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ABSTRACT
It is often useful to predict opponent behavior when playing a general-
sum two-player normal form game. However best-responding to
an inaccurate prediction can lead to a strategy which is vulnera-
ble to exploitation. This paper proposes a novel method, Restricted
Stackelberg Response with Safety (RSRS), for an agent to select a
strategy to respond to a prediction. The agent uses the confidence
it has in the prediction and a safety margin which reflects the level
of risk it is willing to tolerate to make a controlled trade-off be-
tween best-responding to the prediction and providing a guaran-
tee of worst-case performance. We describe an algorithm which
selects parameter values for RSRS to produce strategies that play
well against the prediction, respond to a best-responding opponent,
and guard against worst-case outcomes. We report results obtained
by the algorithm on multiple general-sum games against different
opponents.

Keywords
Game theory, general-sum normal form games, risk management,
prediction errors

1. INTRODUCTION
In many situations agents have to make decisions in a competi-

tive environment, where their interests are directly opposed to their
opponent’s interests (zero-sum games), but more often some form
of collaboration with the opponent can increase the payoff for both
players (general-sum games). Examples of such situations can be
found in negotiation, cybersecurity, physical security, electronic com-
merce, and more. In such environments, agents often use a predic-
tion of opponent behavior to guide their decisions.

How should an agent respond when given a prediction of op-
ponent behavior in a general-sum two-player normal form game?
Selecting the strategy with the highest payoff against the predic-
tion provides optimal performance if the prediction is correct, but
can be arbitrarily bad if the prediction is incorrect. Playing a max-
imin strategy guarantees a payoff equal to the safety value of the
game, but at the cost of performance against the prediction. Playing
a Nash equilibrium only makes sense if the prediction is incorrect
and the opponent also plays that Nash equilibrium. Furthermore, a
maximin strategy or a Nash equilibrium don’t use a prediction, so
there is no reason for an agent using them to make a prediction.

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

In our previous work [7], we have shown how an agent can model
the opponent’s attitude towards cooperation to pursue opportuni-
ties for cooperation while limiting exploitation. In this paper we
introduce Restricted Stackelberg Response with Safety (RSRS), a
novel method of choosing a mixed strategy for a general-sum game,
given a prediction of the opponent’s strategy. RSRS uses a predic-
tion weight parameter, w, to determine how much to guard against
a best-responding opponent, and a risk factor parameter, r, to de-
termine how much to guard against a worst-case outcome. RSRS
provides a way to make a controlled tradeoff between responding
to a (possibly flawed) prediction and dealing with a best-responding
opponent while also providing a worst-case performance guarantee.
In this paper we use fictitious play to make predictions to demon-
strate that RSRS can handle flawed predictions, but RSRS can be
used with any prediction method that produces a probability distri-
bution over opponent moves.

If the opponent plays a mixed strategy it is impossible to predict
their exact action without knowledge of their randomization device,
but even if we settle for predicting their mixed strategy we will only
be able to provide predictions for a subclass of all possible oppo-
nents. Eventually, it is necessary to accept that one’s prediction is
as accurate as it can be, and deal rationally with the possibility that
it may still be inaccurate.

This leads us to consider the ways in which a prediction can
be incorrect, and how we can track and respond to that. In some
cases, a prediction may be technically incorrect, but harmlessly so.
For example, consider an agent which plays a mixed strategy but
uses the digits of π as its randomization device. Such an agent is
perfectly predictable in theory (it is playing a fixed sequence of
moves), but in practice it is impossible to consider all strategies of
that type. In this situation it is reasonable and effective to model
the agent as playing the mixed strategy, despite the fact that a more
accurate prediction is theoretically possible.

The prediction errors which are of practical concern are those in
which the opponent is exploiting the agent’s response to an inaccu-
rate prediction, either for their own benefit, or to reduce the payoff
to the agent. (Technically speaking it is also a prediction error when
the opponent plays to increase the agents score or reduce its own
score, but we feel that issue does not represent a significant prob-
lem). RSRS allows an agent to deal appropriately with those types
of opponents by choosing appropriate parameter values.

The main contributions of this paper are:

1. a novel algorithm, the Restricted Stackelberg Response with
Safety (RSRS), which is applicable to general sum games
and which calculates a strategy that provides a balance be-
tween best-responding to the prediction, avoiding exploita-
tion by a smarter opponent, and guaranteeing the safety value,
according to the parameter values it is given,
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2. a method to compute appropriate parameter values to be used
for RSRS, and

3. experimental results obtained in several non-zero sum games
against different types of opponents: an omniscient oppo-
nent who is best-responding, a worst-case opponent, and a
simple learning opponent. We compare the performance of
RSRS against state-of-art algorithms (Best response, RNR,
SPS, and GIGA-Wolf). We also prove the uniqueness of Re-
stricted Nash Response (RNR) in zero-sum games.

Terminology. A game G consists of a set of players {1, 2}, a set of
actions for each player M1 = {m1

1 . . .m
n1
1 },M2 = {m1

2 . . .m
n2
2 },

and a set of utility functions U1, U2 : M1×M2 → �. s1 ∈ �n1−1

and s2 ∈ �n2−1 are the mixed strategies adopted by player 1 and
player 2 respectively.

We define Ui(s1, s2) = Em1∼s1,m2∼s2 [Ui(m1,m2)] as the ex-
pected outcome for player i when actions are drawn from the distri-
butions s1 and s2. The Nash equilibrium is a set of strategies s1, s2
such that U1(s1, s2) ≥ maxm1∈M1 U1(m1, s2) and U2(s1, s2) ≥
maxm2∈M2 U2(s1,m2). The safety value of game G for player i
against opponent j is: V i

G = maxsi∈�ni−1 minmj∈Mj Ui(si,mj).
This is the greatest amount player i can guarantee for herself re-
gardless of the opponent’s action. Note that for general-sum games,
this value may be lower than the expected payoff of any Nash equi-
librium of the game.

If player 1 is designated as a Stackelberg leader [10] for the
game, she selects a mixed strategy which is observed by player 2
before player 2 selects her strategy.

The Stackelberg equilibrium of a game is a set of strategies s1, s2
such that

s1 = argmax
s∈�n1−1

U1(s, argmax
s′∈M2

U2(s, s
′))

s2 = argmax
s∈M2

U2(s1, s)

Demonstration Game. The advantages of RSRS can most eas-
ily be observed in competitive general sum games where players
have some common interests. In more competitive games, such as
Rock/Paper/Scissors, performance is similar to other algorithms for
risk avoidance. In more cooperative games, such as Battle of the
Sexes, faults in the predictor aren’t as significant because the oppo-
nent has less motivation to play deceptively.

Table 1: Payoffs for Rock/Spock/Paper/Lizard/Scissors.
Rock Spock Paper Lizard Scissors

Rock 0,0 -.5,1.5 -1.5,.5 .5,-1.5 1.5,-.5

Spock 1.5,-.5 0,0 -.5,1.5 -1.5,.5 .5,-1.5

Paper .5,-1.5 1.5,-.5 0,0 -.5,1.5 -1.5,.5

Lizard -1.5,.5 .5,-1.5 1.5,-.5 0,0 -.5,1.5

Scissors -.5,1.5 -1.5,.5 .5,-1.5 1.5,-.5 0,0

The game we will use to show the properties of our RSRS method
is a general-sum modification of Rock/Spock/Paper/Lizard/Scissors
– a variant of Rock/Paper/Scissors with 5 moves (Table 1).

Rock/Paper/Scissors/Lizard/Spock was presented in the TV show
The Big Bang Theory; we have modified it to make it general-sum,
and changed the name to reflect the precedence relationship be-
tween the moves. Each action beats two other actions, and is beaten
in turn by the two remaining actions, as shown in Figure 1.

Players receive a payoff of 1 for a win, −1 for a loss, and 0 for
a tie. In addition, both players receive .5 when adjacent moves are
played and lose .5 when non-adjacent moves are played. The game
has a unique Nash equilibrium at s1 = s2 = (.2, .2, .2, .2, .2).

In this game players have conflicting interests but some cooper-
ation is possible, which allows us to distinguish between a best-
responding opponent and a worst case outcome. This distinction
highlights the properties of our algorithm, which is why we use
Rock/Spock/Paper/Lizard/Scissors for a demonstration game.

Figure 1: Precedence relationships in Rock/Spock/Paper/-
Lizard/Scissors. Arrows point from winning moves to losing
moves. Green dots indicate adjacent moves which receive a
bonus. Red dots indicate non-adjacent moves which receive a
penalty.

2. RELATED WORK
General sum normal form games provide a useful formaliza-

tion to describe interacting agents. In situations without the public
knowledge necessary to justify a Nash equilibrium, a reasonable
approach is to form a prediction of the opponent behavior and re-
spond to the prediction.

Our work focuses on finding safe strategies to respond to a pre-
diction. Fictitious play [9] is the simplest way to form a prediction
and respond to it. It predicts the most likely opponent strategy un-
der the assumption the opponent is playing a stationary strategy
and then plays a best response to that strategy. In self-play the em-
pirical distribution formed by fictitious play can arrive at a Nash
equilibrium, but that is not guaranteed. Fictitious play is easily pre-
dictable, and can be taken advantage of. De Cote and Jennings [8]
describe a method of taking advantage of fictitious play by identi-
fying sequences of moves which to a fictitious player appear to be
a stationary distribution, but provide a higher payoff than what that
distribution would receive in expectation.

Unlike fictitious play GIGA-WolF [2] does not form a prediction,
instead it continually adjusts its strategy towards higher rewards,
following the Win-Or-Learn-Fast principle [3]. It is guaranteed to
achieve no-regret and to converge to an equilibrium in self-play.

AWESOME [6] forms a prediction of opponent behavior based
on differentiating between a stationary distribution, an equilibrium
strategy, or some unknown strategy. It best responds to a stationary
distribution, and plays an equilibrium strategy otherwise. It guaran-
tees a best-response against a stationary player, but unlike fictitious
play it will arrive at an equilibrium in self-play.

TPCM(A) [16] forms a more sophisticated prediction of oppo-
nent behavior. It detects whether an opponent can be trained using
Godfather [13], if it is willing to cooperate to achieve a Pareto-
efficient outcome, or if it plays a fixed strategy conditional on the
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last k turns. It is optimal against its target set, Pareto-efficient in
self-play, and guaranteed to achieve its safety value. CMLeS [4]
provides similar guarantees against a larger set of target opponents.
It models the opponent as playing a strategy conditional on some
number of previous turns, up to a fixed maximum. It uses the Nash
equilibrium as a fallback position against opponents it can’t predict.

RWYWE [11] plays an equilibrium strategy by default. If the
opponent plays a non-equilibrium strategy which gives the agent
a higher payoff, it will adjust its strategy to respond better to the
opponent’s apparent strategy while guaranteeing an expected loss
no greater than the already realized expected gain. Wang et al. [17]
describe an algorithm which plays a Nash equilibrium in a modified
game which constrains the opponent to play a strategy similar to the
observed strategy, retreating to minimax if the opponent doesn’t
play predictably.

One way to handle a sophisticated opponent is to assume that the
opponent can accurately predict the strategy the agent will choose.
A Stackelberg game has a designated leader and follower. The leader
commits to a mixed strategy which is revealed to the follower, who
then selects their response. The leader’s ability to pre-commit to a
strategy can be beneficial, allowing it to pre-commit to a preferred
equilibrium, or even a non-equilibrium strategy which has a better
outcome for them.

Our work uses the Stackelberg equilibrium. To avoid being de-
ceived by an opponent which plays a distribution near the best re-
sponse but is not strictly best-responding, we use an exponential
response function to our chosen distribution that models an oppo-
nent who is biased towards best-responding. A similar problem is
addressed in [15] from the other direction – namely being a Stack-
elberg leader when the opponent has cognitive biases, such as an-
choring or bounded rationality. We modify the Stackelberg equi-
librium to reflect our prediction of opponent behavior and desired
safety value. They modify the Stackelberg equilibria to reflect the
fact that the follower may not be strictly best-responding.

The approaches most similar to our work are Safe Policy Selec-
tion (SPS) [14] and Restricted Nash Response (RNR) [12], which
we describe next.

3. BACKGROUND
Safe Policy Selection. SPS [14] is a method of deciding how

much to risk against a potentially stronger opponent. Given a game
G with safety value V 1

G, an r-safe strategy sr1 is one whose worst
case payoff is within r of the safety value

min
s2∈�n2−1

U(sr1, s2) ≥ V 1
G − r.

SPS selects the r-safe strategy with the best performance against
the prediction. Over a series of games SPS adjusts r values to guar-
antee a payoff close to the value of the game, while also perform-
ing well against predictable opponents. It does this by setting rn
(the r value to use in round n) according to rn = rn−1 + 1/n +
U1(s

n−1
1 ,mn−1

2 ) − V 1
G where sn1 is the agent’s mixed strategy in

round n and mn
2 is the opponent’s move in round n. Results in

Rock/Paper/Scissors demonstrate that SPS can improve the perfor-
mance of weak players against stronger players.

Restricted Nash Response. RNR [12, 1] exploits a prediction of
opponent behavior in a zero-sum game while avoiding exploitation.
It finds a strategy by constructing a modified game, and taking the
Nash equilibrium of that game. Results in poker demonstrate that
it is possible to find strategies which are very effective against the
prediction while remaining resistant to exploitation.

To calculate a RNR to a prediction s2 ∈ �n2−1 in a zero-sum
game G using a weight w ∈ [0, 1] construct a modified game

G′ with M ′
1 = M1, M ′

2 = M2, U ′
2 = U2, and U ′

1(m1,m2) =
w×U1(m1, s2) + (1−w)×U1(m1,m2). RNR returns the Nash
equilibrium of G′. Note that although G′ is not zero-sum equilib-
rium selection is not a problem because, as we will show later, all
equilibria of G′ are interchangeable.

Although RNR and SPS are generated by different procedures,
the set of strategies generated by RNR is a subset of the set of
strategies generated by SPS. Johanson et al. [12] demonstrate that
for any w value, there will always be an r value for which SPS
produces the same strategy as RNR.

We will show that the general-sum modified game created to cal-
culate a RNR for a zero-sum game has a unique Nash equilibrium.
We consider two equilibria distinct if each player strictly prefers to
play their equilibrium strategy in each equilibrium: U1(s1, s2) >
U1(s

′
1, s2), U1(s

′
1, s

′
2) > U1(s1, s

′
2), U2(s1, s2) > U2(s1, s

′
2),

and U2(s
′
1, s

′
2) > U2(s

′
1, s2). (If the preference is weak then the

two equilibria are part of the same connected component and play-
ers can play either strategy and achieve the same payoff.)

Theorem 1. Given a zero-sum game G with utility functions U1 =
U and U2 = −U let G′ be the modified game created to calculate a
RNR to a prediction p, with utility function U ′ where U ′

1(m1,m2) =
w×U(m1, p)+(1−w)×U(m1,m2) and U ′

2 = −U . G′ doesn’t
have two distinct equilibria.

Proof. Assume G′ has two distinct Nash equilibria s and s′. Con-
struct a new game G′′ from G′ with moves s1, s

′
1 ∈ �n1−1 and

s2, s
′
2 ∈ �n2−1 and payoffs equal to playing the corresponding

strategies in G′. Because s and s′ are distinct, we have:

w × U(s1, p) + (1− w)× U(s1, s2) >

w × U(s′1, p) + (1− w)× U(s′1, s2)
(1)

w × U(s′1, p) + (1− w)× U(s′1, s
′
2) >

w × U(s1, p) + (1− w)× U(s1, s
′
2)

(2)

−U(s′1, s
′
2) > −U(s′1, s2) (3)

−U(s1, s2) > −U(s1, s
′
2) (4)

From 1 and 3 we get:

w × U(s1, p) + (1− w)× U(s1, s2) >

w × U(s′1, p) + (1− w)× U(s′1, s
′
2)

(5)

From 5 and 2 we get:

w × U(s1, p) + (1− w)× U(s1, s2) >

w × U(s1, p) + (1− w)× U(s1, s
′
2)

(6)

From 6 and 4 we get:

w × U(s1, p) + (1− w)× U(s1, s2) >

w × U(s1, p) + (1− w)× U(s1, s2)
(7)

This is not possible, so there cannot be two distinct Nash equilibria
in the modified game created for RNR.

4. EXTENSION TO GENERAL-SUM GAMES
Safe Policy Selection. SPS was developed for zero-sum games,

but it can be extended to general-sum games by treating the value of
the game as the amount which the player can guarantee for itself,
regardless of the actions of the opponent. In general-sum games
SPS may not be an effective method of ameliorating risk. Consider
a game in which an opponent has a punishing move which causes
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the agent to receive a bad outcome regardless of the action the agent
chooses. In this case, regardless of the risk value chosen, the algo-
rithm will play a best-response to the prediction, because it will do
no worse than any other strategy if the opponent selects the punish-
ing move. We don’t use SPS in such games.
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Figure 2: Payoffs of r-safe strategies with a prediction of Rock
in the game Rock/Spock/Paper/Lizard/Scissors for different
values of r.

Figure 2 shows how the r value affects the performance of SPS in
Rock/Spock/Paper/Lizard/Scissors. Performance is measured against
the prediction, against a best responding opponent which maxi-
mizes its own payoff given the agent’s strategy, and against a worst
case opponent which minimizes the agent’s payoff given the agent’s
strategy. When r = 0 the generated strategy is the maximin strategy
(.2, .2, .2, .2, .2). When r = 1.5 the generated strategy is (0, 1, 0, 0, 0),
which is the best response to the prediction. Intermediate values
cause the generated strategy to vary continuously between those
two extremes.

Restricted Nash Response. RNR can be extended to general
sum games by providing a method of selecting an equilibrium when
there are multiple equilibria, such as choosing the equilibria with
the highest payoff. RNR does not generate multiple equilibria for
Rock/Spock/Paper/Lizard/Scissors. Figure 3 shows the effect of the
w parameter. The agent predicts Rock and performance is measured
against the prediction, against a best responding opponent which
maximizes its own payoff given the agent’s strategy, and against a
worst case opponent which minimizes the agent’s payoff given the
agent’s strategy. When w = 1, RNR will play a best response to
the prediction, When w = 0, RNR will play a Nash equilibrium
of the original game. Intermediate values will cause the strategy to
abruptly change when increasing the w value prevents the opponent
from playing its strategy in the current equilibrium. In general-sum
games, increasing the weight value can reduce performance against
the prediction when the opponent strategy in the new equilibrium
is beneficial to the agent.

5. RESTRICTED STACKELBERG
RESPONSE WITH SAFETY

We define the Restricted Stackelberg Response with Safety (RSRS)
for player 1 in game G with prediction p ∈ �n2−1, prediction
weight w ∈ [0, 1], and risk factor r ∈ �+ to be the mixed strategy
for player 1 that maximizes its expected payoff given the assump-
tion that, with probability w, the opponent will play according to
the prediction p and, with probability 1 − w, it will best-respond
to the agent, subject to the constraint that its expected payoff when
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Figure 3: Payoffs of RNR to a prediction of Rock in Rock/-
Spock/Paper/Lizard/Scissors for different values of w. The cho-
sen strategy changes at weight values .2 and .4, where the
changing parameter disrupts the current equilibrium.

played against any opponent action is at least V 1
G − r. The Re-

stricted Stackelberg Response (RSR) is identical except that it has
no constraint using r (it has no safety factor).

The RSRS is calculated by constructing a new payoff function
for player 1 which reflects the assumption that the opponent will
play the prediction with probability w:

U ′
1(m1,m2) = w × U1(m1, p) + (1− w)× U1(m1,m2)

The RSRS for player 1 is the probability distribution s1 ∈ �n1−1,
which maximizes the expected value of U ′

1 under the assumption
that player 2 will best respond, subject to the constraint

U1(s1,m2) ≥ V 1
G − r for all m2 ∈ M2.

Assuming that the opponent is best-responding to the action of
player 1 is equivalent to designating player 1 as a Stackelberg leader.
The game does not have a Stackelberg leader; that assumption is a
convenient way to handle the possibility of a best-responding op-
ponent.

We compute the RSRS using a modification of the technique
in [5]. For each opponent action we find a mixed strategy to which
the opponent action is a best response and which satisfies the safety
value constraint. Then we select the option which performs best
against a weighted combination of the prediction and a best re-
sponding opponent. More formally, for each m2 ∈ M2 maximize
over sm2

1 ∈ �n1−1:

sm2
1 = argmaxs1∈�n1−1U

′
1(s1,m2)

subject to: ∀m′
2 ∈ M2, U2(s

m2
1 ,m2) ≥ U2(s

m2
1 ,m′

2)

and ∀m′
2 ∈ M2, U1(s

m2
1 ,m′

2) ≥ V 1
G − r

Solving this set of equations for each opponent action will give us at
least 1 and up to n mixed strategies for player 1. The mixed strategy
s1 with the highest expected value in U ′

1 against the opponent’s best
response is the RSRS. The complexity of calculating the RSRS is
polynomial in the number of moves in the game.

The values chosen for probability weight (w) and risk factor (r)
control the tradeoff between performance against the prediction,
performance against a best-responding opponent (w), and perfor-
mance against a worst-case opponent (r).
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Figure 4: Payoffs of RSRS to a prediction of Rock in the game
Rock/Spock/Paper/Lizard/Scissors with w varying from 0 to 1,
and r fixed at 1.5.

For a fixed risk factor there are many probability weights that
produce the same strategy – changes in w either produce no change
in strategy or a discontinuous jump to a new strategy. Jumps occur
when confidence in the prediction becomes high enough to justify
the additional vulnerability to a best-responding opponent. In con-
trast, changes to r produce a continuous variation between a min-
imax strategy and a prediction exploiting strategy. The effect of r
dominates the effect of w. If r = 0, the w value has no effect.
This allows us to provide the same guarantees as SPS by selecting
a value for r as SPS does. We select a value for w by calculat-
ing the relative posterior probability of the opponent following the
prediction and the opponent best-responding.

Figure 4 shows the effects of w on performance, which is mea-
sured against the prediction, against a best responding opponent
which maximizes its own payoff given the agent’s strategy, and
against a worst case opponent which minimizes the agent’s payoff
given the agent’s strategy. w < .6 produces a Stackelberg equi-
librium, w > .6 produces a best response to the prediction. The
strategy abruptly changes at .6 because at that point a threshold is
passed where the increased payoff against the prediction justifies
a reduced payoff against a best-responding opponent. Like SPS,
r produces a continuous variation of performance (see Figure 2),
ranging from the maximin strategy (r = 0) to a best response
(r = 1.5).

We can characterize the change in performance produced by a
change in w for a fixed r in terms of the trade-off between per-
formance against the prediction and performance against a best-
responding agent. For example, in Rock/Spock/Paper/Lizard/Scissors,
with a prediction of Rock and r = 1.5

RSRS produces (0, .6, 0, 0, .4) when w < .6 and (0, 1, 0, 0, 0)
when w ≥ .6. The first strategy produces a payoff of .7 when
played against the prediction or a best-responding opponent. The
second equation produces a payoff of 1.5 when played against the
prediction, and a payoff of −.5 when played against a best-responding
opponent.

When w changes from below .6 to above .6 RSRS gains .8 in
expected payoff against the prediction and loses 1.2 against a best-
responding opponent. The expected gain is 2/3 as much as the ex-
pected loss. This matches .4/.6, the relative probability of those
events expressed by a w value of .6. This relationship holds for any
game and value of w.

We are interested in values of w between two regions where the
RSRS for a fixed r does not change. For those w values we denote

with rsrsw+ and rsrsw− respectively the RSRS for the region
with weight values higher or lower than w. We denote with brw+

and brw− the best responses to those strategies. Assume we are
given a game G, a prediction p ∈ �n2−1, and a w where the RSRS
changes. If there is a δ such that for all 0 < ε < δ the RSRS with
weight w+ ε is the same for all ε, and the RSRS with weight w− ε
is the same for all ε, and rsrsw+ �= rsrsw−, we will prove:

Theorem 2. The ratio of the performance gain against the predic-
tion to the performance loss against a best-responding opponent is
1−w
w

, i.e.,

U1(rsrsw+, p)− U1(rsrsw−, p)
U1(rsrsw−, brw−)− U1(rsrsw+, brw+)

=
1− w

w

We will begin by showing that reducing w can only improve
performance against a best-responding opponent. This may seem
obvious, but it doesn’t hold for RNR in general-sum games.

Lemma 1. U1(rsrsw+, brw+) < U1(rsrsw−, brw−)

Proof. Consider the quantities U1(rsrsw+, p) − U1(rsrsw−, p)
and U1(rsrsw+, brw+)−U1(rsrsw−, brw−), which represent the
performance gain of rsrsw+ relative to rsrsw− against the predic-
tion and against a best-responding opponent respectively. If both
are positive or both are negative then rsrsw+ or rsrsw− would be
strictly superior to the other, which contradicts the fact that that they
were generated as payoff-maximizing distributions. Let Uw+ε be
the utility function for player 1 in the modified game created with
prediction p and weight w+ε. Because rsrsw+ was found by max-
imizing performance in Uw+ε against a best-responding opponent,
we know that Uw+ε(rsrsw+, brw+) > Uw+ε(rsrsw−, brw−).
From the definition of Uw+ε this gives us

(w + ε)U1(rsrsw+, p) + (1− w − ε)U1(rsrsw+, brw+) >
(w + ε)U1(rsrsw−, p) + (1− w − ε)U1(rsrsw−, brw−)

(8)
Similarly, for rsrsw− we have

(w − ε)U1(rsrsw−, p) + (1− w + ε)U1(rsrsw−, brw−) >
(w − ε)U1(rsrsw+, p) + (1− w + ε)U1(rsrsw+, brw+)

(9)
We can manipulate Eq. 8 to get

(w − ε)U1(rsrsw+, p) + (1− w + ε)U1(rsrsw+, brw+)
+2ε((U1(rsrsw+, p)− U1(rsrsw−, p))
−(U1(rsrsw+, brw+)− U1(rsrsw−, brw−)))
> (w − ε)U1(rsrsw−, p) + (1− w + ε)U1(rsrsw−, brw−)

For this and Eq. 9 to be true, we must have

2ε((U1(rsrsw+, p)− U1(rsrsw−, p)) >
(U1(rsrsw+, brw+)− U1(rsrsw−, brw−)))

(10)

We know that U1(rsrsw+, brw+) − U1(rsrsw−, brw−) and that
U1(rsrsw+, p) − U1(rsrsw−, p) have different signs. If the first
term is positive and the second negative, then Eq. 10 will be false,
so it must be that U1(rsrsw+, p)− U1(rsrsw−, p) is positive and
U1(rsrsw+, brw+)− U1(rsrsw−, brw−) is negative.

Using Lemma 1, we can prove Theorem 2.

Proof. rsrsw+ is calculated by maximizing payoff in the modified
game, so

Uw+ε
1 (rsrsw+, brw+) > Uw+ε

1 (rsrsw−, brw−)
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where Uw+ε
1 (rsrsw+, brw+) is the expected value of playing rsrsw+

against a best-responding opponent in the modified game Uw+ε.
Similarly

Uw−ε
1 (rsrsw−, brw−) > Uw−ε

1 (rsrsw+, brw+)

From how Uw is constructed we have

(w + ε)U1(rsrsw+, p) + (1− w − ε)U1(rsrsw+, brw+) >
(w + ε)U1(rsrsw−, p) + (1− w − ε)U1(rsrsw−, brw−)

(w − ε)U1(rsrsw−, p) + (1− w + ε)U1(rsrsw−, brw−) >
(w − ε)U1(rsrsw+, p) + (1− w + ε)U1(rsrsw+, brw+)

By rearranging terms we have:

U1(rsrsw+, p)− U1(rsrsw−, p)
U1(rsrsw−, brw−)− U1(rsrsw+, brw+)

>
1− w − ε

w + ε

and

U1(rsrsw+, p)− U1(rsrsw−, p)
U1(rsrsw−, brw−)− U1(rsrsw+, brw+)

<
1− w + ε

w − ε

These last two equations provide the lower and upper bounds. By
taking the limit as ε −→ 0 we prove the theorem.

6. LEARNING WEIGHT VALUES
RSRS assumes that the opponent will best respond if the predic-

tion is incorrect, so to compute w we estimate the relative probabil-
ities that the opponent played according to the prediction or played
a best response in previous rounds. Computing the probability the
opponent has played according to the prediction is easy. A naive
method of estimating the probability that the opponent played a
best response would assign a probability of 1 or 0 (either the op-
ponent played a best response in every previous game or not). This
is easy to deceive – for example, an opponent which consistently
plays the second-best response would not be considered to be best-
responding.

We adopt a model in which the opponent plays according to an
exponential response function to their expected payoff against the
agent’s chosen strategy. Given an agent strategy s1 ∈ �n1−1, the
opponent’s exponentially weighted response is

P (mi
2) =

eλU2(s1,m
i
2)

∑
m

j
2∈M2

eλU2(s1,m
j
2)

where λ describes how responsive the opponent is to higher pay-
offs. λ = 0 describes an opponent that plays uniformly at random.
The higher the λ value, the stronger the opponent’s preference for
higher expected payoff moves.

We calculate λ by finding the value with the maximum likeli-
hood for the prior actions of the opponent. If all the observations
have been best responses, the probability maximizing value will be
∞, so we introduce a smoothing observation (see Algorithm 1).
We then use λ to compute the probability that a best-responding
opponent played the observed move. This allows us to compute the
relative probability of a best-responding opponent vs. an opponent
playing according to the prediction. We use that value to determine
the probability weight to use with RNR and RSRS (see Algorithm
1).

7. RESULTS
We report results obtained in Rock/Spock/Paper/Lizard/Scissors,

Traveller’s Dilemma, and a simple pursuit/evasion game. Graphs
for Battle of the Sexes, Chicken, Stag Hunt, and several other games

Algorithm 1 Estimate relative probability of prediction and best-
responding opponent

Initialize t = 1, chosen1 = .9, options1 = (0, .9, 1)
P (Prediction) = .5, P (BestResponse) = .5
while the game continues do

{Make observations from the previous round}
Set s′1 ∈ �M1, the strategy played by the agent
Set s′2 ∈ �M2, the predicted strategy for the opponent
Set m′

2 ∈ M2, the observed opponent move
Set u′

2 = US(s
′
1,m

′
2), the opponents expected utility

{Calculate the expected payoff of the opponent’s moves}
for all mi

2 ∈ M2 do
Set ui

2 = U2(s
′
1,m

i
2)

end for
Increment t
Set chosent = u′

2

Set optionst = u1
2..u

n
2

Find λ maximizing
∏t

i=1
eλchoseni

∑n
j=1 e

λoptionsi,j
using gradient

descent
{Update the estimated probabilities}
P (Prediction) = P (Prediction)× s′2(m

′
2)

P (BestResponse) = P (BestResponse)× eλu′
2

∑n
i=1 e

λui
2

Renormalize P (Prediction) and P (BestResponse)

Set prediction weight to
P (Prediction)

P (Prediction)+P (BestResponse)

end while

are omitted for lack of space. In more competitive games all ap-
proaches are broadly successful since a best-responding opponent
behaves like a worst-case opponent. In more cooperative games, us-
ing the Stackelberg equilibrium provides a significant gain against
best-responding opponents.

In the experiments agents play a sequence of 100 games. Results
are averaged over 100 repetitions. We show the performance of six
approaches:

1. a best response to the prediction,
2. SPS,
3. RNR using the calculated weight,
4. RSR using the calculated weight (with no risk factor),
5. RSRS using the calculated weight and SPS to determine risk

factors, and
6. GIGA-WolF.

All, except GIGA-WolF, predict the opponent using fictitious play:
they assume a stationary opponent playing a distribution drawn
from a uniform Dirichlet distribution, and predict using the ex-
pected value of that distribution given the observed moves. This
flawed prediction technique is chosen to show that RSRS can han-
dle inaccurate predictions.

Figure 5 shows performance of the six different algorithms against
three opponents, an omniscient best-responding opponent, a worst-
case opponent, and a simple learning opponent (observes for 50
moves, and then plays a best response to the observed distribution).

An omniscient best-responding opponent knows the agent’s mixed
strategy and plays to maximize its own payoff. A worst case oppo-
nent knows the agent’s mixed strategy and plays to minimize the
agent’s payoff. These opponents provide a strong basis for evalu-
ation because they represent the most disadvantageous conditions:
the opponent is aware of the agents strategy and uses that to harm
the agent or further its own interests.

Against a best-responding opponent, approaches based on the
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Figure 5: Expected payoff of a player playing different strate-
gies in the game Rock/Spock/Paper/Lizard/Scissors against a
best-responding (top), worst case (middle), and simple learning
(bottom) opponent, over 100 games. Error bars show 95% con-
fidence interval. Error bounds for the worst case opponent are
so tight they are not easily visible.

Stackelberg response perform well. It takes 10-20 observations to
learn that the opponent is best-responding, after which the agent
takes advantage of that trait. SPS treats the situation as worst case
and achieves the value of the game. GIGA-WolF is worse than
RSRS and RSR, but still outperforms the safety value. RNR uses
the same weight value as RSRS but achieves a worse outcome. Both
RSR and RNR are trying to find a strategy which performs well
when the opponent is best-responding, but RSR achieves a better

outcome because it does not require its own strategy to be a best-
response to the opponent strategy.
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Figure 6: Expected payoff in Traveller’s Dilemma against a
best-responding (top) and worst case (bottom) opponent, over
100 games.

Approaches which include SPS quickly detect a worst-case op-
ponent and play the maximin strategy (which is the best possible
outcome in this situation). Of the agents that don’t use SPS, GIGA-
WolF approaches the safety value, and RNR does better than RSR
(without safety) because assuming a best-responding opponent is
inaccurate. The switching opponent reveals what happens when the
predictor adjusts to a changing opponent more rapidly than the pa-
rameter values. 50 rounds of observations of successful play against
the initial strategy builds up a very high risk factor, and a high cer-
tainty that the opponent is not best-responding. As a result strate-
gies dependent on those parameters don’t adjust to the new strategy
until the predictor does. GIGA-WolF reacts faster to the switching
opponent because it doesn’t use fictitious play as a predictor.

Figure 6 shows the performance of best-responding, SPS, RNR,
RSR, and RSRS in the game Traveller’s Dilemma.

Traveller’s Dilemma is a general-sum game in which both play-
ers choose a payoff from 1 to 10. Each player receives the lowest
payoff, and if one player chose a lower payoff than the other, that
player receives a bonus of 1, while the other receives a penalty of
1. The Nash equilibrium of Travellers Dilemma is for both players
to chose the minimum payoff, but the social welfare maximizing
strategy is for them both to chose the maximum payoff.

Against an omniscient best-responding opponent methods which
use the Stackelberg equilibrium perform well, SPS, GIGA-WolF,
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and simple best-response gradually converge to the Nash equilib-
rium, and unsurprisingly, RNR rapidly arrives at the Nash equi-
librium. Against the worst case opponent, all agents, except RSR,
eventually arrive at the Nash equilibrium (which is also the mini-
max strategy).
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Figure 7: Expected payoff of the evader in the pursuit/evasion
game against a best-responding (top) and worst case (bottom)
opponent, over 100 games.

Figures 7 and 8 show the performance of best-responding, GIGA-
WolF, SPS, RNR, RSR, and RSRS in a simple pursuit/evasion game.
There are 4 locations, with associated payoffs from 0 to 4. Each
player receives the payoff of the location they chose. In addition
the pursuer receives a payoff of 10 for choosing the same location
as the evader, while the evader receives a payoff of 10 for choos-
ing a different location from the pursuer. The Nash equilibrium of
the game is (.075, .175, .275, .475) for the pursuer (checking pre-
ferred locations more often), and (.425, .325, .225, .025) for the
evader (staying away from the preferred locations).

An evader which best-responds to its prediction does particularly
poorly regardless of the opponent. For all agents there is consider-
able instability because minor changes in the prediction can result
in relatively large changes in the response. Against a worst case
opponent, agents which use a risk factor parameter perform best.
Note that RSRS is slower to reach the minimax strategy because
its performance prior to reaching that strategy is better, so it takes
longer for the initial risk factor to deplete. A pursuer is best-off us-
ing RSR or RSRS against a best-responding opponent. Against a
worst-case opponent, RSRS and SPS are the only strategies which
find the minimax solution.
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Figure 8: Expected payoff of the pursuer in the pursuit/evasion
game against a best-responding (top) and worst case (bottom)
opponent, over 100 games.

8. CONCLUSIONS AND FUTURE WORK
We have presented RSRS, a new method for choosing a strategy

in a general-sum normal form game. that takes advantage of a pre-
diction of opponent behavior while guarding against exploitation,
and shown experimentally that it is effective. RSRS provides a use-
ful basis for acting on a prediction in a general-sum environment.

RSRS deals well with two dangerous opponent types when the
prediction is inaccurate, but there are other possible opponents. For
example, an opponent which is mildly hostile to the agent will re-
strict RSRS to the value of the game, but a better strategy could
be to offer such an opponent a higher incentive to cooperate. Fu-
ture work will explore a larger variety of opponents, making more
general assumptions about their behavior.

Developing performance guarantees for the weight-learning al-
gorithm is left for future work. Our results show that the weight-
learning algorithm is effective, but a more solid theoretical basis is
desirable. The algorithm used to assign risk factors for SPS is ele-
gant and effective, and we would like to create a similar algorithm
for assigning weight values.
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