Bridging the Gap Between Simulation and Reality
(Doctoral Consortium)

Josiah P. Hanna
Department of Computer Science
The University of Texas at Austin
Austin, Texas, U.S.A.
{jphanna}@cs.utexas.edu

ABSTRACT
Transferring robotic control policies — learned in simulation — to physical robots is a promising alternative to learning directly on the physical system. Unfortunately, policies learned in simulation often fail in the real world due to the inevitable discrepancies between the real world and simulation. This thesis aims to bridge the gap between simulation and reality by developing methods for grounding simulation to reality and developing methods for assessing how well a policy learned in simulation will perform before it is executed in the real world. We discuss completed work towards a simulation-transfer method and methods of safe policy evaluation. We then present directions for future work in these areas.

Keywords
Reinforcement learning; off-policy evaluation; simulation-transfer

1. INTRODUCTION
A key limitation for widescale deployment of robots is the necessity of expert-designed control software for any situation the robot could find itself in. This approach has limited robotics to controlled, structured environments such as factory assembly lines. If robots are going to be able to leave the factory floor and enter unstructured environments such as homes or workplaces then they must have the capability to autonomously acquire new skills.

Reinforcement learning (RL) provides a promising alternative to hand-coded skills. Unfortunately, the amount of experience required by state-of-the-art RL algorithms is orders of magnitude higher than what is obtainable on a physical robot. Aside from the time it would take, collecting the required training data may lead to substantial wear on the robot. Furthermore, as the robot explores different policies it may execute unsafe actions which could damage the robot. For these reasons, recent empirical successes of reinforcement learning have taken place within simulation. This thesis research proposes to side-step the challenges of robotic reinforcement learning by learning skills in simulation and then transferring the skills to the physical robot.

In theory, the transfer of skills learned in simulation makes state-of-the-art RL immediately applicable to physical robots. Unfortunately, even small discrepancies between simulated physics and reality cause learning in simulation to find policies that fail in the real world. As an illustrative example, consider a robot learning to walk in a simulator where frictional forces are under-modeled. The robot learns it can move its leg joints very quickly to achieve a fast walk. When the same controls are applied in the real world, the walk is jerky and the robot falls over.

An additional limitation of learning in simulation is that policies learned in simulation lack guarantees about their performance in the real world. For any policy learned in simulation, the policy should only deployed if its expected performance is above a predefined threshold with high confidence. Current methods exist for this problem but their data requirements preclude their use in data-scarce settings such as robotics. Thus simulation-transfer methods have no practical method for determining if a proposed policy will work when deployed in the real world.

This thesis research aims to close the gap between simulation and reality through the transfer of simulated robot skills to physical robots. Specifically, this research answers the question, “How can reinforcement learning be applied to learning robot skills in simulation such that those skills can be deployed on a physical robot with high confidence that learning will improve performance?”

2. COMPLETED WORK
To address the inevitable discrepancies between simulation and reality, we have proposed the grounded action transformation (GAT) algorithm for grounded simulation learning. The proposed approach is to augment the simulator with a differentiable action transformation function, g, which transforms the robot’s simulated action into an action which — when taken in simulation — produces the same transition that would have occurred in the physical system. The simplest instantiation of GAT learns two functions: f which predicts the effects of the physical robot’s dynamics and \(f_{sim}^{-1} \), which predicts the action needed in simulation to transition from one specific state to another. The transformation function g is specified as \(g(s_t, a_t) := f_{sim}^{-1}(s_t, f(s_t, a_t)) \) where \(s_t \) is the state of the environment and \(a_t \) is the action the robot’s policy chooses at time-step \(t \). When the robot is in state \(s_t \) in simulation and takes action \(a_t \), the augmented simulator replaces \(a_t \) with \(g(s_t, a_t) \) and the simulator returns \(s_{t+1} \) which is the next state that would have occurred on the physical robot. The advantage of GAT is that learning \(f \) and \(f_{sim}^{-1} \) is a supervised learning problem which can be solved with a variety of techniques such as artificial neural networks trained with backpropagation. Figure 1 illustrates the augmented simulator induced by GAT. Initial results with GAT have shown that grounding the simulator leads to better learning for physical robots — in one instance increasing the walking speed of a bipedal humanoid robot by over 40% [3].

We also present two methods for providing safety guarantees for policies proposed in simulation. This problem falls into the research area known as high confidence off-policy evaluation (HCOPE).
we propose bootstrapping with the model-based off-policy estimator with the modified simulator. One way to account for the temporal dependencies of actions is to use reinforcement learning to train the action transformation module to choose actions that result in more realistic trajectories over the entire course of interaction. If the action transformation module is represented by a differentiable function approximator then this problem can be solved with policy gradient methods such as REINFORCE [7]. Learning the action transformation module in this way should increase the effectiveness of GAT and help extend its applicability to more tasks.

In [4], we introduced two methods for safe policy evaluation. While empirical evaluation showed the proposed methods decrease data requirements relative to existing methods, so far these gains have only been shown on simple reinforcement learning tasks. The goal of this research is a safety test for simulation-transfer methods which allows robotic skills — learned in simulation — to transfer to the real world. In addition, we propose a method for lower bounding the expected performance of skills learned in simulation. These methods will be empirically evaluated across several high-dimensional, continuous control tasks from the robot soccer domain. Taken together, these methods narrow the gap between simulation and reality for reinforcement learning, open up many new promising directions for research pertaining to off-policy evaluation and could dramatically improve the applicability and usefulness of robots in the real world.

3. DIRECTIONS FOR FUTURE WORK

In [3], we introduced the grounded action transformation (GAT) method for simulation-transfer. The current instantiation of GAT implements an action-quantization module with maximum likelihood models that predict state changes and the actions needed to produce these state changes in simulation. A limitation of this approach is that the models are not robust to mistakes made at previous time-steps — small errors in prediction can accumulate and lead to the models making worse predictions the longer the robot interacts with the modified simulator. One way to account for the temporal dependencies of actions is to use reinforcement learning to train the action transformation module to choose actions that result in more realistic trajectories over the entire course of interaction. If the action transformation module is represented by a differentiable function approximator then this problem can be solved with policy gradient methods such as REINFORCE [7]. Learning the action transformation module in this way should increase the effectiveness of GAT and help extend its applicability to more tasks.

In [4], we introduced two methods for safe policy evaluation. While empirical evaluation showed the proposed methods decrease data requirements relative to existing methods, so far these gains have only been shown on simple reinforcement learning tasks. The goal of this research is a safety test for simulation-transfer methods and thus the proposed methods need to be evaluated in this context. In robotics, off-policy challenges may arise from data scarcity, deterministic policies, or unknown behavior policies (e.g. experience collected via demonstration). Additionally, robots may exhibit complex, non-linear dynamics that are hard to model. All of these problem characteristics present challenges to existing high confidence off-policy evaluation methods. Understanding and finding solutions for high confidence off-policy evaluation in robot tasks may inspire innovation that can be applied to other domains as well.

Finally, a crucial part of this work is evaluation on challenging and realistic robotic domains. This research will introduces a set of motion tasks for the NAO robot which are applicable to the robot soccer domain: bipedal walking, kicking, and getting up from the ground. These skills are challenging to learn on the physical robot since they involve unstable, dynamic motions which risk damage to the robot if executed poorly. Learning in simulation allows the robot to explore the space of possible motions and learn which ones are unsafe without executing them on the physical robot. Furthermore, extensive use of the NAO results in substantial wear on the joints. Thus learning may be intractable for this platform without the assistance of simulation. Evaluating all proposed methods on these tasks is an important step towards establishing their applicability to a wide range of real world robotics problems.

4. CONCLUSION

In summary, this thesis research proposes a simulation-transfer method which allows robotic skills — learned in simulation — to transfer to the real world. In addition, we propose a method for lower bounding the expected performance of skills learned in simulation. These methods will be empirically evaluated across several high-dimensional, continuous control tasks from the robot soccer domain. Taken together, these methods narrow the gap between simulation and reality for reinforcement learning, open up many new promising directions for research pertaining to off-policy evaluation and could dramatically improve the applicability and usefulness of robots in the real world.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at the Artificial Intelligence Laboratory, The University of Texas at Austin. LARG research is supported in part by NSF (CNS-1330072, CNS-1305287, IIS-1637736, IIS-1651089), ONR (21C184-01), AFOSR (FA9550-14-1-0087), Raytheon, Toyota, AT&T, and Lockheed Martin. Josiah Hanna is supported by an NSF Graduate Research Fellowship.

REFERENCES