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ABSTRACT
Recent advancements in reinforcement learning confirm that
reinforcement learning techniques can solve large scale prob-
lems leading to high quality autonomous decision making.
It is a matter of time until we will see large scale appli-
cations of reinforcement learning in various sectors, such
as healthcare and cyber-security, among others. However,
reinforcement learning can be time-consuming because the
learning algorithms have to determine the long term conse-
quences of their actions using delayed feedback or rewards.
Reward shaping is a method of incorporating domain knowl-
edge into reinforcement learning so that the algorithms are
guided faster towards more promising solutions. Under an
overarching theme of episodic reinforcement learning, this
paper shows a unifying analysis of potential-based reward
shaping which leads to new theoretical insights into reward
shaping in both model-free and model-based algorithms, as
well as in multi-agent reinforcement learning.

CCS Concepts
•Theory of computation → Reinforcement learning;
Sequential decision making; Multi-agent reinforce-
ment learning; •Computing methodologies → Rein-
forcement learning; Q-learning;

Keywords
Reward structures for learning; Multiagent learning; Reward
shaping; Reinforcement learning

1. INTRODUCTION
Recent research has shown that reinforcement learning

[12] combined with deep learning [15] can solve highly com-
plex problems, such as Atari games [20]. The ability of deep
learning to learn hierarchies of features from data allows re-
inforcement learning to operate on raw sensory input, e.g.
image pixels in Atari games. So far, the methods that have
turned out to be the most successful are those that learn
a direct mapping from states and actions to their values—
an approach that is called model-free learning. In large-
scale applications, alternative approaches, known as model-
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based learning, were generally not as successful as model-
free methods, even though they have convenient theoreti-
cal guarantees [13, 27], and they learn an explicit model
of the environment [23]. Certainly, important exceptions
where model-based reinforcement learning worked well can
be identified, e.g., Abbeel et al. [1]. While learning, rein-
forcement learning algorithms try to address the temporal
credit assignment problem because they have to determine
the long-term consequences of actions. This means that, by
its nature, reinforcement learning requires a large amount of
data samples. Even if model-free algorithms can use tech-
niques, such as experience reply [16], that reuse samples,
deep learning itself requires large numbers of training pat-
terns to be presented to a deep neural network. Thus, speed-
ing up the reinforcement learning component through a more
efficient treatment of the temporal-credit assignment prob-
lem can help deep learning because state and action pairs
will be mapped to more accurate long-term returns early on.
Clearly, principled solutions that could speed up the state-
of-the-art reinforcement learning algorithms are important.
A convenient approach is to alter the reward of the orig-
inal process so that the algorithm can faster detect long-
term consequences of actions. This approach mitigates the
negative impact of the temporal credit assignment problem,
and it reduces the number of patterns (samples) required by
deep learning. An important requirement is that the pol-
icy learned with reward shaping should be equivalent to the
original policy that would be learned with original rewards.
In this paper, we investigate the properties of reward shap-
ing in episodic reinforcement learning tasks (e.g. games) to
unify the existing theoretical findings about reward shap-
ing, and in this way we make it clear when it is safe to apply
reward shaping.

2. BACKGROUND
The underlying model frequently used in reinforcement

learning is a Markov decision process (MDP). An MDP is
defined as a tuple (S,A, T,R, γ), where s ∈ S is the state
space, a ∈ A is the action space, T : S × A → S is the
transition function, R : S×A×S → R is the reward function
(which is assumed here to be bounded above by Rmax), and
0 ≤ γ ≤ 1 is the discount factor [25]. If γ = 1, we assume
that the process is executed for a limited number of steps,
or that there exists a zero-reward absorbing goal state that
can be reached from any state and all other states yield
negative rewards. We define Vmax to be the largest possible
expected return. Solving an MDP means to find a policy
that maximises the expected return for every state or for a
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particular set of initial states. Thanks to the assumptions
stated above, the expected return can be upper bounded
as follows: Vmax = Rmax/(1 − γ) if γ < 1 and Vmax =
Rmax if γ = 1. We define the Q-function, Q∗(s, a), to be
the expected return when action a is executed in s and the
optimal policy is followed after that.

There exist various techniques for solving MDPs and com-
puting a policy when all the elements of an MDP are avail-
able [25]. In reinforcement learning (RL), an algorithm in-
teracts with the MDP, receiving experience tuples, (s, a, s′, r),
which represent single transitions in the environment, where
action a taken in state s leads to state s′ and reward r is
received. Model-free and model-based algorithms are the
two main approaches to RL. Q-learning is a classic exam-
ple of the model-free approach. It maintains an estimate Q̂
of the Q-function, and it updates the estimate after every
experience tuple (s, a, s′, r), using the following equation:

Q̂(s, a) = (1− α)Q̂(s, a) + α
(
r + γmax

a′
Q̂(s′, a′)

)
. (1)

When the learning rate, α, is appropriately reduced, the
algorithm will converge to optimal Q-values from any initial
values [12].

R-max is a model-based algorithm that has convenient
theoretical guarantees [5]. It learns an explicit MDP model.

In particular, it learns the transition, T̂ , and reward models,
R̂. Then, having a current model, it applies Bellman’s equa-
tion (Eq. 2) to solve the current model, this way to determine
the current policy for further exploration and learning.

Q̂(s, a) = R̂(s, a) + γ
∑
s′

T̂ (s, a, s′) max
a′

Q̂(s′, a′) (2)

R-max learns T̂ and R̂ from sample tuples. Any state-action
pair that has not been sampled sufficiently often is called
‘unknown’, and it is assumed to lead to an imaginary, high
value (Vmax) state—i.e., the algorithm makes an optimistic
assumption. Note that Eq. 2 is applied whenever a new state
becomes known. For ‘known’ states, the estimated dynamics
are used instead of the optimistic ones. Due to its optimism,
R-max belongs to the class of PAC-MDP algorithms [27]
that have convenient theoretical guarantees.

Episodic implementations of Markov decision processes
define either a terminal state, sN , or a terminal time, N ,
when each episode ends. Both MDP planning techniques
(that are, for example, used in the planning step in R-max)
and reinforcement learning algorithms (such as Q-learning)
have to set the value V (sN ) of such terminal states to zero
since actions are not executed in sN , and there are no re-
wards in those states.

The idea of reward shaping is to introduce additional re-
wards into the learning process under the constraint that
the final policy should be equivalent to the original one.
Ng et al. [22] showed that potential-based reward shaping
of the form F (s, a, s′) = γΦ(s′) − Φ(s) satisfies this re-
quirement. Note that adding reward shaping means that
in Eq. 1 and 2, r and R(s, a) are replaced by r + F (s, a, s′)
and R(s, a) + F (s, a, s′), correspondingly.

After Ng et al. [22] considered policy invariance, the re-
searchers looked for reward shaping that would preserve op-
timistic exploration. Asmuth et al. [2] argued that optimistic
exploration, which is required by PAC-MDP algorithms such
as R-max, is preserved when the potential function is admis-
sible, i.e. ∀sV ∗(s) ≤ Φ(s), where V ∗(s) = maxaQ

∗(s, a).

When reward shaping is applied to multi-agent reinforce-
ment learning, the analysis should extend to the set of Nash
equilibria, where the Nash equilibrium is a strategy where
no agent can do better by changing its behaviour, assuming
that all other agents stick to their current Nash equilibrium
strategy. It is essential that the shaping reward does not
introduce a new Nash equilibrium nor remove any of the
original Nash equilibria. This topic was investigated inde-
pendently by Devlin and Kudenko [7] and Lu et al. [17].
Both groups showed sufficiency of potential-based reward
shaping, and Lu et al. [17] also proved the necessity under
relaxed conditions that every agent, i, can have its own,
private potential function, Φi.

3. FINITE HORIZON PROBLEMS
MDP policies can be computed for both infinite and fi-

nite horizon tasks. We know from Sec. 2 that γ = 1 may
explicitly require a finite horizon with a terminal time, N ,
when, for example, there is no zero-reward absorbing goal
state, such that ∀aR(goal, a, goal) = 1 and ∀aP (goal, a) = 0.
When an absorbing goal state exists, such a state can be vis-
ited infinitely many times, and infinite horizon planning is
also well-defined. However, it is a common practice in re-
inforcement learning to terminate every sampled trajectory
(where a trajectory is a sequence of consecutive experience
tuples) when the goal state is entered for the first time.
When the process stops upon entering an absorbing goal
state or a non-absorbing goal state, which is the case in the
classical mountain car problem [21], such a goal state can be
named a terminal state. Overall, trajectories simulated in
finite horizon problems stop either after a predefined num-
ber of steps (terminal time) or after encountering a terminal
state, and there is always a state in which the process will
terminate when a policy of appropriate quality is executed.

In this paper, we show how the idea of a terminal state
in finite horizon planning explains the behaviour of reward
shaping in several types of reinforcement learning algorithms.
Focusing on an episodic, finite horizon setting, our approach
to terminal states generalises the consideration of goal states
in Ng et al. [22], where the goal states were predefined termi-
nal states. Furthermore, as long as Ng et al. [22] indicated
that with γ = 1 the shaping rewards have to be zero in all
goal states, the issue of the potential function of the goal
states was not considered. Our analysis will show that the
potential function of the goal states is imperative because it
is used when shaping rewards are computed for the prede-
cessors of the goal states. Note that, assuming that actions
could be executed in terminal states, the shaping rewards
in those states could be zero even if their potential was not
zero. Therefore, the Ng.’s requirement of zero reward can
be satisfied with non-zero potential functions that can still
be problematic, as we show in our paper.

Finite horizon problems represent an important class of
MDP models that can be solved using either explicit plan-
ning techniques or learning algorithms, such as reinforce-
ment learning. Furthermore, finite horizon planning can ap-
pear in problems that assume infinite horizon. For exam-
ple, implementations of UCT [14] have to terminate their
trajectories at some depth of their search trees. Assum-
ing appropriate initialisation, traditional value iteration for
MDPs increases its planning horizon by one with every iter-
ation [25]. This phenomenon is clear in large-scale planning
methods, such as those that use factored representations [11,
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Figure 1: Part of an MDP with two terminal states
where the direct application of potential-based re-
ward shaping leads to a different policy than learn-
ing without reward shaping.

4], in which the number of dependencies in the policy usu-
ally grows with the planning horizon, and in some cases
only short planning horizons are feasible. In such cases, a
finite horizon policy approximates an infinite horizon pol-
icy. Additionally, when reinforcement learning is concerned,
infinite horizon problems in which the initial state is not
revisited—which can happen when an MDP is not ergodic
[25]—additionally require episodic learning because the al-
gorithm has to execute many trajectories starting in the ini-
tial states. As we will see below, in PAC-MDP model-based
reinforcement learning algorithms, such as R-max, all the
‘unknown’ states are terminal states even if the underlying
problem is infinite horizon. Clearly, the finite horizon prob-
lems are important on their own, and they also appear in
various methods for solving infinite horizon problems, where
the learning or planning trajectories have to be terminated
as well.

4. MAIN ANALYSIS
This section contains our main analysis, where the prob-

lem is first introduced on single-agent model-free learning.
Subsequently, the consequences of our observations are gen-
eralised to multi-agent learning as well as to model-based
reinforcement learning.

4.1 Model-free Learning
Potential-based reward shaping was shown to guarantee

policy invariance of reinforcement learning algorithms [22].
The intricacy of this paradigm has not been sufficiently in-
vestigated in the context of infinite vs. finite horizon do-
mains. Specifically, Grzes [9, pp. 109–120] has shown an
example where the policy invariance of the potential-based
reward shaping mechanism is violated. The problem occurs
when the process stops upon entering a terminal state. We
show this example in Fig. 1. Part of an MDP is shown
which contains two terminal states. Assuming that all the
states that are not shown in this figure yield the reward of
zero, the optimal policy should prefer state g2 to state g1

because the reward associated with g2 is r = 100 whereas
the reward associated with g1 is r = 0. When the potential
function with values shown in the figure is used, the shaped
reward for entering g1 is γ1000, whereas for entering g2 it is
100+γ10. As a result, the policy is altered when γ > 10/99,
i.e., an incorrect terminal state is preferred for those values
of γ. Certainly, if γ was fixed, one could always find values
of the potential function that would alter the final policy.

In order to address the issue shown in Fig. 1, Grzes [9]

indicated that the shaping reward, F (s, goal), for the final
transition (i.e. the transition to the goal state) should be
zero. Unfortunately, this idea does not solve the problem,
because the differences in the potential similar to those in
Fig. 1 could be defined for the predecessors of the terminal
states, and the issue would remain. Below, we show an ana-
lytical solution to this problem, i.e., we show what could be
done to guarantee policy invariance in finite horizon domains
with several terminal states.

We apply notation used in Asmuth et al. [2], where we con-
sider finite horizon trajectories. Therefore, s̄ = s0, a0, . . . , sN
is a finite sequence of states and actions. Note that there is
no action in state sN because the trajectory terminates as
soon as the process enters the terminal state, sN . As a re-
sult, the return for the sequence, s̄, is U(s̄) =

∑N−1
i=0 γiR(si).

When reward shaping based on a potential function, Φ, is
used, a different return, UΦ(s̄), is obtained. We are inter-
ested in the relationship between U(s̄) and UΦ(s̄). Analo-
gously to the infinite horizon case in Asmuth et al. [2] or Eck
et al. [8], we can express the finite horizon shaped return as
follows:

UΦ(s̄) =

N−1∑
i=0

γi
(
R(si) + F (si, si+1)

)
=

N−1∑
i=0

γi
(
R(si) + γΦ(si+1)− Φ(si)

)
=

N−1∑
i=0

γiR(si)︸ ︷︷ ︸
U(s̄)

+

N−1∑
i=0

γi+1Φ(si+1)−
N−1∑
i=0

γiΦ(si)

= U(s̄) +

N−1∑
i=1

γiΦ(si) + γNΦ(sN )

− Φ(s0)−
N−1∑
i=1

γiΦ(si)

= U(s̄) + γNΦ(sN )− Φ(s0)

(3)

Note that actions are executed in states s0 to sN−1 because
sN is a terminal state where the execution stops; thus, the
sum in the above equation has to be indexed from i = 0
to N − 1. In the last line of Eq. 3, one can see that there
are two quantities, Φ(s0) and γNΦ(sN ), that make UΦ(s̄)
different from UΦ(s). The first term, Φ(s0), cannot alter the
policy because it does not depend on any action in the se-
quence, s̄. However, the second term, γNΦ(sN ), depends on
actions (because the terminal states depend on actions ex-
ecuted earlier in the trajectory), and, as a result, this term
can modify the policy. This is the reason why it was possible
to use Fig. 1 to show that potential-based reward shaping
can modify the final policy in domains with multiple goals
or terminal states. Note that multiple terminal states arise
naturally in tasks where the trajectories are stopped after
a fixed number of steps, because whenever a trajectory is
terminated, the state at which the termination happens is a
terminal state in the sense of Eq. 3. Clearly, Eq. 3 applies to
both discounted and undiscounted MDPs, where reinforce-
ment learning or planning trajectories can be terminated in
an arbitrary state. In the undiscounted case, the discount
factor, γ = 1, simply disappears from Eq. 3.

At this point, we know that reward shaping in finite hori-
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zon problems can alter the policy (Fig. 1) and after the
analysis of Eq. 3 we know why that happens. A simple
solution to this problem is to require Φ(sN ) = 0 whenever
the reinforcement learning trajectory is terminated at state
SN . When potential-based reward shaping is applied in a
real scenario, a specific function is provided (or learned from
data [18, 10]) that defines the shaping potential Φ for every
state in the state space. In many cases, Φ will be non-zero
for all states. The main consequence of our analysis is the
fact that in finite horizon reinforcement learning, the poten-
tial function has to be set to zero for a state, sN , at which
a particular learning trajectory stops. Note that Φ(sN ) = 0
only when sN is a terminal state for the trajectory. If the
same state is a non-terminal state in a different trajectory,
its original potential can be used. We do not require that
the original potential has to be used because we know from
the existing literature that learning with non-stationary po-
tential functions is also possible under some rather mild con-
ditions [6]. In fact, the results of our analysis apply equally
to learning with non-stationary potential functions.

Before we move to other consequences of our findings, we
will provide further explanation as to why we require Φ(sN )
to be zero for states at which our reinforcement learning tra-
jectories terminate. The researchers who experimented with
reward shaping prior to the development of potential-based
reward shaping quickly realised that reward shaping can be
misleading, and that it can substantially change the optimal
policy [19, 26]. One of the reasons why the algorithms were
converging to alternative optima was the fact that whenever
a positive reward was given in one area of the state space,
it was profitable to revisit the same area many times when
departures were not penalised. In general, the concept of
potential-based reward shaping provides a balance between
positive and negative shaping rewards so that the original
policy is left unchanged. The need for this balance is ex-
actly what is achieved when Φ(sN ) is set to zero. Note that
if the predecessors of sN had monotonically growing values
of their potential, then prior to visiting sN the sum of shap-
ing rewards is high. If Φ(sN ) = 0 is used, then all the high
potentials accumulated before visiting sN are ‘neutralised’.
Conversely, if the predecessors of sN had monotonically de-
clining potential, then prior to visiting sN the sum of shap-
ing rewards is negative. This time, Φ(sN ) = 0 causes the
overall potential to be increased, and the negative values are
‘neutralised’.

It is worth explaining how our results relate to the treat-
ment of terminal states in Ng et al. [22]. In particular, Ng
et al. [22] required the shaping rewards, F (s, a, s′), to be
undefined for all goal states, i.e., for s ∈ G, which is a rea-
sonable assumption considering the fact that actions are not
executed in the goal states. However, our results show that
the potential function of the goal states is a more impor-
tant property because it can alter the optimal policy. Con-
sequently, the potential function of those states has to be
zero to guarantee policy invariance when multiple goals are
present.

The significance of our paper can be emphasised by the
fact that, in the recent literature, Eck et al. [8] indicated that
potential-based reward shaping does not change the optimal
policy in the infinite horizon case only. Consequently, the
consideration of reward shaping under a limited horizon in
Eck et al. [8, Thm 4] proves that policy invariance is in the
limit where the horizon has to approach infinity. This is
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Figure 2: Coordination Game.

a useful finding for the situation when Φ(sN ) 6= 0 which
is required when potential-based reward shaping is used in
planning; however, we showed that Φ(sN ) = 0 guarantees
policy invariance in finite horizon settings without imposing
any requirements on the horizon. Therefore, our arguments
are complementary to the work of Eck et al. [8].

After a rather comprehensive treatment of reward shaping
in single-agent finite horizon learning, Sec. 4.2 below will
generalise our discussion to the multi-agent case.

4.2 Multi-agent Learning
The ideas of policy invariance under reward transforma-

tion were transferred to multi-agent learning. Devlin and
Kudenko [7] showed that potential-based reward shaping is
sufficient to preserve the set of Nash equilibria in stochas-
tic games, when the same potential function is used for all
agents. Independently, Lu et al. [17] proved that potential-
based reward shaping is both sufficient and necessary to pre-
serve Nash equilibria of a stochastic general-sum game, un-
der more general conditions in which the agents do not need
to use the same potential function.

We will show that our discussion in Sec. 4.1 applies to
multi-agent learning as well, where the consequences of Eq. 3
can introduce a new Nash equilibrium. We consider Boute-
lier’s coordination game [3] that was used by Devlin and
Kudenko [7] to demonstrate learning with reward shaping.
The game is shown in Fig. 2. The game has six states,
x1, . . . , x6, and directed arcs represent deterministic transi-
tions between states. There are two agents in the game and
state transitions occur when both agents execute their ac-
tions. The arcs are labelled with joint actions, where the first
action is the action of the first agent. The asterisk means
that the agent chooses either action. We are interested in
the two joint policy Nash equilibria in this game that lead
to states x4 and x6. Any joint policy that visits state x5 is
not a Nash equilibrium because the first agent can change
its first action in the first step and go to x3 instead of x2.

If learning is implemented with infinite horizon and γ < 1,
then potential-based reward shaping does not alter the set
of Nash equilibria, as shown in Devlin and Kudenko [7].
Let us assume a finite horizon implementation, where the
game is executed for two time steps, i.e., the terminal time
is N = 2. This means that the process can terminate at
states x4, x5, or x6 before it will be restarted from state x1.
Therefore, the use of potential-based reward shaping with
Φ(x5) = M and Φ(xi) = 0 for all other states, xi, where M
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is a sufficiently large positive number, will introduce a new
Nash equilibrium where both agents will be forced to go to
state x5. Note x5 is not a Nash equilibrium in the original
game for reasons explained above.

Our discussion shows that, in finite horizon problems, the
set of Nash equilibria is not guaranteed to remain unaltered
when the potential function of the terminal states does not
satisfy Φ(sN ) = 0. Devlin and Kudenko [7] did not consider
this requirement. It was mentioned in Lu et al. [17] but it
was left without justification. With our derivation of Eq. 3
and the example above, it becomes clear that the potential
of the terminal states requires special treatment. In what
follows, we show that the same story leads to new insights
in PAC-MDP model-based reinforcement learning.

4.3 Model-based PAC-MDP Learning
Both Ng et al. [22] and Lu et al. [17] indicated that the

actual, optimal value function of a particular MDP serves as
the best potential for learning. Complementary research on
PAC-MDP model-based reinforcement learning with reward
shaping in Asmuth et al. [2] shows that the potential func-
tion has to be admissible with respect to the actual value
function. This means that model-free and model-based re-
inforcement learning have slightly different requirements. In
this section, we will show how our consideration of terminal
states explains the intricacies of reward shaping in PAC-
MDP algorithms. Our analysis will exploit an observation
that, in R-max, the ‘unknown’ states can be seen as ter-
minal states when the R-max planning step is concerned.
For this reason, our discussion is split into an analysis of
non-terminal states followed by an analysis of terminal and
unknown states.

4.3.1 Potential-based Reward Shaping
in Model-based Learning

We call this section ‘reward shaping in model-based learn-
ing’ because this part of our analyses is applicable to any
type of model-based reinforcement learning, i.e. both PAC-
MDP [5, 28] and other approaches [23]. Since we know from
Sec. 4.1 how to use potential-based reward shaping in do-
mains with terminal states (or with unknown states in R-
max), we infer that our analysis extends to the model-based
case, when Φ(s) = 0 for all states s that are terminal states
or unknown states in R-max. In particular, we know that
the policy with reward shaping is equivalent to the original
policy, which implies that the exploration of the R-max al-
gorithm is not altered when the shaping reward adheres to
our analysis in Sec. 4.1. This means that a straightforward
application of potential-based reward shaping from model-
free reinforcement learning would not alter the exploration
policy of R-max, and R-max would work with its original,
optimistic exploration strategy. As a result, even a very in-
formative potential function would not have any effect. Note
that when reward shaping is added, one normally wants to
improve exploration of the learning agent. In alternative
model-based algorithms that are not PAC-MDP, e.g. the
DynaQ algorithm [23], similar behaviour would be observed,
but specific properties would depend on the way the MDP
model is initialised and the planning step is implemented.

One can conclude that the potential function of known
states (known in the R-max sense) is irrelevant, and that
in order to implement effective reward shaping in R-max,
one has to consider unknown states which can be seen as

terminal states until they have become ‘known’. This is the
reason for the investigation in the next paragraph.

4.3.2 Potential-based Reward Shaping and Unknown
States

Our arguments above have shown that in order to imple-
ment effective reward shaping in R-max, one has to con-
sider the value of the potential function of unknown states.
Asmuth et al. [2] argued that in order for the R-max algo-
rithm to preserve admissibility of its exploration policy, the
potential function has to be admissible over the entire state
space. From our discussion above, we already know that the
potential of states that are not ‘unknown’ is in fact irrele-
vant because it will not change the exploration policy. We
will show next that the potential function does not have to
be admissible. In this analysis, we maintain our requirement
from Sec. 4.1 that Φ(sN ) should be zero for those states that
are terminal states in the original, underlying MDP, and are
known in the R-max sense.

We follow the notation used in Asmuth et al. [2]. In the
R-max algorithm, the trajectories, s̄, receive the true values
of the reward until an unknown state is reached, which can
be formally expressed as:

URmax(s̄) =

N−1∑
i=0

γiR(si) + γNvmax, (4)

where state sN is the first, unknown state in the sequence
s̄, and V (sN ) = Vmax. Note that URmax(s̄) = URmaxΦ (s̄)
when the trajectory, s̄, does not reach any unknown states.
We can now plug the shaping reward F (s, s′) into Eq. 4 to
obtain

URmaxΦ (s̄) =

N−1∑
i=0

γi
(
R(si) + F (si, si+1)

)
+ γNvmax. (5)

Then, the algebraic transformations similar to those used in
Eq. 3 allow us to transform Eq. 5 in the following way:

URmaxΦ (s̄) =

N−1∑
i=0

γi
(
R(si) + F (si, si+1)

)
+ γNvmax

=

N−1∑
i=0

γi
(
R(si) + γΦ(si+1)− Φ(si)

)
+ γNvmax

=

N−1∑
i=0

γiR(si) +

N−1∑
i=0

γi+1Φ(si+1)

−
N−1∑
i=0

γiΦ(si) + γNvmax

=

N−1∑
i=0

γiR(si) + γNvmax︸ ︷︷ ︸
URmax(s̄)

+

N−1∑
i=1

γiΦ(si)

+ γNΦ(sN )− Φ(s0)−
N−1∑
i=1

γiΦ(si)

= URmax(s̄) + γNΦ(sN )− Φ(s0).

(6)

Our final expression for URmaxΦ (s̄) does not include γNvmax,
which was mistakenly added in the corresponding expression
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in Asmuth et al. [2]. In fact, this was the reason why As-
muth et al. [2] had to require admissibility of the potential
function. Having our corrected version of URmaxΦ (s̄), we can
show that reward shaping in R-max preserves PAC-MDP
properties (i.e. maintains optimism) under relaxed condi-
tions, i.e., admissibility is not required.

Theorem 1. In PAC-MDP reinforcement learning, po-
tential-based reward shaping preserves optimism if (1) the
potential function of all unknown states is non-negative, i.e.,
∀s∈UnknownΦ(s) ≥ 0, where Unknown is the set of all states
that are unknown in the R-max sense, (2) ∀s∈G\UnknownΦ(s)=
0, where G is the set of terminal states, and (3) arbitrary
values of the potential function are used for all other states
s ∈ S \ {G ∪Unknown}.

Proof. We have to show that non-negative potential of
unknown states cannot reduce Q-values of an arbitrary op-
timistic policy in R-max. We call such an optimistic policy
a reference point policy. Normally, we would need to work
with Q- or V-values. However, since V-function is an ex-
pectation across trajectories, V (s0) = E[U(s̄)], we can work
with trajectories, s̄, and their returns U(s̄) as long as we can
show that optimism in U is preserved for every trajectory, s̄.
From the previous sections we know that the shaped policy
is not altered when ∀s∈G∪UnknownΦ(s) = 0, i.e. the poli-
cies with and without reward shaping are equivalent, which
guarantees optimistic exploration. Note that with such a
condition, URmaxΦ (s̄) = URmax(s̄)−Φ(s0), where URmaxΦ (s̄)
may not be admissible in relation to URmax(s̄), but this is
still an optimistic R-max policy, and we use it as our refer-
ence point policy. Therefore, to show that the optimism of
reward shaping with ∀s∈UnknownΦ(s) ≥ 0 will be preserved,
we can show that the shaped returns, URmaxΦ (s̄), will not
be smaller than the return of the reference point policy,
URmax(s̄) − Φ(s0), which, according to Eq. 6, is satisfied
whenever Φ(s) ≥ 0 for all unknown states, s.

Overall, contrary to Asmuth et al. [2], our result shows that
one does not have to use optimistic potential in R-max. Ar-
bitrary potential can be used for states that are known as
long as these are not terminal states in the underlying MDP.
The potential of terminal states should be zero, and the po-
tential of unknown states should be non-negative. Essen-
tially, a rank order of unknown states is sufficient to give
preference to more promising states. With these require-
ments, the potential function used by Asmuth et al. [2] is
still useful because the heuristic functions based on the dis-
tance to the goal can be used to define higher potential for
those unknown states that are closer to the goal states, and
thus are more promising to be explored. However, consider-
ing the fact that admissible heuristics are not always easy to
define—in fact, learning admissible heuristics is a research
problem by itself in the classical planning community [24]—
avoiding the need for admissible potentials is an important
relaxation of the requirements.

Next, we will show alternative proof techniques that ex-
pose sufficiency and necessity of potential-based reward shap-
ing.

5. POTENTIAL-BASED REWARD
SHAPING IN PLANNING

The existing analytical and theoretical research on reward
shaping focused on the reinforcement learning case where the

policy invariance allows to extend the relationships identified
for individual backups [22] or for sequences [2] to Q-values.
Since reinforcement learning is modelled by Markov decision
processes, we can offer further insights into reward shaping
if we consider the problem of solving MDPs using planning
methods. In particular, we will base our discussion on meth-
ods that formulate the MDP planning problem as a linear
program. For convenience, we choose a dual formulation. A
linear program for an infinite horizon MDP with γ < 1 can
be expressed as follows [25, p. 224]:

max
λ

∑
s∈S

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)R(s, a, s′)

s.t.∀s′
∑
a′

λ(s′, a′) = µ(s′) + γ
∑
s∈S

∑
a∈A

λ(s, a)T (s, a, s′)

∀s,a λ(s, a) ≥ 0,

(7)

where the optimisation variables λ(s, a) represent the ex-
pected number of times action a is executed in state s. For-
mally, λ(s, a) =

∑∞
i=0 γ

iP (st = s, at = a) and is known as
occupation measure. Vector µ is the initial probability dis-
tribution over all states. Optimisation variables that max-
imise the objective maximise the expected discounted sum
of rewards of the MDP. The optimal policy is guaranteed
to be deterministic in this case and it can be computed as:
π∗(s) = arg maxa λ(s, a).

In the first step of our analysis of reward shaping, we
are interested in adding potential-based reward shaping to
Eq. 7, which means that the following term is added to the
objective: ∑

s∈S

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)F (s, a, s′). (8)

With that, the optimisation model maximises both the orig-
inal and the shaping rewards. We are interested in the im-
pact of the shaping rewards on the final policy. For that, we
will reduce Eq. 8 using the following transformations:∑

s,a,s′

λ(s, a)T (s, a, s′)F (s, a, s′)

=
∑
s,a,s′

λ(s, a)T (s, a, s′)
[
γΦ(s′)− Φ(s)

]
=
∑
s′

Φ(s′)
[
γ
∑
s,a

λ(s, a)T (s, a, s′)︸ ︷︷ ︸
[
∑

a′ λ(s′,a′)]−µ(s′)

]
−
∑
s,a

λ(s, a)Φ(s)

=
∑
s′,a′

Φ(s′)λ(s′, a′)−
∑
s′

Φ(s′)µ(s′)−
∑
s,a

λ(s, a)Φ(s)

= −
∑
s′

Φ(s′)µ(s′)

(9)

The first step applied F (s, a, s′) = γΦ(s′) − Φ(s). In the
second step, we distributed the expression in the brackets,
and observed that ∀s,a

∑
s′ T (s, a, s′) = 1. In the next step,

we applied the constraint from Eq. 7. After that, both
sums that involve λ(s, a) cancel out because they lead to
the same values. Since the final expression does not contain
decision (optimisation) variables, and its value does not de-
pend in any way on decision variables (i.e. the expression
is constant regardless what the values of decision variables
are), the potential-based reward shaping does not change
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the policy. Only the objective value is changed. Eq. 9 shows
that the key property that allows removing decision vari-
ables from Eq. 9 is F (s, a, s′) = γΦ(s′) − Φ(s). Any al-
ternatives, e.g., F (s, a, s′) = Φ(s′) − Φ(s) or functions that
depend jointly on s and s′ mean that in order to preserve
policy invariance one would need to optimise the shaping
reward F for specific transition probabilities. For example,
satisfying ∀s, a

∑
s′ F (s, s′)T (s, a, s′) = constant would not

alter the policy. Conversely, given specific transition proba-
bilities, one can find F that will alter the policy, something
that was done in Ng et al. [22] and Lu et al. [17] to show the
necessity of potential-based reward shaping.

We will now perform the same analysis for the stochastic
shortest path problems (i.e. episodic, finite horizon MDPs
with terminal states) to gain further insights into reward
shaping in finite horizon settings. Following Trevizan et
al. [29], the dual linear program for stochastic shortest path
problems can be formulated as:

max
λ

∑
s∈S\G

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)R(s, a, s′) (10)

s.t. ∀s′∈S in(s′) =
∑
s∈S

∑
a∈A

λ(s, a)T (s, a, s′) (11)

∀s∈S\G out(s) =
∑
a

λ(s, a) (12)

∀s ∈ S \ (G ∪ {s0}) out(s)− in(s) = 0 (13)

out(s0)− in(s0) = 1 (14)∑
g∈G

in(g) = 1 (15)

∀s,a λ(s, a) ≥ 0. (16)

The objective of this model is similar to Eq. 7. The main
difference between this model and Eq. 7 is the fact that
actions are not executed in the goal states, and thus, tran-
sitions from the goal states could be removed from the sum-
mation. An implicit discount factor is one, and this could
also be removed from the model. Maximisation of the ob-
jective captures the reward that is obtained for reaching the
goal states from the initial state s0. When this formulation is
seen as a flow problem, constraints Eq. 11 and 12 define flow
entering and leaving the state s, respectively. Eq. 13 imple-
ments the flow conservation principle that for all states that
are not goal and initial states, the sum of all flows reaching
s is equal to the flow leaving s. Eq. 14 says that the pro-
cess starts in state, s0, and Eq. 15 requires the sum of flows
reaching all the reachable goal states to be one.

In order to incorporate reward shaping into the above dual
linear program for stochastic shortest path problems, the
following expression would need to be added to the objective.∑

s∈S\G

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)F (s, a, s′). (17)

Then a reduction analogous to the one presented in Eq. 9
would lead to the following decomposition, where γ = 1 is
omitted. ∑

s∈S\G

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)F (s, a, s′)

=
∑
s∈S\G

∑
a∈A

∑
s′∈S

λ(s, a)T (s, a, s′)
[
Φ(s′)− Φ(s)

]

=
∑
s′∈S

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

−
∑
s∈S\G

∑
a∈A

λ(s, a)Φ(s)

=
∑

s′∈S\G

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

+
∑
s′∈G

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

−
∑
s∈S\G

∑
a∈A

λ(s, a)Φ(s)

=
∑

s′∈S\G

Φ(s′)
[ ∑
a′∈A

λ(s′, a′)
]

+
∑
s′∈G

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

−
∑
s∈S\G

∑
a∈A

λ(s, a)Φ(s)

=
∑
s′∈G

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

(18)

The first two steps are the same as those performed in
Eq. 9. In the third step, the first sum is decomposed into
two sums according to s′ ∈ S \ G and s′ ∈ G. The first
component that is obtained from the decomposition con-
tains an expression in the brackets which can be simplified
using the flow conservation constraint in Eq. 13 applied to
state s′. This transformation constitutes step four. At this
point the first and the third elements of the sum cancel out,
and the final expression is left in the last line. This is the
part of the original sum where the next state, s′, is a goal
state. One can see that this expression includes decision
variables λ(s, a), and therefore the potential Φ(s′) of the
goal states s′ ∈ G could influence the policy. We know
from the original model, i.e. from Eq. 12 and 15, that∑
s′∈G

∑
s∈S\G

∑
a∈A λ(s, a)T (s, a, s′) = 1. Therefore, ac-

cording to our derivation in Eq. 18, the only non-zero po-
tential for goal states that would not alter the policy, is
∀g∈GΦ(g) = C which would meant that∑

s′∈G

Φ(s′)
[ ∑
s∈S\G

∑
a∈A

λ(s, a)T (s, a, s′)
]

= C,

where C is a constant. Allowing different potentials for goal
states (i.e. potentials that are not equal to an arbitrary
constant C), the optimisation engine can optimise variables
λ(s, a) to prefer goals with higher values of their potential
function. As a result, the policy would be altered. This
analysis shows that to guarantee policy invariance without
introducing additional constraints, the shaping rewards of
all goal states would need to be zero. This line of reasoning
complements our observations in Sec. 4.1.

6. CONCLUSION
This paper presents a number of insights into potential-

based reward shaping for learning and planning in Markov
decision processes. The overarching theme of our analy-
sis was the behaviour of reward shaping in episodic rein-
forcement learning. First, using proof techniques from As-
muth et al. [2], we showed that the potential function of
all terminal states in finite horizon settings has to be zero.
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This applies also to states at which Q-learning or UCT tra-
jectories are terminated. Note that a state that is non-
terminal in its MDP may be terminal for a particular tra-
jectory. In such a case, its potential has to be zero. Then,
we extended our results to the multi-agent case, where we
showed that potential-based reward shaping can alter the
set of equilibria in general-sum stochastic games, and a new
equilibrium can be introduced when terminal states have
non-zero potential. Afterwards, focusing on an observation
that unknown states in PAC-MDP model-based reinforce-
ment learning are related to terminal states in more general
reinforcement learning, we showed new insights into reward
shaping in PAC-MDP reinforcement learning. In particu-
lar, we showed that, contrary to the current belief, the po-
tential function does not have to be admissible. We also
proved that the requirement that is sufficient to guarantee
optimistic exploration is ∀s∈UnknownΦ(s) ≥ 0. In the final
section, we introduced a new proof technique for potential-
based reward shaping that is based on a dual linear pro-
gram for solving MDPs. The existing necessity proofs for
reward shaping in both single-agent [22] and multi-agent
[17] reinforcement learning showed particular MDP models
(especially particular transition probabilities) where the lack
of potential-based reward shaping alters the learned policy.
This means that the authors of those publications had to
handcraft those counter-examples. Using planning models
based on linear programming, we showed the exact analyti-
cal justification for potential-based reward shaping without
the need to handcraft the models. In fact, using our re-
sults, one could generate an infinite number of examples that
would show the necessity of potential-based reward shaping
when modifying the reward function.
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