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ABSTRACT
We consider the following budgeted online assignment (BOA)
problem motivated by crowdsourcing. We are given a set of
offline tasks that need to be assigned to workers who come
online from the pool of types {1, 2, . . . , n}. For a given time
horizon {1, 2, . . . , T}, at each instant of time t, a worker j
arrives from the pool in accordance with a known probabil-
ity distribution [pjt] such that

∑
j pjt ≤ 1; j has a known

subset N(j) of the tasks that it can complete, and an assign-
ment of one task i to j (if we choose to do so) should be done
before task i’s deadline. The assignment e = (i, j) (of task
i ∈ N(j) to worker j) yields a profit we to the crowdsourc-
ing provider and requires different quantities of K distinct
resources, as specified by a cost vector ae ∈ [0, 1]K ; these
resources could be client-centric (such as their budget) or
worker-centric (e.g., a driver’s limitation on the total dis-
tance traveled or number of hours worked in a period). The
goal is to design an online-assignment policy such that the
total expected profit is maximized subject to the budget and
deadline constraints.

We propose and analyze two simple linear programming
(LP)-based algorithms and achieve a competitive ratio of
nearly 1/(`+ 1), where ` is an upper bound on the number
of non-zero elements in any ae. This is nearly optimal among
all LP-based approaches.

1. INTRODUCTION
Crowdsourcing markets (e.g., Amazon Mechanical Turk

or Crowdflower) have evolved to be powerful platforms that
bring together task performers (or workers) and task re-
questers (or consumers). In recent years, problems arising
from online decision making in such settings have been at-
tracting tremendous attention (see the survey [5]). A typi-
cal problem arising in such settings, considered by [3], is to
schedule a batch of consumer tasks using a pool of workers
who become available in an online fashion (i.e., in real time).
More specifically, we are given a set I of offline tasks, where
each task i ∈ I has a deadline di after which it cannot be
scheduled. Workers arrive in an online fashion (according
to an adversarial or random permutation order) and submit
bids on a subset of tasks that interest them. When a worker
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j arrives, a decision must be made immediately and irrevo-
cably - either assign it an available task or reject its service.
If the worker j is allocated a task i, we must pay the worker
their bid amount bij . The goal is to maximize the number
of tasks assigned while constrained by a given bid budget of
B.

Let [n] denote the set of integers {1, 2, . . . , n} and assume
a time horizon [T ]. Our work deals with a natural variant of
this problem in the following ways. First we model the ar-
rival of workers as each time t ∈ [T ] a single worker is chosen
from a known pool of worker types [n] in accordance with
a known probability distribution [pjt] such that

∑
j pjt ≤ 1.

Here we allow that with probability 1−
∑
j pjt, none of the

workers is chosen at t. Second, we consider multiple budget
constraints. That is, we assume that there are K distinct
resources and that each assignment e = (i, j) has a bid cost
vector ae ∈ [0, 1]K , where the kth component of the vector
corresponds to the amount of resource type k needed by the
assignment. Finally, instead of maximizing the throughput
(i.e., number of tasks completed), each assignment e is as-
sociated with a known weight or utility we and we aim to
maximize the expected utility collected from those successful
assignments.

2. PROBLEM STATEMENT
In this section, we present a formal statement of our prob-

lem. Let I = {i ∈ [m]} be the set of offline tasks and
J = {j ∈ [n]} be the set of online workers. On a finite time
horizon T , each task i has a deadline di ∈ [T ] after which it
will become unavailable. Let G = (I, J, E) be the bipartite
graph that models the relation between the tasks and work-
ers: there is an edge e = (i, j) iff worker j is interested in the
task i. Let N(j) = {i : (i, j) ∈ E} be the set of tasks that
interest worker j and N(i) = {j : (i, j) ∈ E} be the set of
workers who are interested in task i. Each edge e = (i, j) has
a weight we denoting the profit obtained by assigning task
i to worker j. Each assignment e = (i, j) has a requirement
for one or more of a given set of K types of resources. The
requirement of an assignment e is given by a K-dimensional
vector ae ∈ [0, 1]K , where the kth dimension ae,k represents
the amount of resource k needed. Each resource type k has
a budget Bk ∈ R+ that must not be violated. For each e,
let Se = {k ∈ [K] : ae,k > 0}, i.e., the set of resources it
requests.

Let Ej,t = {e = (i, j), i ∈ N(j) : di ≥ t} denote the
set of available assignments for the worker j at time t. In
this paper, we assume without loss of generality that each
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task can be assigned for an arbitrary number of times before
its deadline. Any potential restriction on the number of
assignments can easily be modeled by an additional budget
constraint: the task itself is an integral resource and the
corresponding budget is the upper bound on the number of
assignments. For each e ∈ Ej,t, we say e is safe or valid
iff for each k ∈ Se, resource k has remaining budget larger
or equal to ae,k. When a worker j arrives at t, we have to
make an immediate and irrevocable decision: either reject
it or choose a safe option e ∈ Ej,t and get a resultant profit
we. Once a safe assignment e is scheduled, the budget of
each resource k ∈ Se will be reduced by ae,k. Our goal is to
design an online assignment policy such that the expected
profit is maximized.

In most applications, we need to deal with two kinds of
resources, namely integral and non-integral. A resource k
is integral if ae,k ∈ {0, 1} for all e ∈ E and Bk ∈ Z+.
On the other hand a resource k is non-integral if ae,k ∈
[0, 1] and Bk ∈ R+. This captures resources such as money
and time that cannot be quantified as integral. Let K1 =
{1, 2, · · · ,K1} and K2 = {K1 + 1, · · · ,K1 +K2} denote the
set of integral and non-integral resources respectively. As
defined in the introduction, for each assignment e, |Se ∩
K1| ≤ `1 and |Se ∩ K2| ≤ `2.

3. BENCHMARK LP
Recall that Ej,t is the set of available assignments for a

worker j arriving at t. For any t, let Et =
⋃
j Ej,t be the set

of all available assignments at t. Further, for each t and e ∈
Et, let xe,t be the probability that we make the assignment
e at t in the offline optimal solution. Our benchmark LP
can now be described as follows:

maximize
∑
t

∑
e∈Et

wexe,t (1)

subject to
∑
e∈Ej,t

xe,t ≤ pjt ∀j ∈ J, t ∈ [T ] (2)

∑
t

∑
e∈Et

xe,tae,k ≤ Bk ∀k ∈ [K] (3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T ] (4)

Lemma 1. The optimal value to LP (1) is a valid upper
bound for the offline optimal.

Our benchmark LP is essentially the same as that used in
[1] and [2]. The detailed proof can be found there.

4. TWO LP-BASED ALGORITHMS
In the section, we present two simple LP-based algorithms,

ALG1 and ALG2, which are non-adaptive and adaptive re-
spectively. Let {x∗e,t|t ∈ [T ], e ∈ Et} be an optimal solution
for the LP (1).

ALGORITHM 1: A simple non-adaptive algorithm (ALG1)

For each time t, assume some worker j arrives.

Let Êj,t ⊆ Ej,t be the set of safe available assignments we can
make for j.

If Êj,t = ∅, then reject j; otherwise sample at most one

assignment e ∈ Êj,t with probability αx∗e,t/pjt.

ALGORITHM 2: Simulation-based adaptive algorithm (ALG2)

For each time t, assume some worker j arrives.

Let Êj,t ⊆ Ej,t be the set of safe available assignments we can
make for j.

If Êj,t = ∅, then reject j; otherwise sample an assignment

e ∈ Êj,t with probability
x∗e,t
pj,t

γ
βe,t

, where βe,t is an estimation of

the probability that e is safe at t through simulation.

First, we consider the simple case where all the resources
are integral and each assignment requests at most `1 = `
resources.

Theorem 1. By choosing α = 1/(` + 1), ALG1 achieves
a competitive ratio of 1

`+1
(1 − 1

`+1
)` ≥ 1

e(`+1)
for the BOA

problem when all the resources are integral.

Theorem 2. By choosing γ = 1/(`+1), ALG2 can achive
a competitive ratio of (1 − ε)/(` + 1) for the BOA problem
when all the resources are integral for any given ε > 0.

Note that our competitive ratio analysis is tight for the
non-adaptive algorithm ALG1. Furthermore, ALG2 is nearly
optimal among all approaches based on LP (1) since it has
an integrality gap at least `− 1 + 1/` ([4]).

Second, we consider the general case when both of inte-
gral and non-integral resources are involved. Let B be the
minimum budget for any non-integral resource.

Theorem 3. For the BOA problem, ALG1 yields a com-

petitive ratio of 1
`1+1

(
(1 − 1

`1+1
)`1 − ε

)
, for any ε > 0,

assuming B ≥ 2 ln( `2
ε

)
(

1 + 3`1+2

`21

)
+ 2.

Theorem 4. For the BOA problem, ALG2 yields a com-
petitive ratio of 1−2ε

`1+1
for any given ε > 0, assuming B ≥

3 ln( `2
ε

)(1 + 1
`1

) + 2.

Our results show that the knowledge about arrival distri-
butions holds a significant edge over the adversarial model
or the random permutation model. Let us compare our re-
sults with those of [3]. As discussed before, their setting
fits our model when `1 = `2 = 1. From Theorem 4, we
obtain a ( 1

2
− ε) competitive ratio assuming B ≥ 12 ln(1/ε)

while [3] obtain a ratio of O( 1
Rε lnR

), assuming B ≥ R
ε

and

R
.
=

max bi,j
min bi,j

(i.e., the ratio of the largest bid to the smallest

bid over all possible assignments). In fact, we completely re-
move the dependence on R and obtain a constant ratio while
relaxing the lower bound assumption on B significantly. Our
result may be seen as theoretical evidence to advocate the
use of historical data to learn arrival distributions.
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