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1. INTRODUCTION
Wildlife crime continues to be a global crisis as more animal

species are hunted toward extinction [10, 8]. Species extinction
has dire consequences on ecosystems and the local and national
economies that depend on them (e.g., eco-tourism, ecosystem ser-
vices). To combat this trend, wildlife conservation organizations
send well-trained rangers to patrol in protected conservation areas
to deter and capture poachers and also to confiscate any tools used
for illegal activities that they find. At many sites, rangers collect
observation data on animals, poachers, and signs of illegal activ-
ity. Given the magnitude of wildlife poaching and the difficulty
of the patrol planning problem, patrol managers can benefit from
tools that analyze data and generate forecasts of poacher attacks - a
key focus of this work. In working with real-world wildlife crime
data, we illustrate the importance of research driven by data from
the field and real-world trials. This work potentially introduces
a paradigm shift in showing how adversary modeling ought to be
done for deployed security games [9, 2], particularly in domains
such as green security games [3, 5], where data is sparse compared
to settings such as urban crime [12]. Security games have received
significant attention at AAMAS [4, 6], and past work in security
games has often focused on behavioral models that are learned from
and tested in human subject experiments in the laboratory, which
provides a large amount of attacker choice data over a small num-
ber of targets [11]. The Quantal Response model is one example
that models boundedly rational attackers’ choices as a probability
distribution via a Logit function [11]. However, the wildlife crime
domain introduces a set of real-world challenges (e.g., rangers col-
lect limited, noisy data over a large number of targets with rich
target features) that require behavior modeling efforts to not only
focus more on real-world data and less on laboratory data, but also
not rely on plentiful attack data.

Outperforming previous laboratory-developed models [11],
CAPTURE [7] is a two-layered model, developed using real-world
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wildlife poaching data, that incorporates key insights and addresses
the challenges present in wildlife crime data. CAPTURE’s top
layer attempts to predict the “attackability” of different targets,
essentially providing predictions of poacher attacks. The bottom
observation layer predicts how likely an attack that has occurred
would be observed given the amount of patroller coverage (also
known as effort). CAPTURE models the attackability layer as a
hidden layer and uses the Expectation Maximization (EM) algo-
rithm to learn parameters for both layers simultaneously. Moreover,
CAPTURE also contains a Dynamic Bayesian Network, allowing
it to model attacker behavior as being temporally dependent on past
attacks. The CAPTURE model, the current state-of-the-art in the
wildlife crime domain, represents a level of complexity not previ-
ously seen in behavior modeling in the security game literature.

While the focus of CAPTURE is on the observation layer’s per-
formance (i.e., “Where will patrollers observe past poaching at-
tacks given their patrol effort?”), our focus is on forecasting where
future attacks will happen and thus we are interested in the at-
tackability layer’s predictions and performance (e.g., “Where will
poachers attack next?”). However, CAPTURE’s attackability pre-
dictions would sometimes predict too many targets to be attacked
with a high probability and would thus have poor performance, as
discussed in more detail later in the paper. Given that CAPTURE
embodied the latest in modeling adversary behavior in this domain,
our first attempt focused on three different enhancements to CAP-
TURE: replacement of the observation layer with a simpler layer
adapted from [1] (CAPTURE-LB), modeling attacker behavior as
being dependent on the defender’s historical coverage in the previ-
ous time step (CAPTURE-PCov), and finally, exponentially penal-
izing inaccessible areas (CAPTURE-DKHO). Unfortunately, all of
these attempts ended in failure.

While poor performance is already a significant challenge, there
are two additional, important shortcomings of CAPTURE and other
models in this same family. First, CAPTURE’s learning process
takes hours to complete on a high-performance computing cluster -
unacceptable for rangers in Uganda with limited computing power.
Second, CAPTURE’s learned model is difficult to interpret for do-
main experts since it makes predictions based on a linear combina-
tion of different decision factors; the values of all its parameters’
feature weights (i.e., 10 weights and a free parameter for the attack
layer) need to be simultaneously accounted for in a single interpre-
tation of poacher preferences. These limitations and CAPTURE’s
poor performance, the most recent in a long line of behavioral game
theory models, drove us to seek an alternative modeling approach.

This paper presents INTERCEPT (INTERpretable Classification
Ensemble to Protect Threatened species), a new adversary behav-
ior modeling application, and its three major contributions. (1)
Given the limitations of traditional approaches in adversary behav-
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Figure 1: Ashes and snare found by rangers directed by INTER-
CEPT. Photo credit: Uganda Wildlife Authority ranger.

ior modeling, INTERCEPT takes a fundamentally different mod-
eling approach, decision trees, and delivers a surprising result: al-
though decision trees are simpler and do not take temporal corre-
lations into account, they perform significantly better than CAP-
TURE (a complex model that considers temporal relationships), its
variants, and other popular machine learning models (e.g., Logis-
tic Regression, SVMs, and AdaBoost). Furthermore, decision trees
satisfy the fundamental requirement of interpretability; without an
interpretable model, relevant authorities would not test INTER-
CEPT in the field, thus completely defeating the spirit of innova-
tive applications research. However, decision trees do not take into
account the spatial correlations present in this dataset, and we in-
troduce a spatially aware decision tree algorithm, BoostIT, that sig-
nificantly improves recall with only modest losses in precision. To
further augment INTERCEPT’s performance, we construct an en-
semble of the best classifiers which boosts predictive performance
to a factor of 3.5 over the existing CAPTURE model. (2) These
surprising results raise a fundamental question about the future of
complex behavioral models (e.g., Quantal Response based security
game models [11, 7]) in real-world applications. To underline the
importance of this question, we conduct the most extensive em-
pirical evaluation to date of the QENP dataset with an analysis of
41 different models and a total of 193 model variants (e.g., differ-
ent cost matrices) and demonstrate INTERCEPT’s superior perfor-
mance to traditional modeling approaches. (3) As a first for adver-
sary behavior modeling applications applied to the wildlife crime
domain, we present the results of a month long real-world deploy-
ment of INTERCEPT: compared to historical observation rates of
illegal activity, rangers that used INTERCEPT observed 10 times
the number of findings than the average. In addition to many signs
of trespassing, rangers found a poached elephant, a roll of elephant
snares, and a cache of 10 antelope snares before they were deployed
(pictures in Figure 1). Each confiscated snare represents an ani-
mal’s life saved; while the rangers’ finding of a poached elephant
carcass is a grim reminder that poachers are active, these successful
snare confiscations demonstrate the importance of real-world data
in developing and evaluating adversary behavior models.

2. ONGOING DEPLOYMENTS
Although the initial field test of the proposed predictions yielded

promising results, it is necessary to conduct a more systematic real-
world evaluation of our models. Starting in November 2016, we
have been conducting a larger-scale deployment in order to test the
predictive performance of our decision tree ensemble.

For every patrol post (the starting and ending point for ranger
patrols) in the park, we generated a set of 3x3 sq. km patrol
areas and compute the attack prediction rate for that area (i.e.,

#positivePredictions
areaSize

). Then, each of the patrol areas were divided
into three experiment groups via k-means clustering on the attack
prediction rate; cluster 1 will correspond to the areas with the high-
est attack prediction rates, cluster 2 for medium attack prediction
rate areas, and cluster 3 for the lowest attack prediction rates. Based
on these groups, we will then test the following hypotheses: (1)
“More attacks are observed in areas with higher concentrations of
attack predictions.” and (2) “Less attacks are observed in areas with
small concentrations of attack predictions.” In addition to testing
these hypotheses and analyzing our model’s deployed performance
(e.g., hit rate comparison), we will evaluate existing models’ pre-
dictive performance on the new dataset: does our deployed model
still outperform all other models?
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