]. Moreover, it is also
interesting to further study the general case where the op-
timization objective is not simply social welfare, the cost of
each action is different and the costs of sets of actions are
not simply the sum of the cost of the individual actions;
Finally, since the computation of the proposed vcg social
law mechanism is intractable, it is interesting to find out
tractable approximation mechanisms with good properties.
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