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ABSTRACT
The use of reinforcement learning (RL) in multiagent scenar-
ios is challenging. I consider the route choice problem, where
drivers must choose routes that minimise their travel times.
Here, selfish RL-agents must adapt to each others’ decisions.
In this work, I show how the agents can learn (with perfor-
mance guarantees) by minimising the regret associated with
their decisions, thus achieving the User Equilibrium (UE).
Considering the UE is inefficient from a global perspective,
I also focus on bridging the gap between the UE and the
system optimum. In contrast to previous approaches, this
work drops any full knowledge assumption.
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1. INTRODUCTION
Reinforcement learning (RL) in multiagent domains is a

challenging task. An RL-agent must learn by trial-and-error
how to behave within the environment in order to maximise
its utility. When multiple agents share a common environ-
ment, they must adapt their behaviour to those of others.
The problem becomes even harder when agents are selfish
and compete for a common resource.

I consider the route choice problem, where rational drivers
must choose the routes that minimise their travel times.
Learning is fundamental here because agents must adapt
their choices to account for changing traffic conditions.

An interesting class of multiagent RL techniques com-
prises the regret minimisation approaches. Roughly, the so-
called external regret measures how much worse an agent
performs on average as compared to his best fixed action
in hindsight. Thus, regret minimisation can be seen as an
inherent definition on how rational agents behave over time.

The use of regret in route choice and related problems has
been widely explored in the literature. Some progress has
been made in the online optimisation of routing games [2].
However, as opposed to these approaches, traffic is intrinsi-
cally distributed. Multiagent RL fits better here. Nonethe-
less, within RL, regret has been mainly employed as a per-
formance measure. Unlike previous approaches, I use regret
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to guide the learning process. Some works indeed employ
regret as reinforcement signal [4], but assuming that agents
have full knowledge of the environment. However, given
the selfish nature of traffic, investigating methods for min-
imising regret in the absence of global information is more
challenging. Hence, this research also provides methods for
estimating regret, dropping any full knowledge assumption.

Another important aspect of route choice refers to the
inefficiency of the UE. Ideally, the system optimum (SO)
would be preferred, which represents the system at its best
operation. In this sense, several works have tried to move the
equilibrium towards the SO. Promising results were obtained
with difference rewards [1], where the contribution of a single
agent to the global outcome is used as reinforcement signal.
However, it assumes agents have global knowledge.

2. THESIS PROPOSAL
My work is motivated by the following questions: (i) can

an agent estimate its regret and learn from it? (ii) is it pos-
sible to bound agents’ performance? (iii) is there a system-
efficient equilibrium? To answer these questions, my thesis
is divided into two fronts:

Learning from regret. Here, I study how regret can be
locally estimated by the agents and how such a value
can be used in the learning process. Furthermore, I
investigate theoretical performance guarantees. These
results are reported on my AAMAS 2017 paper [3].

System-efficient equilibria. The goal here is to bridge
the gap between the UE and the SO by incorporating
some sort of global performance on the agents’ regret.
My previous theoretical results shall be extended to
these settings. This second front is under development.

3. PROBLEM MODELLING
A road network can be represented by a directed graph,

where nodes represent intersections and links represent the
roads between intersections. A link’s cost is a function of
the flow of vehicles on it. In this work, every driver i ∈ D is
a Q-learning agent with an origin, a destination, and a set of
K routes Ai = {a1, . . . , aK} connecting them. The problem
is modelled as a stateless MDP.

4. LEARNING FROM REGRET
In the first topic of my thesis, I investigate how driver-

agents can learn using their regret as reinforcement signal.
However, note that an agent cannot compute its regret due
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to the lack of information regarding its routes’ rewards (i.e.,
it only observes the reward of the taken route). Moreover,
regret does not specify how much a particular action con-
tributes to an agent’s reward, thus being useless as rein-
forcement signal. To overcome these limitations, we define
the action regret and develop a method for the agents to
estimate it. This work was accepted at AAMAS 2017 [3].

Let r̃(ati) represent the newest reward experience of agent
i for taking action a on time t (either the current reward or
the last actually observed one). Agents keep this informa-
tion for each of their K actions. We can then formulate the
estimated action regret (as in Equation (1)), which accounts
for the average amount lost by agent i up to time T for taking
action a (latter term) as compared to the best action regard-
ing its experience (former term). Additionally, the estimated
external regret can be obtained by considering the observed
rewards in the latter term of Equation (1). The main advan-
tage of our formulation is that it can be computed locally by
the agents, eliminating the need for a central authority. Con-
sequently, regret can be used to guide the learning process.

R̃Ti,a = max
bti∈Ai

1

T

T∑
t=1

r̃(bti)−
1

T

T∑
t=1

r̃(ati) (1)

Using the above formulation, we can define the RL pro-
cess. At each episode t, each agent i ∈ D chooses an action
ȧti ∈ Ai using the ε-greedy exploration strategy. After taking
the chosen action, the agent receives a reward of r(ȧti), which
is used to estimate the regret of action ȧti using Equation (1).
Finally, the agent updates Q(ȧti) using the estimated action
regret for that action, as in Equation (2). After each episode,
the learning and exploration rates, α and ε, are multiplied
by decay rates λ ∈ (0, 1] and µ ∈ (0, 1], respectively.

Q(ȧti) = (1− α)Q(ȧti) + αR̃ti,ȧti (2)

Theoretical results. Due to the limited space, here I
concentrate on the big picture of our theoretical results [3].
Considering learning and exploration rates are decaying, we
show that the environment is stabilising (randomness is de-
creasing along time) and analyse the expected reward and
regret of the agents. On this basis, a bound can be defined
on the algorithm’s expected regret (Theorem 1). Building
upon such a bound, we prove that the algorithm is no-regret
and converges to an approximate UE (Theorem 2).

Theorem 1. The regret achieved by our approach up to

time T is bounded by O
((

K−1
TK

)(
µT+1−µ
µ−1

))
.

Theorem 2. The algorithm converges to a φ-UE, where
φ is the regret bound of the algorithm.

Experimental results. Our theoretical results were em-
pirically validated on expanded versions of the Braess graph
and compared against standard Q-learning (using reward
as reinforcement signal). The obtained regret was indeed
within the bound defined in Theorem 1. As compared to
standard Q-learning, our approach presented a regret 95%
lower, on average. Regarding average travel time, our results
were 8% closer to the UE than that of standard Q-learning.
Thus, the experiments confirm our theoretical results, show-
ing that our approach is no-regret and approaches the UE.

Next steps. As the next step, I would like to design a
novel algorithm that builds upon my theoretical analysis to
deliver tighter regret bounds. To this end, I am working on

a more efficient exploration mechanism to ensure a sufficient
number of samples for each action. I also consider extending
our results to the case where agents do not know their routes
a priori [2]. This problem cannot be modelled as a stateless
MDP. Finally, I also plan to consider mixed strategies.

5. SYSTEM-EFFICIENT EQUILIBRIA
Recall that drivers’ selfishness lead to the UE, which is

inefficient from a global perspective. The SO, on the other
hand, depends on altruistic behaviour, given it is only at-
tainable if some agents take bad routes in favour of global
benefit. In general, however, one cannot assume agents are
altruist and adhere to such SO-routes: if a better route is
available, any rational agent would prefer it instead.

The second front of my thesis aims at bridging the gap
between the UE and the SO. Precisely, the idea here is to
incorporate some sort of global performance metric into the
regret formulation. Consequently, an agent regrets whenever
a selfishly taken route burdens the overall performance.

In contrast to previous works, my key contribution lays on
developing a method for the agents to estimate such global
information. I am investigating how agents can communi-
cate to exchange local perceptions on the system’s perfor-
mance. In other words, whereas an agent does not know the
overall average travel time, it can compute a local average
based on its peers’ performance. As in the literature, the in-
teractions may take place among agents of the same origin
(e.g., neighbours) and/or destination (e.g., co-workers).

Challenges and preliminary results. In preliminary
tests, we computed an agent’s regret using a linear combina-
tion of the agent and global travel time (no local estimations
were tested up to this point). In the case of pure strategies,
we saw that only weak equilibria exist. Consequently, the
system may get stuck in a sub-optimal condition. For in-
stance, an agent cannot distinguish between two routes with
the same cost, even if one of them negatively affects other
agents. To overcome such limitation, mixed strategies could
be used so the agent would use each route half of the time.

Next steps. My next plan is to incorporate mixed strate-
gies onto my model and analyse its implications on the cur-
rent theoretical results. The performance guarantees repre-
sent a fundamental aspect of my research. Afterwards, I will
develop methods for locally estimating global performance.
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