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ABSTRACT
This paper explores Thompson sampling in the context of mech-
anism design for stochastic multi-armed bandit (MAB) problems.
The setting is that of an MAB problem where the reward distribu-
tion of each arm consists of a stochastic component as well as a
strategic component. Many existing MAB mechanisms use upper
confidence bound (UCB) based algorithms for learning the param-
eters of the reward distribution. The randomized nature of Thomp-
son sampling introduces certain unique, non-trivial challenges for
mechanism design, which we address in this paper through a rigor-
ous regret analysis. We first propose a MAB mechanism with de-
terministic payment rule, namely, TSM-D. We show that in TSM-
D, the variance of agent utilities asymptotically approaches zero.
However, the game theoretic properties satisfied by TSM-D (incen-
tive compatibility and individual rationality with high probability)
are rather weak. As our main contribution, we then propose the
mechanism TSM-R, with randomized payment rule, and prove that
TSM-R satisfies appropriate, adequate notions of incentive com-
patibility and individual rationality. For TSM-R, we also establish
a theoretical upper bound on the variance in utilities of the agents.
We further show, using simulations, that the variance in social wel-
fare incurred by TSM-D or TSM-R is much lower when compared
to that of existing UCB based mechanisms. We believe this paper
establishes Thompson sampling as an attractive approach to be used
in MAB mechanism design.
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1. INTRODUCTION
Consider the problem of a center or a planner that desires to ob-

tain high quality service from a pool of service providers so as to
minimize the total cost. The center’s effective reward for procuring
a service from a service provider consists of two components: (i)
quality and (ii) cost of the service. In typical practical situations,
the qualities of the service providers may be unknown to the cen-
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ter as well as to the service providers themselves. Moreover, the
costs are private information of the service providers. Typical ex-
amples include crowdsourcing, online procurement, etc. The cen-
ter can learn the qualities of the service providers by repeatedly
requesting services from them and observing their performances
over a given period of time.

If the agents (that is, the service providers) are honest in report-
ing their costs, the center can use Multi-Armed Bandit (MAB) al-
gorithms to achieve a fine balance between exploration (obtaining
repeated services from an agent so as to learn agent quality) and
exploitation (selecting a best agent so far). However, a naïve im-
plementation of MAB algorithms could fail when the agents are
strategic and may misreport their costs to maximize their utilities.
When the reward from each arm consists of a stochastic compo-
nent as well as a strategic component, a principled approach for
MAB mechanism design is much needed [7, 4].

A MAB mechanism learns the stochastic component of the re-
ward (qualities in our case) and at the same time, ensures honest
reporting of private information or strategic component (costs in
our case) from the agents. There are two types of MAB mecha-
nisms in the literature: (1) Deterministic, in which the payments
are deterministic; however, these are known to incur high regret in
social welfare [4, 7], and (2) Randomized, in which the payments
are randomized; these achieve lower regret but at the cost of higher
variance in utilities of agents [3, 5]. We aim to design MAB mech-
anisms with the dual objectives of reducing the regret in social wel-
fare and reducing the variance in utility of agents. With this as the
backdrop, we set for ourselves the following agenda.

Thompson Sampling for Allocation in MAB Mechanisms. Ex-
isting MAB mechanisms use frequentist approaches like upper con-
fidence bound (UCB) [2] for learning the stochastic rewards of
the agents [3, 7, 5]. In the current work, we follow the Bayesian
approach for learning and propose the Thompson sampling algo-
rithm to learn the rewards of strategic agents. Recent works have
explored and analyzed the Thompson sampling algorithm [12] and
have shown that Thompson sampling achieves slight better theoret-
ical guarantees in terms of regret when compared to frequentist ap-
proaches (analytically and empirically) [10, 1, 6]. This, along with
other properties such as robustness to delayed feedback, motivates
the use of Thompson sampling based allocation. Our approach, to
the best of our knowledge, is the first one to explore Thompson
sampling in mechanism design context. On the flip side, the ran-
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domized nature of Thompson sampling based allocation introduces
certain unique challenges in mechanism design, which we effec-
tively address.

Lower Regret through an Appropriate Notion of Truthfulness.
Ex-post dominant strategy incentive compatibility (ex-post DSIC),
the notion of truthfulness used in design of deterministic MAB
mechanisms [4, 8] handles any manipulation by agents equipped
with full knowledge of all future events. Though it is tempting to
embrace such a strong notion of truthfulness, the approach imposes
a severe restriction on the set of feasible, deterministic allocation
rules and leads to high regret MAB mechanisms. In practical set-
tings, the agents are unaware of future events, and thus, such a
strong notion of truthfulness is not warranted. We therefore propose
an appropriate and adequate variant of DSIC to achieve stronger
guarantees on the regret.

Lower Variance in Utilities of Agents. To mitigate the problem
of high regret of deterministic ex-post DSIC mechanisms, [3] pro-
posed a class of randomized MAB mechanisms with randomized
allocation and randomized payment rule. However, the agents face
significant uncertainties in allocations as well as in payments. Thus,
these randomized mechanisms suffer from a high variance in util-
ities of agents. A higher variance in utilities may lead to agents
being uninterested in the mechanism. For example, crowd workers
may not like high variance in rewards for the exact same service
they offer. It is shown that this variance is inevitable if one desires
to achieve ex-post DSIC [13]. The MAB mechanisms proposed in
this paper achieve much lower variance in utilities of agents by
working with our proposed notion of truthfulness and under realis-
tic assumptions.

1.1 Contributions
We propose two complementary MAB mechanisms with alloca-

tions determined by the Thompson sampling approach. The first
and immediate implication of using Thompson sampling is that
these mechanisms achieve the same social welfare regret as achieved
by the Thompson sampling algorithm for the classical MAB prob-
lem (Theorem 1).

Our first proposal is TSM-D, which has a deterministic payment
rule. We prove the following properties of TSM-D: (a) the vari-
ance in agent utilities asymptotically tends to 0 (Theorem 2); (b)
the mechanism is ex-post individually rational with high probabil-
ity (Theorem 3); and (c) the mechanism is within period dominant
strategy incentive compatible with high probability (Theorem 4).

Game theoretic properties satisfied by TSM-D are rather weak
and to achieve stronger properties, we propose, as a key contribu-
tion in this paper, the mechanism TSM-R. TSM-R has a randomized
payment rule. We prove the following properties of TSM-R: (a)
with overlapping reward distributions, the variance in agent utilities
asymptotically tends to M2

6
(Theorem 5), where M is the reward a

center gets if agent provides a service satisfactorily; (b) in the case
of non-overlapping reward distributions, the variance in agent util-
ities is≤ ∆2

6µ2
min

, where ∆ is the difference in rewards to the center
from the best agent and the worst agent and µmin is the minimum
quality of any agent (Theorem 6); (c) the mechanism is ex-post in-
dividually rational (Theorem 7); and (d) the mechanism is within
period DSIC (Theorem 8), which is a weaker notion than ex-post
DSIC but is much stronger than what is achieved by TSM-D.

We further obtain the following key additional insights via simu-
lations: (a) the variances in agent utilities achieved by both TSM-D
and TSM-R are significantly lower when compared to any random-

ized UCB algorithm based mechanisms, and (b) the convergence of
variance of agent utilities in the proposed mechanisms is achieved
in fewer rounds compared to current UCB based mechanisms.

2. THE MODEL
We address the following problem. There is a center that needs to

procure a certain service repeatedly (say for T rounds) from a pool
of agents K = {1, 2, . . . , k}. Each agent i is characterized by two
quantities: (i) quality µi ∈ [µmin, 1] with µmin > 0, the probabil-
ity with which the center is satisfied with the service provided by
an agent i and (ii) cost ci ∈ [cmin, cmax] for providing the service
for one round. The center derives a utility ofM for satisfactory ser-
vice and a utility of 0 otherwise. Thus the welfare from an agent i
is ri = M−ci with probability µi and−ci with probability 1−µi.
If the qualities and costs of the agents are given, the welfare can be
maximized by selecting an agent that maximizes the expected re-
ward Ri = Mµi − ci. Note that in our setting we maximize social
welfare generated and not the total revenue from the agents. Many
socially desirable outcomes like a government seeking help from
the volunteers through crowdsourcing for disaster relief or seeking
services for public projects require social welfare maximization.

The expected reward from an agent i consists of two compo-
nents: (i)Mµi, that is unknown to the center as well as to the agents
and is stochastic and (ii) −ci, which is private to the agent i and is
strategic. When the costs are known, the social welfare can be max-
imized using classical multi-armed bandit problem [11] where each
agent i corresponds to an arm with reward ri which is observed
only when the agent i is selected. Let the history of allocations and
observations about the agents’ qualities till round t− 1 be denoted
by ht which is a common knowledge.

As the agents are strategic, appropriate incentives should be of-
fered to elicit their costs truthfully. Let bi,t denote the cost or bid
reported by an agent i at round t. Let b−i,t be the bid vector of all
the agents other than i and bt denote the bid vector of all the agents
at round t. Let It ∈ K be the service providing agent selected at
round t. The center pays pi,t(bt;ht) to the agent i if the agent is
selected in round t. The utility of an agent i in round t is given by:
ui,t(bi,t, b−i,t;ht; ci) = 1{It(bt;ht) = i}(pi,t(bt;ht)− ci). The
expected social welfare regret over T rounds is given by: RT =
T maxi{Mµi − ci} −

∑T
t=1 EIt [MµIt − cIt ].

An Allocation Rule A takes a bid vector bt and history ht as in-
puts and outputs an index It of the selected agent at round t. A Pay-
ment Rule P determines the payment of each agent in each round.
A MAB mechanism M is defined as M := (A,P). When we
use Thompson sampling based allocation, there is an inherent ran-
domization caused by the sampling of the rewards for each agent.
Let ωt denote any randomness that may occur in the mechanism in
round t. The notations used in the proofs are summarized in Table.
1. We aim at designing a MAB mechanism, which, in addition to
ensuring truthful reporting by the agents, also enables the center to
learn the qualities of the agents over multiple rounds by observing
the quality of services of the selected agents.

2.1 Some Definitions
Based on the extent of information that the agents may have

about the game and the way the agents decide on their strategies,
we define different types of agents: omniscient, oblivious, myopic,
and risk averse. The results in this paper make realistic assumptions
on the types of agents and we state these assumptions as well.

DEFINITION 1. (Omniscient Agent) We say an agent is Omni-
scient if at t = 0, an agent is aware of {ωt}Tt=1. I.e. an agent has
full a priori information about all the future events.
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T Total number of rounds
K = {1, 2, . . . k} Set of agents
t ∈ {1, . . . , T} Running index on round
µi ∈ [µmin, 1] Quality of an agent i
ci ∈ [cmin, cmax] Cost per service of an agent i
c−i Cost vector of all agents other

than i
M Utility that center derives for

satisfactorily service
ri Welfare or reward from agent i
Ri = Mµi − ci Expected welfare or reward

from agent i
bt = {bi,t, b−i,t} Cost bid vector of all the agents

for round t
It Agent selected for round t
ht History of allocations and ob-

served services till round t
pi,t(bt;ht) Payment to agent i for round

t with history ht and cost bid
vector bt

ui,t(bt;ht; ci) Utility to agent i for round t
with cost bid vector bt, true cost
ci, and history ht

RT Expected social welfare regret
ωt Randomness in the mechanism

in round t
Ni,t Total number of services allo-

cated to agent i till t
αi,t Number of satisfactorily ser-

vices provided by agent i till
round t

βi,t = Ni,t − αi,t Number of non-satisfactorily
services provided by agent i till
round t

µ̂i,t =
αi,t

Ni,t
Empirical estimate of quality
(µi) of an agent i

θi,t ∼ Beta(αi,t + 1, βi,t + 1) Sample drawn from Beta distri-
bution with parameters αi,t + 1
and βi,t + 1

j∗t = arg maxi6=It{Mθi,t −
bi,t}

Second best agent at round t
based on sampled values

∆i = Mµ1 − c1 −Mµi − ci Difference in expected reward
of agent i from optimal agent

∆ = maxi ∆i Maximum difference in ex-
pected reward of any sub-
optimal agent from optimal
agent

Et : {θ1,t ≥ θi,t+ c1−ci
M

, ∀i 6=
1}

Event that agent 1 is allocated
at round t if all the agents bid
truthfully

qt = P(Et) Probability with which eventEt
occurs

ei,t(γ) =
√

4γ ln(t)
Ni,t

Exploration term for agent i at
round t with parameter γ ≥ 1

Table 1: Notation Table

Note that ex-post DSIC [4, 7] protects manipulations even from
omniscient agents (with higher regret). However, in practice, the
agents are not omniscient as they are unaware of the future events.
Thus, it is adequate to consider the following types of the agents.

DEFINITION 2. (Oblivious Agent) We say an agent is oblivious
if at the beginning of the round t′ the agent is not aware of T and
is not aware of {ωt}t≥t′ .

Note that an oblivious agent is not aware about any future events
and does not even know T . In many practical scenarios like crowd-
sourcing, agents are typically oblivious as there is no way an agent
can be aware of how many service requests a center has. Further,
since an agent completes a task successfully only with probability
µi, the agent cannot be sure whether or not the center will be sat-
isfied by the service provided by the agent. We further assume risk
averse agents.

DEFINITION 3. (Risk Averse Agent ) An agent is said to be risk
averse if the agent prefers a deterministic assured reward over a
probability distribution having an expected value that is equal to
the assured reward.

We now define the notion of a myopic agent.

DEFINITION 4. (Myopic Agent) We say an agent is myopic if
the agent always maximizes the expected reward with respect to the
current round and does not take into account any future rounds.

Note: The myopic agents cannot manipulate the algorithm’s learn-
ing of the stochastic component from future tasks as they are un-
aware of the time horizon (T ). One can consider a more intricate
model where an agent has a prior over the values of T and prevent
possible manipulation accordingly. We wish to point out that agents
which are risk averse and oblivious are also myopic.

2.1.1 Assumptions in the Model
(1) The agents are oblivious, that is, they do not have prior knowl-
edge of T and do not have distributional knowledge of events in fu-
ture rounds. This assumption, coupled with the assumption that the
agents are risk averse, implies that the agents are myopic. A myopic
agent in this setting assumes the current round to be the last round
and does not manipulate based on the future events. A more sophis-
ticated model would consider foresighted agents by working with a
distribution over future utility gains. We do not consider foresighted
agents in the current work. Note that a risk averse agent with dis-
tribution over future events may still prefer to lose in the current
round by overbidding, if the expected future reward is higher. (2)
The costs ci’s are constant throughout. However, we allow agents
to update their bids bi,t at every round to impart flexibility to mod-
ify their bids based on the updated beliefs over their qualities.

2.2 Game Theoretic Properties
We now formally define key, relevant game theoretic properties.
Some of these properties are motivated by realistic considerations
regarding the types of agents that we deal with. We strive to work
with realistic, appropriate notions of game theoretic properties rather
than attempt to achieve strong properties that may well belong to
the realm of impossibilities.

Incentive Compatibility
DEFINITION 5. (Within Period Dominant Strategy Incentive

Compatible (WP-DSIC)) We say a mechanism M = (A,P) is
WP-DSIC, if for all the agents and for all the rounds, the utility of
an agent from truthful bidding is at least as much as the utility from
any non-truthful bidding irrespective of the bids of other agents,
i.e., ∀i,∀ci, ∀t, ∀ωt,∀ht and ∀b−i,t,

ui,t(ci, b−i,t;ht; ci|ωt) ≥ ui,t(bi,t, b−i,t;ht; ci|ωt), ∀bi,t.
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Note that WP-DSIC is weaker than ex-post DSIC. In WP-DSIC,
truthful reporting of costs is weakly dominant strategy in the cur-
rent round independent of history and any possible randomization.
However, an omniscient agent may be able to manipulate WP-DSIC
by losing in the current round so as to increase the utility in future
rounds. Following is a weaker notion of incentive compatibility:

DEFINITION 6. (Within Period Dominant Strategy Incentive
Compatible with High Probability (WP-DSICP)) We say a mecha-
nismM = (A,P) is WP-DSICP if for all the agents and for all the
rounds, the probability of the utility of an agent from non-truthful
bidding being more than the utility of an agent from truthful bidding
asymptotically goes to 0 irrespective of the bids of other agents, i.e.,
∀i, ∀ci, ∀t, ∀ωt, ∀ht and ∀b−i,t,

P (ui,t(ci, b−i,t;ht; ci|ωt) ≤ ui,t(bi,t, b−i,t;ht; ci|ωt)) ≤ pt, ∀bi,t,

with limt→∞ pt = 0.

Individual Rationality
DEFINITION 7. (Ex-Post Individually Rational (EPIR)) We say

a mechanism M = (A,P) is EPIR if every agent has a non-
negative utility with truthful bidding irrespective of the bids of other
agents i.e., ∀i, ∀ci,∀t, ∀ht,∀ωt,

ui,t(ci, b−i,t;ht; ci|ωt) ≥ 0, ∀b−i,t.

A weaker notion on individual rationality is defined as:

DEFINITION 8. (Ex-Post Individually Rational with High Prob-
ability (EPIRP)) We say a mechanism M = (A,P) is EPIRP
when the probability with which an agent gets negative utility with
truthful bidding asymptotically goes to 0 irrespective of the bids of
other agents, i.e., ∀i, ∀ci,∀t, ∀ht,∀ωt,

P (ui,t(ci, b−i,t;ht; ci|ωt) ≤ 0) ≤ pt, ∀b−i,t,

with limt→∞ pt = 0.

3. PROPOSED MECHANISMS: TSM-D AND
TSM-R

First, we explain how Thompson sampling based allocation rule
can be designed for our settings even when costs are known.

3.1 Thompson Sampling Based Allocation Rule
Thompson sampling algorithm maintains a distribution over re-

wards for each agent based on the observed rewards. At each round,
the algorithm samples a reward for each agent with the current dis-
tribution and chooses an agent with the highest sampled reward.

In our setting, the welfare generated from each agent i is M −
ci if agent i provides satisfactory service and −ci otherwise. We
model this by assigning an independent Bernoulli random variable
Xi,t to each agent i for each round t such thatXi,t = 1 with proba-
bility µi. Thus, the reward at round t isMXi,t−ci and the expected
reward is Mµi − ci. Note that Xi,t captures the stochastic compo-
nent of the reward. To adapt Thompson sampling for our problem,
we maintain Beta priors on the stochastic rewards of agent i with
parameters αi,t and βi,t. Here, αi,t denotes the number of times
the agent i has provided satisfactory service till round t and βi,t
denotes the number of times the agent has failed to do so. A sample
θi,t from this Beta distribution is then obtained and the agent It
with maximum value of Mθi,t − bi,t is selected at round t. Once
a service is procured from agent It, based on this agent’s qual-
ity of service XIt,t, Beta priors for the next round are updated
by appropriately updating the parameters αi,t+1 and βi,t+1. Let

Ni,t = αi,t + βi,t denote the number of times the agent i is se-
lected for service till round t.

Without loss of generality, we assume that agent 1 is optimal, i.e.,
Mµ1−c1 ≥Mµi−ci, ∀i. Let ∆i = Mµ1−c1−Mµi+ci denote
the difference in expected reward of agent i from the optimal agent
and ∆ = maxi{∆i}. Thus, the expected social welfare regret can
also be written asRT =

∑k
i=2 ∆iE[Ni,t].

Let j∗t = arg maxi6=It{Mθi,t − bi,t} be the second best agent
at round t based on sampled values. For ease of notation, let µ̂i,t =

αi,t

αi,t+βi,t
and event Et : {θ1,t ≥ θi,t + c1−ci

M
, ∀i 6= 1}. Note that

Et denotes the event that agent 1 is allocated at round t if all the
agents bid truthfully. Let qt be the probability of eventEt, i.e., qt =

P(θ1,t ≥ θi,t + c1−ci
M

, ∀i 6= 1). Further, let ei,t(γ) =
√

4γ ln(t)
Ni,t

denote the exploration term for agent i at round t with parameter
γ ≥ 1. When it is clear from the context, we drop the parameters
from utility function and denote the utility and expected utility of
agent i at round t by ui,t(·) and Ui,t(·) respectively.

We have the following Theorem that bounds the expected regret
of the Thompson sampling based allocation rule for our setting:

THEOREM 1. For any sub-optimal agent i, our allocation rule
satisfies: E[Ni,T ] ≤ O(lnT ). Thus, expected regretRT = O(ln(T )).

PROOF. For the case of Bernoulli rewards, the proof of the above
Theorem is given in [10]. However, in our setting, the rewards of
the arms are M − ci with probability µi and −ci with probability
(1 − µi). For this case also, the proof technique is similar to [10]
with few changes.

We now propose two mechanisms with different payment rules that
could be used in conjunction with the above allocation rule.

3.2 MAB Mechanism: TSM-D
In order to achieve low variance in utilities, we first propose a

naïve mechanism, TSM-D, with an estimate based payment rule
(Algorithm 1). In each round, the payment to the selected agent

Algorithm 1: MECHANISM TSM-D
Input: Number of rounds T , Number of agents k, bids

{bi,t}ki=1 in each round t ∈ {1, 2, . . . , T}, Parameter γ
Output: Allocations A = {It}Tt=1 and payments

P = {pIt,t}Tt=1.
Initialize: αi,1 = 0, βi,1 = 0 ∀i ∈ {1, 2, . . . , k}
for t← 1 to T do

Sample: θi,t ∼ Beta(αi,t + 1, βi,t + 1) ∀i ∈ K
Allocate:
It = arg max

i
{Mθi,t − bi,t}(break ties arbitarily)

Payment: pIt,t =
Mµ̂It,t −Mµ̂j∗t ,t + bj∗t ,t + 2M(eIt,t(γ) + ej∗t ,t(γ))

Observe: The Bernoulli reward of an agent It for round t

i.e. XIt,t =

{
1 w.p. µIt
0 w.p. 1− µIt

Update:
αIt,t+1 = αIt,t + 1{XIt,t = 1}
βIt,t+1 = βIt,t + 1{XIt,t = 0}
αi,t+1 = αi,t, βi,t+1 = βi,t ∀i 6= It

is based on his estimated externality that is computed using the
expected values (µ̂i,t’s) of the Beta distributions maintained by
the Thompson sampling algorithm with added exploration terms.
Given the history of past allocation this is a deterministic quan-
tity. These exploration terms are needed to ensure game theoretic
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properties. Since the parameters of the Beta distributions at the be-
ginning of round t are fixed (based on ht), the payment rule is de-
terministic. However, the mechanism is still a randomized one due
to the randomization arising from Thompson sampling based allo-
cation. The following Theorem holds for the variance in utilities of
the agents.

THEOREM 2. The variance in the utility of any agent i satisfies:
lim
t→∞

var(ui,t(·)) = 0, when all the agents are truthful.

PROOF. LetCi,t = −c1+Mµ̂1,t−Mµ̂i,t+ci+2M(e1,t+ei,t)

and C = M + cmax + 4M
√

6γ ln(T ) (i.e.,Ci,t ≤ C, ∀i). In
TSM-D, for optimal agent, u1,t(·) is Cj∗t ,t if event Et occurs and
is 0 otherwise.

var(u1,t(·)) = E[u1,t(·)2]− E[u1,t(·)]2

= C2
j∗t ,t

P(Et)− C2
j∗t ,t

(P(Et))
2

= C2
j∗t ,t

P(Et)P(Ect ) ≤ C2
j∗t ,t

P(Ect ) ≤ C2P(Ect )

T∑
t=1

var(u1,t(·)) ≤ C2
T∑
t=1

P(Ect ) (summing over all rounds)

≤ C2
T∑
t=1

P(agent 1 is not selected in round t)

≤ C2
k∑
i=2

E[Ni,T ] ≤ kC2O(ln(T ))

(From Theorem 1)

Thus, 1
T

∑T
t=1 var(u1,t(·)) ≤ 1

T
kO((ln(T ))2) asC = O(

√
ln(T ))

=⇒ limt→∞ var(u1,t(·)) → 0. Similarly, for other agents i 6= 1,
var(ui,t(·)) ≤ C2P(agent i is selected in round t)

=⇒ lim
T→∞

1

T

T∑
t=1

var(ui,t(·)) ≤ lim
T→∞

C2

T
E[Ni,T ]→ 0.

Note that low variance in utilities make our mechanism more use-
ful as existing UCB based mechanisms suffer from huge variance
which result in significant uncertainties to the agents. We now prove
game theoretic properties of TSM-D. Before proving these proper-
ties, we need following propositions which can be proved using
Hoeffding’s inequality [9].

PROPOSITION 1. For any agent i, we have:

1. P(µ̂i,t ≤ µi − ei,t(γ)) ≤ t−8γ

2. P(µ̂i,t ≥ µi + ei,t(γ)) ≤ t−8γ

PROOF. Since, µ̂i,t is empirical mean from Ni,t Bernoulli ran-
dom variables with mean µi, from Hoeffding’s inequality:

P(µ̂i,t ≤ µi − ei,t(γ)) ≤ exp{−2Ni,t(ei,t(γ))2} = t−8γ ,

P(µ̂i,t ≥ µi + ei,t(γ)) ≤ exp{−2Ni,t(ei,t(γ))2} = t−8γ

Part of the proof of our next proposition (Proposition 2) is provided
in [10] which uses Beta-Bernoulli trick which is given as follows:

Beta-Bernoulli Trick: Let FBetaa,b denote the cdf of a Beta dis-
tribution with parameters a and b and let FBj,µ (resp. fBj,µ) the cdf
(resp. pdf) of a Binomial distribution with parameters j and µ.
Then:

FBetaa,b (y) = 1− FBa+b−1,y(a− 1) (1)

PROPOSITION 2. For any agent i, we have:

1. P(θi,t ≤ µi − ei,t(γ)) ≤ t−2γ

2. P(θi,t ≥ µi + ei,t(γ)) ≤ t−2γ

PROOF.

1) P(θi,t ≤ µi − ei,t(γ)) = FBetaαi,t+1,βi,t+1(µi − ei,t(γ))

= 1− FBαi,t+βi,t+1,µi−ei,t(γ)(αi,t)

(From Equation 1)

Let X1,l ∼ Bernoulli(µi − ei,t(γ)) and X2,l ∼ Bernoulli(µi) be
Bernoulli random variables. Further, let Zl = X2,l − X1,l be a
discreet random variable with values {−1, 0, 1} and mean ei,t(γ).
Then,

P(θi,t ≤ µi − ei,t(γ)) = 1− P

Ni,t+1∑
l=1

X1,l ≤
Ni,t∑
l=1

X2,l


= P

Ni,t∑
l=1

X2,l <

Ni,t+1∑
l=1

X1,l


≤ P

Ni,t∑
l=1

Zl < 1

 = P

Ni,t∑
l=1

Zl ≤ 0


(X1,l ≤ 1 ∀l)

= P

Ni,t∑
l=1

(Zl − ei,t(γ)) ≤ −Ni,tei,t(γ)


≤ exp

{
−8γNi,t ln(t)

4Ni,t

}
≤ t−2γ

(From Hoeffding’s inequality)

2) Following the similar steps:

P(θi,t ≥ µi + ei,t(γ)) = 1− FBetaαi,t+1,βi,t+1(µi + ei,t(γ))

= FBαi,t+βi,t+1,µi+ei,t(γ)(αi,t)

(From Equation 1)

LetX1,l ∼ Bernoulli(µi+ ei,t(γ)) andX2,l ∼ Bernoulli(µi). Let
Zl = X1,l −X2,l. Then:

P(θi,t ≥ µi + ei,t(γ)) = P

Ni,t+1∑
l=1

X1,l ≤
Ni,t∑
l=1

X2,l


≤ P

Ni,t∑
l=1

Zl ≤ 0

 (X1,l ≥ 0 ∀l)

= P

Ni,t∑
l=1

(Zl − ei,t(γ)) ≤ −Ni,tei,t(γ)


≤ exp

{
−8γNi,t ln(t)

4Ni,t

}
≤ t−2γ

(From Hoeffding’s inequality)

For ease of presentation, let us denote the events, F 1
i,t : {µ̂i,t ≤

µi − ei,t(γ)}, F 2
i,t : {µ̂i,t ≥ µi + ei,t(γ)}, F 3

i,t : {θi,t ≤ µi −
ei,t(γ)} and F 4

i,t : {θi,t ≥ µi + ei,t(γ)}. From the above propo-
sitions, we have for any agent i, P(F 1

i,t) ≤ t−8γ , P(F 2
i,t) ≤ t−8γ ,

P(F 3
i,t) ≤ t−2γ and P(F 4

i,t) ≤ t−2γ .

THEOREM 3. TSM-D is EPIR with high probability (EPIRP).
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PROOF. To prove EPIR property of TSM-D, we show that the
probability that any agent receives negative utility in round t is pt
with lim

t→∞
pt = 0.

Since the utility of agents other than It is 0 at round t, it suffices
to prove that the probability with which the agent It obtains neg-
ative utility is small. For ease of presentation, let ēt = eIt,t(γ) +
ej∗t ,t(γ), µ−i,t = µi,t − ei,t(γ), µ+

i,t = µi,t + ei,t(γ). Similarly,
let θ−i,t = θi,t − ei,t(γ), θ+

i,t = θi,t + ei,t(γ). We will further
use the following inequality: for any events F and G, P(F ) =
P(F |Gc)P(Gc) + P(F |G)P(G) ≤ P(F |Gc) + P(G). Now, con-
sider the probability that the agent It gets negative utility with
truthful bidding:

P(uIt,t(cIt , b−i,t;ht; cIt ) < 0)

= P
(
Mµ̂It,t − cIt < Mµ̂j∗t ,t − bj∗t ,t − 2Mēt

)
≤ P

(
Mµ̂It,t − cIt < Mµ̂j∗t ,t − bj∗t ,t − 2Mēt|F 1c

It,t

)
+ P(F 1

It,t
)

(with G = F 1
It,t

)

≤
P
(
Mµ−It,t − cIt < Mµ̂j∗t ,t − bj∗t ,t − 2Mēt

)
1− t−8γ

+ P(F 1
It,t

)

≤
P(Mµ−It,t − cIt < Mµ+

j∗t ,t
− bj∗t ,t − 2Mēt)

(1− t−8γ)(1− t−8γ)
+ P(F 1

It,t
) + P(F 2

j∗t ,t
)

(with G = F 2
j∗t ,t

)

≤
P(MµIt − cIt < Mµj∗t − bj∗t ,t −Mēt)

(1− t−8γ)(1− t−8γ)
+ P(F 1

It,t
) + P(F 2

j∗t ,t
)

(expanding µ−It,t and µ+
j∗t ,t

and rearranging)

≤
P(Mθ−It,t − cIt < Mµj∗t − bj∗t ,t −Mēt)

(1− t−8γ)(1− t−8γ)(1− t−2γ)
+ P(F 1

It,t
)

+ P(F 2
j∗t ,t

) + P(F 4
It,t

) (with G = F 4
It,t

)

≤
P(Mθ−It,t − cIt < Mθ+

j∗t ,t
− bj∗t ,t −Mēt)

(1− t−8γ)(1− t−8γ)(1− t−2γ)(1− t−2γ)
+ P(F 1

It,t
) + P(F 2

j∗t ,t
)

+ P(F 4
It,t

) + P(F 3
j∗t ,t

) (with G = F 3
j∗t ,t

)

≤
P(MθIt,t − cIt < Mθj∗t ,t − bj∗t ,t)

(1− t−8γ)(1− t−8γ)(1− t−2γ)(1− t−2γ)
+ 2t−8γ + 2t−2γ

(from above propositions and expanding θ−It,t, θ
+
j∗t ,t

)

= 2t−8γ + 2t−2γ

Since It is selected at round t with true cost, P(MθIt,t − cIt,t <
Mθj∗t ,t − bj∗t ,t) = 0. Hence, the last inequality follows. Since
γ ≥ 1, we get the desired result.

THEOREM 4. TSM-D is WP-DSIC with high probability (WP-
DSICP).

PROOF. We need to prove for any agent i, ∀t, ∀ωt, ∀ht, ∀b−i,t:

P (ui,t(ci, b−i,t;ht; ci|ωt) ≤ ui,t(bi,t, b−i,t;ht; ci|ωt)) ≤ pt, ∀bi,t

with, limt→∞ pt = 0
Consider two cases for fixed values of θi,t, θ−i,t:
Case 1: Mθi,t − ci ≤ maxj 6=i{Mθj,t − bj,t} : In this case, the
utility of player i with bid bi,t ≥ ci is zero as Mθi,t − bi,t ≤
Mθj,t − bj,t for some j 6= i, and hence there is nothing to prove.
However, if bi,t < ci such that Mθi,t − bi,t > Mθj,t − bj,t ∀j,
then an agent i wins round t and hence we have, It = i. We now
calculate the probability of agent i getting positive utility with such
nontruthful bidding i.e.

P
(
Mµ̂j?t ,t − bj?t ,t < Mµ̂i,t − ci + 2Mei,t(γ) + 2Mej?t ,t(γ)

)

Using Proposition 1 and Proposition 2 and with arguments similar
in Theorem 3 we have:

P
(
Mµ̂j?t ,t − bj?t ,t < Mµ̂i,t − ci + 2Mei,t(γ) + 2Mej?t ,t(γ)

)
≤ 2t−8γ + 2t−2γ = pt

=⇒ P(ui,t(bi,t, b−i,t;ht; ci|ωt) ≥ 0) ≤ pt
=⇒ P(ui,t(bi,t, b−i,t;ht; ci|ωt) ≥ ui,t(ci, b−i,t;ht; ci|ωt)) ≤ pt

as ui,t(ci, b−i,t;ht; ci|ωt) = 0

Case 2: Mθi,t − ci > maxj 6=i(Mθj,t − bj,t): In this case, when
Mθi,t − bi,t > Mθj,t − bj,t ∀j, then the utilities with bids bi,t
and ci are same. However, ifMθi,t− bi,t ≤Mθj,t− bj,t for some
j, then with bid bi,t, agent i will get utility 0 and with bid ci, the
utility is positive with probability 1 − pt = 1 − (2t−8γ + 2t−2γ)
from Theorem 3 and hence the inequality follows.

Relation of γ with game theoretic properties: With high value of
γ, game theoretic properties WPDSIC and EPIR are satisfied with
high probability, however, the payment to an agent also increases.
Thus, an appropriate value of γ is needed to have a good trade-off.

Though TSM-D satisfies WP-DSIC and EPIR with high prob-
ability, there is a small yet non-zero probability for the agent se-
lected at round t obtaining a negative utility, leading to a possibil-
ity of misreporting of the costs. Thus, TSM-D is game theoretically
a much weaker mechanism. This can be attributed to the fact that
the Thompson sampling algorithm has inherent randomization in
allocation, and the payment scheme is not exactly aligned with this
randomization. This motivates our next main mechanism, TSM-R
with stronger game theoretic properties but at the cost of a slightly
higher variance.

3.3 MAB Mechanism: TSM-R
We now present TSM-R mechanism with Thompson sampling

based allocation rule that always satisfies within period dominant
strategy incentive compatible (WP-DSIC) and ex-post individual
rationality (EPIR). The allocation rule of TSM-R is the same as
TSM-D, but they differ in the payment rule. The payment rule in
TSM-R is computed based on sampled externality in each round
which is computed using sampled values (θi,t’s), thus making pay-
ment rule in TSM-R a randomized mechanism. The payment to the
selected agent It at round t is given by:

pIt,t = MθIt,t −Mθj∗t ,t + bj∗t ,t,

We now bound the variance in utility of agents in TSM-R using
the following lemmas:

LEMMA 1. Variance in utility of optimal agent (agent 1) satis-
fies:

lim
t→∞

var(u1,t(·)) ≤ lim
t→∞

M2

2
max

{
1

N1,t + 3
,

1

Nj∗t ,t + 3

}
.

PROOF. Let Y be a Bernoulli random variable with parameter
qt. From the allocation and payment rule of TSM-R, we have

u1,t(·) =

{
Mθ1,t −Mθj∗t ,t + cj∗t − c1, if Y = 1

0, otherwise.

From the conditional variance formula:

var(u1,t(·)) = E[var(u1,t(·)|Y )] + var(E[u1,t(·)|Y ])

We bound both the terms in RHS separately:

var(u1,t(·)|Y = 1) = var(Mθ1,t −Mθj∗t ,t + cj∗t − c1)

= M2var(θ1,t) +M2var(θj∗t ,t)
(c1, cj∗t being constant and θ1,t and θj∗t ,t independent1)
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var(u1,t(·)|Y = 0) = 0

E[var(u1,t(·)|Y )] = M2qt(var(θ1,t) + var(θj∗t ,t))

≤ 2M2 max{var(θ1,t), var(θj∗t ,t)}

= 2M2 max

{
(α1,t + 1)(β1,t + 1)

(N1,t + 2)2(N1,t + 3)
,

(αj∗t ,t + 1)(βj∗t ,t + 1)

(Nj∗t ,t + 2)2(Nj∗t ,t + 3)

}
(From the variance of Beta distribution)

≤ 2M2 max

{
1

4(N1,t + 3)
,

1

4(Nj∗t ,t + 3)

}

The second term can be bounded by,

E[u1,t(·)|Y ] =

{
∆j∗t

if Y = 1

0 Otherwise

var(E[u1,t(·)|Y ]) = EY [(E[u1,t(·)|Y ])2]− (EY [E[u1,t(·)|Y ]])2

= ∆2
j∗t
qt − (qt∆j∗t

)2 ≤ ∆2qt(1− qt)

Thus, lim
T→∞

1

T

T∑
t=1

var(E[u1,t(·)|Y ])

≤
∆2

T
lim
T→∞

T∑
t=1

qt(1− qt) ≤
∆2

T
lim
T→∞

T∑
t=1

(1− qt)

≤
∆2

T
lim
T→∞

k∑
i=2

E[Ni,T ] ≤ ∆2 lim
T→∞

O(ln(T ))

T
= 0.

Thus,

lim
t→∞

var(u1,t(·)) ≤ lim
t→∞

M2

2
max

{
1

N1,t + 3
,

1

Nj∗t ,t + 3

}
.

LEMMA 2. For any other agent i 6= 1, variance in utility asymp-
totically goes to 0.

PROOF. Using similar arguments as in Lemma 1, one can show
that for other agents i 6= 1:

var(ui,t(·)) ≤ P (It = i)

(
2M2 max

j
var
(
θj,t +

∆2

4

))

=⇒ lim
T→∞

1

T

T∑
t=1

var(ui,t(·)) ≤ lim
T→∞

D

T
E[Ni,T ]→ 0.

D = 2M2( 1
4

+ ∆2

4
) ≥ 2M2(maxj var(θj,t + ∆2

4
)), ∀t.

THEOREM 5. When the reward distributions are overlapping,
the variance i utility of any agent i satisfies: lim

t→∞
var(ui,t(·)) ≤

M2

6
, when all the agents are truthful.

PROOF. The proof is immediate from Lemma 1 and Lemma 2

THEOREM 6. When the reward distributions are non overlap-
ping, then the variance in utility of optimal agent satisfies:
var(u1,t(·)) ≤ ∆2

6µ2
min
∀t

1The distribution from which θi,t’s are sampled are derived from
observed rewards till round t − 1. Hence, at round t, given these
distribution, θ1,t and θj∗t ,t are independent.

PROOF. When the reward distributions are non overlapping, then
we have: ∆j∗t

> M(1 + µ1 − µj∗t ). Since N1,t, Nj∗t ,t ≥ 0 and,
µmin ≤ µ1, µj∗t ≤ 1,

max

{
M2

2(N1,t+3)
, M2

2(Nj∗t ,t+3)

}
≤

∆2
j∗t

6(1+µ1−µj∗t
)2
≤ ∆2

6µ2
min

. Thus

from Lemma 1, var(u1,t(·)) ≤ ∆2

6µ2
min

.

Note: The above theorems provide an upper bound on the vari-
ance in agent utilities. However, through simulations we observed
that the variance in agent utilities of TSM-R also approaches 0,
though it is slightly higher than the variance obtained from that of
TSM-D. We further make a note that when reward distributions are
non-overlapping, then the regret is zero as the sub-optimal arms
are never pulled in this case. Hence, sub-optimal arms’ distribu-
tions are not learned by the mechanism. As optimal arms’ payment
is randomized with respect to sub-optimal arm we observe a non-
zero variance in the utility of the optimal agent.
We now prove game theoretic properties satisfied by TSM-R.

THEOREM 7. Mechanism TSM-R is EPIR.

PROOF. From the payment rule given by TSM-R:

ui,t(ci, b−i,t;ht; ci|ωt) = 1(It = i)(Mθi,t −Mθj∗t ,t + bj∗t ,t − ci).

It is enough to prove, ∀t, ∀ht, uIt,t(cIt , b−It,t;ht; cIt |ωt) ≥ 0, ∀ωt.
As It = arg maxi {Mθi,t−bi,t},MθIt,t−cIt ≥Mθj∗t ,t−bj∗t ,t,
thus proving the inequality.

THEOREM 8. Mechanism TSM-R is WP-DSIC.

PROOF. We need to prove ∀t, ∀ωt, ∀ht, ∀b−i,t:

ui,t(ci, b−i,t; ci;ht|ωt) ≥ ui,t(bi,t, b−i,t; ci;ht|ωt), ∀bi,t.

Consider the two cases for fixed values of θi,t, θ−i,t:
Case 1) ∃l 6= i, Mθi,t−ci ≤Mθl,t−bl,t: In this case, ifMθi,t−
bi,t ≤ Mθj,t − bj,t for some j 6= i, then the utility with bid ci or
bi,t is zero and hence there is nothing to prove. However, ifMθi,t−
bi,t ≥Mθj,t− bj,t ∀j, then the utility of an agent i with bid bi,t is
given by:Mθi,t−ci−Mθj∗t ,t+bj∗t ,t ≤Mθi,t−ci−Mθl,t+bl,t ≤
0. Whereas, with bid ci, agent i would have got utility 0 and hence
the inequality follows.
Case 2) ∀j, Mθi,t−ci ≥Mθj,t−bj,t: In this case, whenMθi,t−
bi,t ≥ Mθj,t − bj,t ∀j, then the utilities with bids bi,t and ci are
same. However, if Mθi,t − bi,t ≤ Mθj∗t ,t − bj∗t ,t, then with bid
bi,t, agent i will get utility 0 and with bid ci, the utility is positive
and hence the inequality follows.

4. ADDITIONAL INSIGHTS THROUGH SIM-
ULATIONS

This section provides additional insights on the performance of
the proposed mechanisms. Note that it has already been established
empirically that Thompson sampling based allocation rule achieve
lower regret as compared to frequentist based approaches [6]. We
now show via simulation that TSM-D converges faster and at any
given round exhibits a variance that is lower than that of TSM-R .
We use a two agent setup with M = 50 with fixed agent qualities
{0.87, 0.9}. The agent qualities are chosen as 0.87 and 0.9 to be
close enough to ensure an overlap in the two reward distributions
(R′is) for any reasonable choice of ∆. Note that the behavior ob-
tained through simulations with respect to the variance in utilities
follows the same pattern for any choice of qualities as verified by
our simulations. In order to capture randomization introduced by
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the Thompson sampling based algorithm, we fix the outcomes of
the other events for all rounds, i.e. whether or not an agent provides
satisfactory service. For each agent i at round t, the corresponding
event is generated with a Bernoulli random variable with parame-
ter µi. The mechanisms are simulated for 1000 iterations by fixing
events, cost, and quality vector.

Figure 1: Standard deviation in utility of best agent with ∆ = 5

Figure 2: Standard deviation in utility of best agent for various
values of ∆ (T = 5000)

Figure 1 compares the variance in utilities of the best agent in
TSM-D and TSM-R with the number of rounds for a fixed value of
∆ = 5. As expected, the variance in utility in TSM-R is slightly
higher as compared to TSM-D. Note that TSM-R enjoys stronger
game theoretic properties but at the cost of high variance. Figure 2
compares the variance in utilities of the best agent in TSM-D and
TSM-R with the variance in utilities of the best agent in existing
UCB-based mechanism [3] for various values of ∆ ∈ [0.5, 50]. We
fixed T = 5000 for this experiment. The variance in utilities in
TSM-D is the lowest between TSM-D, TSM-R, and UCB-Based.
The variance in utilities of the best agent is significantly lower in
our Thomson sampling based mechanism than the variance in util-
ities of the best agent in UCB-Based mechanism [3]. Figure 2 fur-
ther shows for high values of ∆ the variance of TSM-R converges
to a constant value. This is due to the fact that for a higher value
of ∆, the distributional overlap between the reward from the best
agent and the second best vanishes. The high variance of UCB-
based mechanism is attributed to a different resampling parameter
that provides a trade-off between variance and the loss in social
welfare. We used a reasonable value of this parameter (0.2) so as
to avoid significant loss in social welfare.

Based on the analytical results in this paper and the simulation

TSM-D TSM-R [3]
Allocation
rule

Thompson
sampling

Thompson
sampling

UCB

Payment Deterministic Randomized Randomized
EPIC No No Yes
WPDSIC with high

probability
Yes Yes

EPIR with high
probability

Yes Yes

Variance in
utility

0 (asymptoti-
cally)

0 (asymptoti-
cally)

much

of optimal
agent

≤ ∆2

6µ2
min

(non-
overlapping
case)

higher

Social wel-
fare regret

logarithmic
(lower con-
stant)[6]

logarithmic
(lower con-
stant)[6]

logarithmic
(higher
constant)

Table 2: Properties satisfied by different mechanisms

experiments, we now compare the proposed mechanisms alongside
an existing, benchmark UCB based mechanism [3] on some of the
important properties in Table 2. Table 2 clearly establishes that the
Thompson sampling approach has certain characteristics that make
it an attractive approach to be used in MAB mechanism design.

5. SUMMARY AND FUTURE WORK
This paper has explored Thompson sampling in the context of

mechanism design for stochastic multi-armed bandit (MAB) prob-
lems. Many existing MAB mechanisms use upper confidence bound
(UCB) based algorithms for learning the parameters of the reward
distribution. Our motivation to use the Thompson sampling based
approach has come from the known, superior regret performance
of Thompson sampling when compared to UCB based approaches.
The randomized nature of Thompson sampling introduces certain
unique, non-trivial challenges for mechanism design, which we have
effectively addressed in this paper. Our initial proposal was TSM-
D, a MAB mechanism with deterministic payment rule. We showed
that in TSM-D, the variance of agent utilities asymptotically ap-
proaches zero. However, the game theoretic properties satisfied by
TSM-D (incentive compatibility and individual rationality with high
probability) are rather weak. As one of our key contributions, we
then proposed the mechanism TSM-R, with randomized payment
rule, and proved that TSM-R satisfies appropriate, adequate notions
of incentive compatibility and individual rationality. For TSM-R,
we also established a theoretical upper bound on the variance in
utilities of the agents. We further showed, using simulations, that
the variance in social welfare incurred by TSM-D or TSM-R is
much lower when compared to that of existing UCB based mech-
anisms. We believe this paper has established Thompson sampling
as an attractive approach to be used in MAB mechanism design.

We analyzed only one deterministic payment rule. One can ex-
amine other deterministic payment schemes with stronger game
theoretic properties. If deterministic payment schemes with stronger
properties are not possible, a characterization result would be help-
ful. One can further extend this work to the case where the valuation
of the agents dynamically changes over time. One can also relax
the myopicity assumption about the worker and consider that each
worker have a distributional knowledge about the future events.
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