Exploiting Robotic Swarm Characteristics for Adversarial Subversion in Coverage Tasks

Navyata Sanghvi
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA
nsanghvi@andrew.cmu.edu

Sasanka Nagavalli
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA
snagaval@andrew.cmu.edu

Katia Sycara
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA
kasia@cs.cmu.edu

ABSTRACT

Multirobot systems, such as swarms, with large number of members that are homogeneous and anonymous are robust to deletion and addition of members. However, these same properties that make the system robust, create vulnerabilities under certain circumstances. In this work, we study such a case, namely the insertion by adversarial agents, called moles, that subvert the performance of the system. The adversary monitors the swarm’s movements during surveillance operations for the presence of holes, i.e., areas that were left uncovered by the swarm. The adversary then adds moles that get positioned in the swarm, in such a way as to deceive the swarms regarding the existence of holes and thus preventing the swarm from discovering and repairing the holes. This problem has significant military applications. Our contributions are as follows: First, to the best of our knowledge, this is the first paper that studies this problem. Second, we provide a formalization of the problem. Third, we provide several algorithms, and characterize them formally and also experimentally.

Keywords

Swarms; Multi-Robot Systems; Swarm Vulnerabilities;

1. INTRODUCTION

In recent years, there has been significant interest in distributed multirobot systems whose members act based on information acquired through local sensing and/or communication with other robots in their spatial neighborhood. When these local interactions result in global collective behaviors (e.g., rendezvous, flocking, dispersion), the system is known as a robotic swarm [3, 11]. Robotic swarms are composed of a large number of agents that are homogeneous. Additionally, swarms are robust to addition or subtraction of agents, which gives them the beneficial properties of scalability and robustness to individual robot failure. However, these same characteristics also make the swarm vulnerable to manipulation by agents that could be inserted into the swarm by an adversary for the purpose of subverting the swarm’s performance.

Swarms have great potential for many applications including search and rescue, environmental monitoring, exploration, reconnaissance and surveillance. Particularly for military applications, they have the potential to be an excellent asset when employed by allied forces or a dangerous threat when used by enemies. Robotic swarms are envisioned to be composed of relatively inexpensive (even disposable) robots such as commercially available quadrotors that only cost tens or hundreds of dollars, which makes them easily accessible to many parties — even those with limited monetary resources. Based on current trends [16, 14], it is reasonable to expect that robotic swarms will continue to decrease in cost. Thus, it has been argued [17] in the military literature that when defending against a hostile swarm, it is not cost-effective to use traditional means to disrupt or destroy the swarm (e.g., ammunition expended to destroy swarm may be more expensive than swarm itself). In these situations, a better strategy would be to exploit swarm vulnerabilities to insert adversarial agents for the purpose of disrupting swarm performance, with the added advantage that the enemy still thinks its swarm works correctly. Studying such deception strategies is also necessary to guide development of counter-measures against disruption of swarm behavior by adversarial agents in friendly swarms.

In this paper, we study a scenario in which a hostile swarm is performing surveillance operations. Each robot in the swarm is assumed to have range-limited communication and sensing. A point in the environment is considered “covered” for surveillance if it is within the sensing disk of any swarm robot. As the swarm robots slowly move ensuring that they maintain communication connectivity, holes in coverage dynamically appear. The detection of “coverage” holes in sensor networks using both topological approaches [9] and metric approaches [20, 12] has been studied in the literature [1]. One approach based on localized Voronoi diagrams [22] requires only local information and communication among members in the sensor network, so it is particularly applicable to swarms and we assume the swarm under study uses this approach. By monitoring the swarm’s movements, our goal is to periodically identify the number and location where adversarial “mole” agents must be inserted into the hostile swarm to prevent its original “citizen” agents from detecting any holes in coverage.

The paper makes the following contributions. First, to the best of our knowledge, this is the first paper that studies this problem. Second, we provide a formalization of the problem. Third, we provide several algorithms, and characterize them formally and also experimentally. In Section 3, we formalize this problem. In Section 4, we present and characterize several algorithms to find the required number of moles and their insertion locations. Finally, in Section 5, we present simulation results and discuss the effectiveness of each algorithm.

2. RELATED WORK

The problem of coverage hole discovery in sensor networks has been widely studied in the literature [1, 21]. A variety of ap-
approaches to coverage hole discovery have been considered for both static and mobile networks including those based on computational geometry [22, 12] and topology [9, 8]. Computational geometry approaches typically involve computing the Voronoi diagram [2] and then (for mobile sensor networks) following a simple motion rule to heuristically minimize coverage holes [20] (e.g. moving towards the furthest Voronoi vertex, minimizing the maximum distance of any point to the nearest Voronoi vertex). Topological approaches make minimal geometric assumptions (e.g. the ability to distinguish ‘near’ and ‘far’ neighbors) and then use only information based on the connectivity of the sensing graphs to find and repair holes [7]. While the previous literature has studied hole discovery, in this paper, we study the novel problem of how to place agents to prevent hole discovery.

While there is significant literature on security in sensor networks [4, 18], that work has focused on security in communications based on (a) attacks on secrecy and authentication (e.g. unauthorized snooping on private communication channels), (b) attacks on network availability (e.g. overloading the network to cause distributed denial of service) or (c) attacks on service integrity (e.g. compromising a sensor in the network and injecting false data). That work is not relevant to our work since we do not try to compromise network security, availability or integrity through communications. Instead, we exploit physical vulnerabilities intrinsic to robotic swarms in order to insert the minimum number of mole agents to prevent the hostile swarm from successfully detecting coverage holes.

Previous work on Particle Swarm Optimization (PSO) [15] defines ‘deception’ as the average proportion of optimization iterations in which the selected and true neighborhood bests are different due to noise in particles’ personal best objective values, leading to sub-optimal particle propagation. The actions, beliefs and deception strategies of a deceiving robot against its mark have also been studied using game theory [19], but in the context of two individuals’ interaction. In contrast to such prior work on robotic deception, to the best of our knowledge, we are the first to form a deliberate, structured attack on a citizen swarm through adversarial agent insertion to subvert its performance. We demonstrate this attack in the context of a swarm performing surveillance operations.

3. PROBLEM FORMULATION

3.1 Preliminaries

We present in this sub-section preliminary concepts, definitions, and assumptions used to define our problem.

Citizen and Mole Agents: Assume the hostile swarm is composed of \(n\) citizen agents \(P = \{p_1, p_2, \ldots, p_n\}\), \(p_i \in \mathbb{R}^2\). We wish to insert a set of adversarial mole agents \(Q = \{q_1, q_2, \ldots\}\), \(q_i \in \mathbb{R}^2\) to disrupt the performance of the hostile swarm. Our goal is to identify the quantity and locations of moles necessary to disrupt swarm performance. We assume moles communicate identically to citizens. That is, messages are exchanged between moles in the same manner and format as between citizens.

Sensing, Communication and Agent Radius: We assume the sensing range \(r_s\) and communication range \(r_c\) are identical for all agents \((P \cup Q)\) (i.e. \(r_s = r_c = r\)). In addition, we assume each agent occupies a disk of radius \(r_{min}\). That is, \(\forall u_i, u_j \in (P \cup Q) : \|u_i - u_j\|_2 \geq 2r_{min}\). To make connectivity possible, \(r_{min} \in (0, \frac{1}{2})\). We assume the citizen swarm is connected. When adding moles, we must ensure that the resulting network of agents \((P \cup Q)\) is connected. If mole agents \(q_1\) are added incrementally one-by-one, the following condition is both necessary and sufficient to ensure global connectivity: \(\exists v \in (P \cup Q) : \|q_1 - v\|_2 \leq r\).

Voronoi Partition [2]: Consider the \(\mathbb{R}^2\) plane. Given the set of citizen agent locations \(P \subset \mathbb{R}^2\), a Voronoi partition of the plane divides it into convex polygons known as Voronoi cells (one per agent). A Voronoi cell corresponding to agent \(p \in P\) is the set of all points closer to \(p\) than to any other agent. Formally, if \(H(p, p_j)\) represents the half-plane defined by the perpendicular bisector of the line segment joining agents \(p_i, p_j \in P\) and containing \(p_i\), the Voronoi cell of \(p_i\) is given by the following.

\[

cell_{V_i}(p_i) = \bigcap_{p_j \in P \setminus \{p_i\}} H(p_i, p_j)
\]

Voronoi Vertices: We represent the Voronoi cell corresponding to agent \(p \in P\) by its set of vertices \(V_p(P)\) generated by the Voronoi partition of \(P\). Figure 1 shows an example of a Voronoi partition where, for agent \(p\), \(V_p(P) = \{v_1, v_2, v_3, v_4, v_5\}\).

Boundary Agents: When the swarm includes both citizens \(P\) and moles \(Q\), boundary agents \(B_{Q}(P) \subseteq P\) are the subset of citizens at the edge of a coverage hole. Since Voronoi cells are defined as the set of points closest to the corresponding agent, if any point is within an agent’s Voronoi cell but outside its sensing range, that point is not within any agent’s sensing range (i.e. there is a coverage hole and this agent is at the boundary of that coverage hole).

Voronoi Vertices: We represent the Voronoi cell corresponding to agent \(p \in P\) by its set of vertices \(V_p(P)\) generated by the Voronoi partition of \(P\). Figure 1 shows an example of a Voronoi partition where, for agent \(p\), \(V_p(P) = \{v_1, v_2, v_3, v_4, v_5\}\).

Boundary Agents: When the swarm includes both citizens \(P\) and moles \(Q\), boundary agents \(B_{Q}(P) \subseteq P\) are the subset of citizens at the edge of a coverage hole. Since Voronoi cells are defined as the set of points closest to the corresponding agent, if any point is within an agent’s Voronoi cell but outside its sensing range, that point is not within any agent’s sensing range (i.e. there is a coverage hole and this agent is at the boundary of that coverage hole).

Since Voronoi cells are convex, a boundary agent is any citizen with one or more Voronoi vertices outside of its sensing range \(r\).

\[
B_Q(P) = \{p \in P | \exists v \in V_p(P \cup Q) : \|v - p\|_2 > r\}
\]

Internal Agents: These are the subset of citizen agents \(I_Q(P) \subseteq P\) which are not boundary agents (i.e. \(I_Q(P) = P \setminus B_Q(P)\)).

3.2 Problem Statement

Given a multi-agent configuration of citizen agents \(P\) performing an exploration and surveillance mission, our problem is identifying near-optimally the number and insertion locations of mole agents \(Q\) to prevent the discovery of coverage holes in a given state of the citizen system. These insertion points are identified such that each citizen agent (after the insertion) believes that it is not on the edge of a hole (i.e. it is not a boundary agent) and thus, that the system as a whole has achieved full coverage.

Consider unweighted undirected graph \(G = (V, E)\) with vertex set \(V = P \cup Q\) (i.e. citizens and moles are vertices of graph) and edges \(E = \{(i, j) | v_i, v_j \in V : \|v_i - v_j\|_2 \leq r\}\) (i.e. an edge connects two agents if they are within sensing range of each other). Let the Laplacian matrix for this graph be given by \(L(G)\). It is known that the eigenvalues of this matrix are non-negative (i.e. \(\forall k : 0 \leq \lambda_k \leq \lambda_{k+1}\)). In addition, the second smallest eigenvalue is non-zero (i.e. \(\lambda_2 > 0\)) if and only if the graph is connected [13]. We must ensure this condition is true to ensure global connectivity of our network of agents. If mole agents are incrementally inserted, incorporating sensing and agent radius constraints from Section 3.1
Figure 2: In this figure, circles represent the sensing disk of each agent with radii equal to sensing ranges r_i. The left panel shows the citizen agent formation in \mathbb{R}^2 and their Voronoi cells. The area in pink represents holes in sensing. The right hand panel displays an example solution including citizens (in blue), moles (in red), and mole agent placements and sensing disks (also in \mathbb{R}^2). The placement of the moles ensures that no citizen is a boundary agent. This can be seen from the resulting Voronoi cells of citizens, shown via blue lines.

Figure 3: Example of a citizen agent p_1, its Voronoi cell $D_{v_i}v_2v_3v_4$, sensing disk $sdisk(p_1)$, protrusions $prot_k(p_1)$, angle of protrusion $\angle prot$ and pieced angles of protrusion $\angle prot_k$ for $k \in \{1, 2\}$.

gives us our objective:

$$\arg \min_{Q} |Q|$$

subject to

$$\forall u_i, u_j \in (P \cup Q), \quad \|u_i - u_j\|_2 \geq 2r_{\min}$$

$$\lambda(L(G)) = \{\lambda_1, \lambda_2, \ldots, \lambda_{|P \cup Q|}\}, \quad \lambda_2 > 0$$

In Figure 2, an example of a formation of citizen agents is shown in the left panel, along with an example solution (i.e. the near-optimal insertion locations of mole agents) in red in the right panel. Also shown are the resulting Voronoi cells of the citizen agents after mole insertion, which are all within the respective agents’ sensing ranges, thus making the system of citizen agents conclude that there are no holes in sensing.

4. ALGORITHMS

4.1 Preliminaries

We introduce here some preliminary terminology, definitions and theorems required to understand our algorithms.

4.1.1 Terminology

To illustrate the following concepts, consider the example boundary citizen agent in Figure 3. We assume that the plane contains citizens P and moles Q.

Definition 1. Protrusions $prot_k(p), k \in \{1, 2, \ldots, K\}$ from a boundary agent p’s sensing disk $sdisk(p)$ are disjoint regions in its Voronoi cell $cell_{\text{tot}}(p)$ that are outside of its sensing range r.

Definition 2. A boundary agent p’s protrusion angles $\angle prot_k$, $k \in \{1, 2, \ldots, K\}$ are angles subtended by each protrusion $prot_k(p)$ at its center.

Definition 3. A boundary agent p’s total protrusion angle $\angle prot_{\text{tot}}$ is the minimum total angle subtended by all protrusions $prot_k(p)$ at its center. Note that $\angle prot_{\text{tot}} \geq \sum_k \angle prot_k$.

Definition 4. A boundary agent p’s protrusion angle $\angle prot_k$ is said to be flipped by the insertion of mole agents Q_{ins} iff all points in $prot_k(p)$ are covered by the sensing disk of at least one $q \in Q_{\text{ins}}$ after insertion.

Definition 5. A boundary agent p’s total protrusion angle $\angle prot_{\text{tot}}$ is said to be flipped by the insertion of mole agents Q_{ins} iff all points in its protrusions are covered by the sensing disk of at least one $q \in Q_{\text{ins}}$ after insertion. Using Definition 1, this is equivalent to saying that p is no longer a boundary agent.

Definition 6. A boundary agent p is said to be flipped by the incremental insertion of mole agents Q_{ins} iff its protrusion angle $\angle prot_{\text{tot}}$ has been flipped by the insertion.

4.1.2 Mole Agents per Citizen Agent

Here we prove that the number of moles required to flip any citizen boundary agent is bounded.

Lemma 1. A protrusion angle $\angle prot_k$ can be flipped by the insertion of a single mole iff:

$$\angle prot_k \leq 2 \cos^{-1}\left(\frac{r_{\min}}{r_i}\right)$$

(3)
Figure 4: Mole agent insertion.

Figure 5: One-flippable citizen agent: Parameterization of possible insertion locations of a mole.

4.1.3 Input, Output and Constraints
Each of our algorithms takes as input the citizen agent locations \(P \), agent sensing range \(r \) and agent radius \(r_{min} \), and outputs mole agent locations \(Q \). They all insert moles incrementally one at a time. At any step, if the previously inserted moles is \(Q \), a potential new mole \(q \) must satisfy the following feasibility constraints. The first constraint prevents physical interference between agents and the second guarantees swarm connectivity.

\[
\frac{q - u}{r} \geq 2r_{min}
\]

\[
\frac{q - u}{r} \leq r
\]

Algorithm 1: Random Scatter Algorithm

1: procedure SCATTERINSERTION(\(P, r, r_{min} \))
2: \(Q \leftarrow \emptyset \)
3: while \(B_Q(P) \neq \emptyset \) do
4: \(q \sim U(x \in \mathbb{R}^2 \mid \exists y \in B_Q(P) : \|x - y\|_2 \leq r) \land (\forall z \in (P \cup Q) : \|x - z\|_2 \geq 2r_{min}) \}
5: \(Q \leftarrow Q \cup \{q\} \)
6: while \(\exists q \in B_Q(q) = \emptyset \) do
7: \(Q \leftarrow Q \setminus \{q\} \)
8: return \(Q \)

Algorithm 1 has two stages: (a) randomly insert moles one at a time at valid insertion locations until no citizens are boundary agents (lines 3–5) and (b) remove unnecessary moles one at a time until no more moles can be removed without making a citizen a boundary agent (lines 6–7). Since this algorithm randomly samples from all valid insertion locations during the first stage, the algorithm will find a solution (i.e. the algorithm is probabilistically complete).

4.3 Grid Search Algorithm
We develop a protrusion-based parameterization for the possible insertion locations of moles to flip citizens in Section 4.3.1 and present grid-search based algorithms in Sections 4.3.2 and 4.3.3.

4.3.1 Mole Agent Insertion

Theorem 2. When the swarm is connected and contains more than one citizen, only two moles are required to flip a protrusion angle of any boundary citizen agent.
Algorithm 2: Protrusions Grid Search Algorithm

1: procedure PROOTSGINSERTION(P, r, r_{min})
2: \hspace{1cm} $Q \leftarrow \emptyset$, $d \leftarrow \frac{2\pi}{L}$
3: \hspace{1cm} while $B_Q(P) \neq \emptyset$ do
4: \hspace{2cm} $G \leftarrow \emptyset$, $S_{all} \leftarrow \emptyset$
5: \hspace{2cm} for all $p \in B_Q(P)$ do
6: \hspace{3cm} $S_{all} \leftarrow S_{all} \cup PROTS(p, \Psi_p(P \cup Q), r)$
7: \hspace{3cm} $G \leftarrow G \cup $ GETGRID$(B_S(P), S_{all}, r, r_{min}, d)$
8: \hspace{2cm} $G_{rank} \leftarrow \text{RANKGRID}(G, S_{all}, r, r_{min})$
9: \hspace{1cm} $Q \leftarrow Q \cup \text{RAND}(\text{BEST}(G, G_{rank}))$
10: return Q

Algorithm 2 does the following: (a) collects protrusion angles of all boundary citizens (lines 5–6), (b) generates grid of potential mole insertion locations with discretization $d = \frac{2\pi}{L}$ in each parameter $\angle P, \angle S$ for each collected angle (line 7), (c) ranks locations, with rank proportional to total sum of protrusion and secondary protrusion angles flipped simultaneously (line 8), (d) adds mole at one of the locations with highest rank (line 9), (e) repeats steps (a)–(d) iteratively until there are no more boundary citizens. Since this algorithm considers all possible insertion locations to flip each protrusion angle, it is resolution complete (i.e. it is complete for the chosen level of discretization d).

4.3.3 Randomized Grid Search Insertion

Since Algorithm 2 evaluates all possible insertion locations for each protrusion angle, it takes significantly more time than Algorithm 1 to execute. Since the parameterization developed in Section 4.3.1 is applicable to any protrusion angle, including total protrusion angle $\angle prot_{tot}$, we now attempt to improve the execution time of Algorithm 2 by modifying it to use only the total protrusion angle and randomly choose, at each step, one boundary citizen to flip.

This modification results in Algorithm 3 which (a) identifies boundary citizens L_{1flp} for which $\angle prot_{tot}$ is one-flippable (line 4), (b) chooses a random citizen from L_{1flp}, generates its parameterized grid of potential mole insertion locations, and inserts a mole according to highest number of agent conversions until there are no more one-flippable agents (line 5), (c) identifies boundary citizens L_{2flp} for which $\angle prot_{tot}$ is two-flippable (line 6), (d) chooses a random citizen from L_{2flp}, generates its parameterized grid of potential mole insertion locations, and inserts a mole according to highest number of agent conversions (line 7), and (e) repeats (a)–(d) until there are no more boundary citizens. Here, “agent conversions” are from one-flippable to internal or two- to one-flippable.

However, this approach is not complete. There are some situa-
Algorithm 3 Randomized Grid Search Algorithm

1: procedure RANDGSINSERTION(P, r, r_{min})
2: Q ← \emptyset, d ← $\frac{2\pi}{180}$
3: while $B(Q) \neq \emptyset$ do
4: L_{flip} ← GETFLIP(P, Q, r, r_{min})
5: Q ← FLIP$L(P$, Q, r, r_{min}, d, L_{flip})
6: end
7: Q ← FLIP$L(P$, Q, r, r_{min})
8: return Q

Algorithm 4 Discrete Arc Cover Algorithm

1: procedure ARCCOVERINSERTION(P, r, r_{min})
2: Q ← \emptyset, S_{all} ← \emptyset, m ← \emptyset, d ← $\frac{\pi}{180}$
3: d ← r sin(d), t ← $1.5r$ sin(d)
4: for all $p \in B(Q)(P)$ do
5: S_{all} ← S_{all} PROTS(p, $V_p(P \cup Q)$, r)
6: A ← GETARCPTS(S_{all}, P, $B(Q)(P)$, d, r)
7: V_{ins} ← GETVALIDINS(P, r, r_{min})
8: while $B(Q)(P) \neq \emptyset$ do
9: M_{ins} ← $\{v \in V_{ins} : ||v - m||_2 \leq r\}$
10: v_{ins} ← $\arg\max\{a \in A : ||v - m||_2 \leq r\}$
11: Q ← $Q \cup \{\arg max\{a \in A : ||v - m||_2 \leq r\}$
12: A_c ← $\{a \in A : ||v_{ins} - a||_2 \leq r\}$
13: O_c ← $\{a \in A : ||v_{ins} - a||_2 \geq r - d \} \land$ $\{min_{a \in A}||a - a||_2 \leq t\}$
14: m ← $\arg\min\{a \in A : ||a - a||_2 \leq t\}$
15: A ← $A \setminus A_c \cup O_c$
16: V_{ins} ← $\{v \in V_{ins} : ||v - v_{ins}||_2 \geq 2r_{min}\}$
17: return Q

Algorithm 5 Greedy Arc Cover Algorithm

1: procedure GREEDYACINSERTION(P, r, r_{min})
2: perform ARCCOVERINSERTION(P, r, r_{min})
3: with no mandatory overlap point, i.e., m ← \emptyset in every incremental insertion

Figure 7: Situation where boundary citizen is incorrectly identified as one-flippable by Algorithm 3 because it considers total protrusion angle rather than individual protrusion angles.

4.4 Discrete Arc Cover Algorithm

4.4.1 Algorithm Description

Previous work in [10] proposes boundary node detection in a sensor network based on finding parts of the perimeter of nodes’ sensing disks which are not covered by sensing disks of other nodes. It is straightforward to see that, with uniform sensing ranges across nodes, such ‘exposed’ arcs form the boundary of coverage holes.

This algorithm places moles such that ‘exposed’ arcs along the perimeter of boundary agents are covered, so that boundary agents become internal agents. In Figure 3, arcs $\widehat{83}_{82}$ and $\widehat{83}_{84}$ (i.e. the arcs corresponding to protrusion angles \angle{prot}_1 for the agent p_1) are the exposed parts of the sensing disk $sdisk(p_1)$ which must be covered by sensing disks of moles to make p_1 an internal agent. Our algorithm discretizes the exposed arcs and the valid domain of insertion satisfying feasibility conditions (4) and (5) searches over this domain to maximize the number of such ‘arc points’ covered. However, rather than a simple greedy approach, we also designate a mandatory point of overlap between consecutively inserted mole agents’ sensing disks to both (a) minimize redundancy in covering of arc points and (b) ensure complete coverage of exposed arcs despite discretization.

Algorithm 4 does the following: (a) collects protrusion angles of all boundary agents and corresponding arc points A (lines 4-6), (b) computes set of valid mole insertion locations V_{ins} (line 7), (c) inserts mole at the best insertion location (lines 9-11), (d) computes overlap arc points O (lines 12-13), (e) computes next mandatory arc point (line 14), (f) updates A and V_{ins} and (lines 15-16) (g) repeats steps (c)-(t) until there are no more boundary citizens.

4.4.2 Greedy version

Algorithm 5 is the greedy version of Algorithm 4 where, unlike Algorithm 4, a mandatory overlap point is not considered in order to ensure minimum redundancy. Instead this performs ARCCOVERINSERTION() such that line 9 results in considering $M_{ins} = V_{ins}$ in every incremental insertion — a simple greedy approach.

4.4.3 Bounds on Sub-optimality

Algorithm 5 approaches our problem in a manner that provides guaranteed bounds on its sub-optimality. Given the set of uncovered discretized arc points A when no moles have been inserted, let V_{ins} be the discretized set of potential mole insertion locations. Then, for any $v \in V_{ins}$, the subset of arc points covered by a mole insertion at v would be $A_{cov}(v) = \{a \in A : ||a - v||_2 \leq r\}$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Deterministic</th>
<th>Completeness</th>
<th>Speed</th>
<th>Strategy</th>
<th>Domain</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATTER</td>
<td>No</td>
<td>Probabilistically Complete</td>
<td>Fast</td>
<td>Random Sampling</td>
<td>Continuous</td>
<td>Very low</td>
</tr>
<tr>
<td>GS</td>
<td>No</td>
<td>Resolution Complete</td>
<td>Moderate</td>
<td>Protrusion Grid Search</td>
<td>Discrete</td>
<td>Medium</td>
</tr>
<tr>
<td>GS</td>
<td>No</td>
<td>Not Complete*</td>
<td>Fast</td>
<td>Protrusion Grid Search*</td>
<td>Discrete*</td>
<td>Medium</td>
</tr>
<tr>
<td>ACI</td>
<td>Yes</td>
<td>Resolution Complete</td>
<td>Slow</td>
<td>Arc Cover Search</td>
<td>Discrete</td>
<td>High</td>
</tr>
<tr>
<td>ACI</td>
<td>Yes</td>
<td>Resolution Complete</td>
<td>Very slow</td>
<td>Arc Cover Search</td>
<td>Discrete</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 1: Algorithm Properties. Here, speed is in terms of wall-clock time, and performance is in terms of number of moles inserted (higher performance for lower number of moles). (*): RANDGS will switch strategies to random sampling over a continuous feasible domain in case of situations such as in Figure 7 to combat non-completeness.

Each potential mole insertion location has a corresponding subset of A which would be covered in case of an insertion at that location. Therefore, our problem is a set-covering problem, where given a set of arc points A and a finite number of subsets $A_{cov}(v)$ corresponding to each potential mole insertion location v, our goal is to select the minimum subset of mole insertion locations $Q \subseteq V_{ins}$ so that $A = \bigcup_{v \in Q} A_{cov}(v)$. It is a geometric version of the set-covering problem with discrete unit disks, which is NP-hard [6]. Let the optimal solution to this problem be Q_{opt}. A greedy heuristic, as applied in Algorithm 5, instead incrementally chooses the subset with the maximum number of yet-uncovered arc points until all arc points A are covered, resulting in a corresponding mole agent set $Q_{opt} \subseteq V_{ins}$. Note that $A = \bigcup_{v \in Q_{opt}} A_{cov}(v) = \bigcup_{v \in Q_{opt}} A_{cov}(v)$. A well-known result for the greedy heuristic in solving set-covering problems is presented in [5], which proves:

$$\frac{|Q_{opt}|}{|Q_{opt}|} \leq \ln\left(\max_{v \in V_{ins}} |A_{cov}(v)|\right)$$

Therefore, Algorithm 5 has a bound on the sub-optimality of the number of moles inserted in terms of the maximum size subset of arc points which may be covered by a mole insertion.

While we do not prove bounds on the sub-optimality of Algorithm 4, we note that the greedy heuristic used by Algorithm 5 does not exploit the inherently contiguous structure of arc points on the edge of sensing holes, which Algorithm 4 does, by designating a mandatory overlap point in sensing to space consecutively inserted moles such that redundancy is reduced. Thus, we expect Algorithm 4 to perform much better than Algorithm 5, and indeed, from results presented in the next section, it does.

5. RESULTS AND DISCUSSION

We ran extensive experiments in simulation on a computer with dual Intel Xeon CPUs (E5-2660v3, 10 cores @2.60GHz with Hyper-Threading) and 128GB RAM. We varied the number of citizens ($|P| \in \{10, 20, ..., 100\}$), the configurations of citizens (10 different configurations for each case of $|P|$) and the ratio of agent radius to sensing radius $r_{min} : r$ ($r = 30, r_{min} \in \{14, 10, 6, 3, 1\}$). In total, 500 different trials were conducted per algorithm. Table 1 presents a summary comparing the algorithm properties based on our analysis and empirical results from simulation.

Algorithm 1 was used as a baseline against which the performance of other algorithms was evaluated. Since some of the algorithms were non-deterministic, they were executed 10 times per trial and the result was averaged across the 10 runs.

In any trial, let moles inserted by Algorithm 1 be Q_{total} and for Algorithms 2, 3, 4, 5 be $Q_{algo} = \{Q_{PGS}, Q_{RGS}, Q_{ACI}, Q_{gs}\}$ respectively. We define the ‘algorithm advantage’ of Algorithms 2, 3, 4, 5 as the corresponding difference: $|Q_{algo}|-|Q_{total}|$.

For each of the trials: (i) The average algorithm advantage is plotted against the average number of boundary agents in Figure 8 and (ii) The log ratio of average run time of each algorithm to Algorithm 1 against average number of boundary agents is displayed in Figure 9.

5.1 Algorithm Advantage

From results in Figure 8 and as noted in Table 1, performance in terms of algorithm advantage over Algorithm 1: GREEDYAC < PROTGS < RANDGS < ARCCOVER and this trend holds for all values of $r_{min} : r$ considered. Interestingly, Algorithm 2 and 3 both seem to perform better than greedy Algorithm 5, for which we have proven bounded suboptimality. This is due to the preference for simultaneously flipping as many protrusion angles as possible with a single insertion and a degree of implicit redundancy prevention built into the algorithms. Although Algorithm 2 is more informed at each iteration than 3 since it considers all citizen agents and a total sum of protrusion angles flipped (whereas Algorithm 3 simply picks a random citizen agent’s $\angle prot_{ins}$ and considers total number of agents flipped), the two have nearly the same performance. Algorithm 4 is by far the best performer in every case with an average algorithm advantage of ≈ 21 mole agents for $|B_G(P)| \approx 54$, when $r_{min} = 1$. Its dominance is expected, as both Algorithms 2 and 3 have limited implicit handling of redundancy in arc coverage. Observe the general decrease in advantage across all algorithms in going from $r_{min} = 14$ to 10, and the gradual increase from $r_{min} = 6$ to 1, indicating an advantage ‘valley’ between the $r_{min} : r$ ratios of 1:3 and 1:5.

5.2 Run-time Ratio

From results in Figure 9 and as noted in Table 1, performance in terms of run time ratio against Algorithm 1: GREEDYAC < ARCCOVER < PROTGS < RANDGS. Algorithm 1 runs in 0.05-1.5 seconds for $r = 30, r_{min} \in \{14, 10\}$ and in 0.1-2.3 seconds for $r = 30, r_{min} \in \{6, 3, 1\}$ with increasing $|B_G(P)|$. Interestingly, Algorithm 3 is fastest after Algorithm 1 due to randomization, with the run-time log ratio falling almost to 0 as r_{min} decreases. Algorithm 2 comes in next, with nearly constant ratios across r_{min} values. In fact, with large $r_{min} : r$ ratio and low $|B_G(P)|$, Algorithm 2 and Algorithm 3 perform similarly. Algorithm 4 is an order of magnitude slower. However, even for the most computationally expensive case of $r_{min} = 1, |B_G(P)| \approx 54$, its run time was under 2 minutes. Greedy Algorithm 5 is slowest, as this considers every remaining valid point of insertion in each iteration. By contrast, Algorithm 4 only considers those insertion locations which are within r of its mandatory overlap point in each iteration.

5.3 Overall Observations

It is surprisingly apparent among Algorithms 2, 3, 4, 5 that bounded sub-optimal Algorithm 5 is the worst empirical performer under both measures. Algorithm 4 affords the best algorithm advantage in terms of number of moles required, whereas Algorithm 3 is an order of magnitude faster, running in only a few seconds in every
Figure 8: Mean advantage of Algorithms over SCATTER vs. mean number of boundary agents for \(r = 30 \), \(r_{\text{min}} \in \{14, 10, 6, 3, 1\} \).

Figure 9: Log mean run time ratio of Algorithms to SCATTER vs. mean number of boundary robots for \(r = 30 \), \(r_{\text{min}} \in \{14, 10, 6, 3, 1\} \).

case. Interestingly, among the protrusions-based grid search algorithms, despite the fact that Algorithm 3 has no completeness guarantees, it is generally faster than Algorithm 2 and inserts a similar number of moles, indicating that randomization plays a beneficial role in improving speed without negatively affecting performance (in terms of algorithm advantage). In fact, it is only similar to Algorithm 2 in run time at large \(r_{\text{min}} : r \) ratios and low \(|B_0(P)| \), where randomization does not provide as much advantage.

We now discuss different scenarios of mole insertion. In our formulation, all algorithms operate on static snapshots of the citizen agent swarm. However, as mentioned in Sections 5.2 and 5.3 and visible by comparison in the plots, Algorithms 1, 2, and 3 have a run-time within hundreds of milliseconds - this would enable us to recompute and update insertion locations in near-real-time for moving goals on the fly in dynamic multi-agent systems. All algorithms are also applicable to static sensor networks, with Algorithm 4 being most applicable in such cases and in cases of high cost per mole, since performance would then be more important than run-time. Furthermore, for citizen swarms operating in a 2D plane in a 3D world, the third dimension may be used for mole insertion. For example, in an aerial swarm or a swarm operating on the ocean surface, moles may be inserted from a different elevation or submerged moles may rise to the surface.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel problem for robotic swarms. We identified a swarm vulnerability and studied how an adversary can take advantage of this vulnerability to find the best locations to insert mole agents so as to prevent the original swarm from discovering and repairing faulty performance (in our case the faulty performance consists of leaving holes in area coverage in a surveillance mission). To the best of our knowledge, this is the first paper that studies this problem. We formalized the problem and devised supporting theory and algorithmic solutions. Furthermore, we experimentally evaluated our algorithms, and presented and discussed their different efficiency, performance characteristics and tradeoffs.

In future work, we plan to (a) identify ways for the swarm to protect itself from such mole insertions, and (b) identify any additional swarm vulnerabilities.

7. ACKNOWLEDGMENTS

This research has been sponsored in part by AFOSR Grant FA9550-15-1-0442 and an NSERC PGS D scholarship.

REFERENCES

