
A New Solution to the Traffic Managing System for
Autonomous Vehicles

(Demonstration)
Rodrigo Rodrigues Novaes Júnior1, Daniel de Sousa Santos1,

Gabriel Martins Franco Santiago1, Sandro Renato Dias1

1Computing Department, CEFET-MG, Belo Horizonte, Brazil
{rodrigo.novaes.jr, daniel.sousasantos01, gasantiago2012}@gmail.com, sandro@decom.cefetmg.br

ABSTRACT
One of the most famous IOT applications, the vehicular ad hoc net-
works, VANETs, are emerging new possibilities for a more efficient
traffic system. This work intends to simulate a VANET using San
Andreas Multiplayer platform as a simulation environment, replac-
ing the usual traffic lights for automatic centrals, aiming to reduce
the time spent on a travel and cease with unnecessary stops. The
centrals were distributed throughout the streets intersections on the
virtual city of Blueberry. Using UDP sockets, we adapted the vehi-
cles to exchange messages with the centrals. Therefore, the central
manages the crossing of each vehicle on its respective intersection,
assuring efficiency and safety. The results demonstrate a gain with
this approach to avoid traffic jams and unnecessary stops in front
of traffic lights.

Keywords
Wireless communication, autonomous vehicle, internet of things,
vanet

1. INTRODUCTION
As the recent advances in the IOT keep increasing, it’s important

to think in better solutions for daily problems. The current manag-
ing system in streets intersections is based on traffic lights, which
allows the passage through a determined route, while blocking the
others that might interfere in the first one. However, this solution
can cause traffic jams and unnecessary stops if a route is blocked
without any need.

With the brand new technologies for autonomous vehicles, it’s
possible to use telecommunication as an improvement to the traffic.
As a result from the application of these technologies, the vehicu-
lar ad hoc networks, VANETs, consist in a set of routing protocols
among vehicles, which can be applied to increase the comtempo-
rary traffic efficiency [6].

There are several studies emerging on this area, such as Google
Self-Driving Car Project, which is already found on streets along
USA [5], and MIT’s revision on streets intersections using slot-
based systems, that challenges the traffic control using traffic lights
[8]. Besides, Dubai’s government has a goal that, until 2030, 30%
of their local fleet would be composed by smart vehicles. This

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

proposal substantiate the benefits a smart fleet provides, such as
reduction in number of accidents, less emission of pollutants and
the increasing in the traffic efficiency [1].

This work used San Andreas Multiplayer [7], a platform for edit-
ing features in the game Grand Theft Auto: San Andreas, to im-
plement a communication protocol between autonomous vehicles
(here are the agents) and centrals in streets intersections, aiming to
cease with unnecessary stops in front of traffic lights. The algo-
rithms developed for this work presented good results, as we could
reduce the total waiting time for a vehicle from its source point
to its destination. The demonstration video of this project can be
found at https://youtu.be/aRO8viGEzks.

2. OUR SYSTEM
San Andreas Multiplayer is a platform, developed by game fans,

as a modification for the game Grand Theft Auto: San Andreas. It
permits the creation of scripts to control elements of the game, such
as objects, characters, temporal events and so on [7]. The language
adopted is PAWN, a simple, robust and typeless language, with a
C-like syntax [2]. Besides, it’s possible to develop plug-ins in other
programming languages, such as C++ and Java, allowing a larger
number of dynamic applications to run with the modifications, and
to make use of the basic support to database management systems
such as SQLite [7].

2.1 The simulation environment
The platform features a virtual city, named Blueberry, where the

simulations took place. We created a structure, called node, com-
posed by an identifier, a spacial position, with coordinates x, y
and z, and four references, representing which nodes are reachable
from the current one. There are 1,277 nodes distributed throughout
Blueberry, used to create a routes table and the car courses along
the nodes. However, one of the difficulties faced in the project was
the assignment of each node’s references. Since it’s a manual pro-
cess, it turned hard the mapping of other cities in the game. We
used the platform’s native support to SQLite for storing the nodes
information [3].

2.2 Creating routes
Graphs are common models for problems involving routes. Dijk-

stra’s algorithm for shortest path calculates routes from a vertex to
every other vertex of a connected graph. If there are costs assigned
to each pair of vertexes, then the routes calculated by the algorithm
will have minimal costs [4]. We implemented a plug-in for the plat-
form which uses the stored nodes information in order to create a
directed graph, which serves as an input of Dijkstra’s algorithm for

1805

Figure 1: The representation of node 381 in the simulation en-
vironment, with its positions and references.

Input: s: node, G: set<node>
Output: L: list<node>
Data: c(node u, node v): function, d: list<node>, A: list<node>
begin

forall the u ∈ G do
d.update(u,∞), L.update(u,null), A.insert(u)

end
d.update(s, 0), A.make_heap()
while |A| ≥ 1 do

u← A.pop()
forall the reference v ∈ u do

if d.find(v) > d.find(u) + c(u, v) then
L.update(v, u), d.update(v, d.find(u) + c(u, v))
A.make_heap()

end
end

end
return L

end

Figure 2: Dijkstra’s algorithm for shortest path adapted to de-
terminate a best route along the nodes. We have, as input, the
node s for departure and a set G of all nodes in the environ-
ment. As output, we have a list L which stores the direct an-
cestor of a given node. The function c : G × G → R is the
Euclidean distance between two nodes, considering their posi-
tion in the space. d is a list which stores the distance to a node
starting from s. A is a heap with minimal priority based in d.

shortest path. The output provides a best route for this vehicle, al-
lowing us to simulate the autonomous vehicles behavior [3]. See
Figure 2 for the Dijkstra’s algorithm adapted to determinate a best
route along the nodes.

2.3 The virtual central
We created virtual centrals, distributed along all sorts of streets

intersections throughout Blueberry, that behave as an automatic
traffic management device, which control each vehicle’s speed in
order to prevent collisions. We developed a plug-in in C++, con-
taining a queue that stores the current vehicles accessing an inter-
section. A central has a signal reach of radius r1, and a critical
region, susceptive to collisions, of radius r2. Henceforth, R1 and
R2 will represent the regions with radius r1 and r2, respectively.
The plug-in is executed via a PAWN script, where an event is trig-
gered by a vehicle accessing R1, storing it into the queue. As it
reaches R2, the vehicle is popped out from the queue, then we
make a regular verification of collisions among all other vehicles
at the intersection. If a collision is detected, the speeds of these ve-
hicles are delayed, so the first one can cross towards its destination.
We implemented all centrals for each intersection in the city map.
The difficulty of collision detection increased for a more complex
shape of intersection [3].

Besides, we created a simpler algorithm to prevent collisions be-

yond the intersections. Since every vehicle has a traffic way and
a spacial position, then the same idea was used. If A and B are
two vehicles in the same lane of the street, and A is just behind
B, coursing through the same traffic way, then we have transparent
spherical areas RA and RB around A and B, respectively. If region
RA intersects RB , then A’s speed is reduced in order to guarantee
a safe breaking distance. This should be used if, and only if, A and
B are in the same traffic way and in the same direction [3].

The communication between vehicles and centrals used a mes-
sage exchange system via UDP sockets. All vehicles in the simula-
tion had their network layer address set to the local interface of the
machine running the simulation. The application port of each side
of the connection was set as the object identifier, guaranteeing an
unique port for each vehicle [3].

3. INITIAL RESULTS AND CONCLUSION
In a 15 minutes simulation with 45 vehicles, we calculated the

total waiting time, defined as the time a vehicle spent in the reach
of a central. We simulated the behavior of traffic lights using the
centrals to block the access of a route for a period of 8 seconds. We
ran the simulation using both approaches to compare their perfor-
mances. The graph in Figure 3 shows the total waiting time calcu-
lated from the same simulation using these approaches. Therefore,
the first one, using centrals, had better results.

Figure 3: Results comparison between the approach using the
automatic centrals (gray bars) and traffic lights (black bars).

We had several benefits in using San Andreas Multiplayer as a
simulation environment. For example, we didn’t need to imple-
ment any vehicles functions or traffic objects, besides the ones we
propose to create. Also, we had a three-dimensional environment,
which provides a richer amount of details. However, there are some
differences we need to indicate: i) the spatial dimensions of Blue-
berry, compared to a real-life scale, makes 45 vehicles be a massive
traffic in the city; ii) we assumed that all vehicles in the city are au-
tonomous. Therefore, we limited the scope of problems that might
interfere in the simulations.

Moreover, this opens a row of possibilities using this as a simu-
lation platform. For example, we could use priority lists instead of
queues, assuring that some vehicles should have prioritary access
to their destination streets. Also, we could introduce pedestrians in
the simulation, creating a set of more complex protocols that con-
sider accidents in the environment and the interruption of the street
traffic flow with a pedestrian crossing abruptly.

Acknowledgments: Our thanks to CEFET-MG for the support to
develop and present this research.

1806

REFERENCES
[1] B. Brown. Dubai sets a high goal for driveless cars. Digital

Trends, Apr. 2016.
[2] CompuPhase. PAWN: an embedded scripting language.

http://www.compuphase.com/pawn/pawn.htm,
2016.

[3] R. R. de Novaes Júnior, D. de Sousa Santos, G. M. F.
Santiago, and S. R. Dias. Autonomous vehicles networks with
GTA San Andreas Mutliplayer. In 13th International
Conference on Applied Computing, Mannheim, Germany, Oct.
2016. International Organization for Development of the
Information Society.

[4] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Mathematik, 1:269–271, June 1959.

[5] Google. Google self-driving car project. https:
//www.google.com/selfdrivingcar/where/,
2009.

[6] M. Sá and S. Gorender. Um protocolo de roteamento para
redes veiculares. In Anais do 4◦ Workshop de Sistemas
Distribuídos Autonômicos, Salvador/BA, Brazil, 2014.
Brazilian Symposium of Computing Network.

[7] SAMP. Sa-mp San Andreas Multiplayer mod for Grand Theft
Auto: San Andreas. http://www.sa-mp.com/, 2016.

[8] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro,
E. Fazzoli, D. Relbing, and C. Ratti. Revisiting streets
intersections using slot-based systems. Plos, 2016.

1807

