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ABSTRACT
With the growing complexity of the current power grid,
there is an increasing need for intelligent operations coor-
dinating energy supply and demand. A key feature of the
smart grid vision is that intelligent mechanisms will coordi-
nate the production, transmission, and consumption of en-
ergy in a distributed and reliable way. Economic Dispatch
(ED) and Demand Response (DR) are two key problems
that need to be solved to achieve this vision. In traditional
operations, ED and DR are implemented separately, de-
spite the strong inter-dependencies between these two prob-
lems. Therefore, we propose an integrated approach to
solve the ED and DR problems that simultaneously max-
imizes the benefits of customers and minimizes the genera-
tion costs, and introduce an effective multi-agent-based algo-
rithm, based on Distributed Constraint Optimization Prob-
lems (DCOPs), acting on direct control of both generators
and dispatchable loads. To cope with the high complex-
ity of the problem, our solution employs General Purpose
Graphical Processing Units (GPGPUs) to speed up the com-
putational runtime. We empirically evaluate the proposed
algorithms on standard IEEE bus systems and test the sta-
bility of the proposed solution with a state-of-the-art power
system simulator on the IEEE 30-bus system.
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1. INTRODUCTION
The current electricity grid is gradually transforming, fo-

cusing on harnessing the potential management from the
demand side with the support of widespread decentralized
energy resources and active customer participation [8]. To
support this transformation, within the smart grid vision,
intelligent agents will coordinate the production, transmis-
sion, and consumption of energy in a distributed and reliable
way.
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Two problems that need to be solved to achieve this vi-
sion are economic dispatch and demand response. Eco-
nomic dispatch (ED) [4] optimizes generation schedules to
meet predicted load conditions with the lowest cost possible.
This is inherently a difficult problem due to (1) the inter-
dependencies between the various generator settings; (2) the
need to coordinate generators across multiple power plants;
and (3) the need to respond promptly to changes in the load.
Typically, generation schedules are updated in intervals of
10 minutes or more [33]. Due to prediction errors, communi-
cation delays, and changes of operating conditions, real-time
adjustments of power generation are necessary, and are typi-
cally conducted by automatic generation control (AGC) and
local frequency control [15]. Additionally, under high pene-
tration of renewable generation, the forecast pattern of the
power production can be highly inaccurate so that adopting
solely conventional AGC systems is neither feasible to ensure
stable operating conditions nor economically efficient [38].

In response to this challenge, Demand Response (DR) [22]
services can be used to ensure stable operating conditions
(i.e., Reliability DR Resource), as well as reducing the cost
of ancillary services. DR resources can be planned to be dis-
patched at different time scales, from supporting frequency
regulation—requiring DR loads to respond in the order of
few seconds—to correcting phase imbalance on the feeders—
which requires responses in intervals of several minutes—
and supporting cold load operations by restraining load
demand—every several minutes to an hour intervals [14].
Some utilities (e.g., Midwest ISO) have built the infrastruc-
ture to enable some of these approaches [32].

When these adjustments are enforced, the energy effi-
ciency of the system may deteriorate, as the process does
not take DR applications into account. Indeed, in current
system operations, ED and DR are typically solved in iso-
lation, despite the clear inter-dependencies between them—
the output of DR (e.g., resulting aggregated load) is the
input of ED (e.g., amount of power to be produced by the
generators), and the constraints of ED (e.g., cost of activat-
ing a generator) translate to some of the objectives in DR
(e.g., cost per kWh consumed) [8]. To address this issue, re-
searchers1 recently started investigating solutions to bridge
the gap between the different time-scales at which ED and
DR are processed and by seamlessly integrating the two op-

1Including industry (e.g., http://www.innovari.com/).
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Figure 1: A Power Network Example (IEEE 30 Bus System) (left), and an electromechanical generator and dispatchable load
as implemented in the Matlab SimPowerSystems simulator (right).

erations together [18]. Additionally, under high penetration
of distributed energy resources and increasing customer par-
ticipation, a challenge for ED and DR is the management of
large amounts of scattered data [21]. Most existing solutions
for ED and DR are centralized and they require processing
large amounts of private data.

Thus, in this paper, we study an integrated and dis-
tributed approach for the ED and the DR problems, with
the goal of benefiting both energy producers and consumers.
Our contribution is fourfold: (1) We introduce a power net-
work model that integrates ED and DR and simultaneously
maximizes the benefits of customers while minimizing the
generation costs; (2) We propose a multi-agent based ap-
proach that is based on the Distributed Constraint Optimiza-
tion Problem (DCOP) formulation; (3) We employ General
Purpose Graphical Processing Units (GPGPUs) to cope with
the high complexity of the problem and speed up our al-
gorithms; and (4) We empirically evaluate our algorithms
on several standard IEEE bus systems and demonstrate the
effectiveness of the returned solutions in terms of system
stability on a state-of-the-art power system simulator.

The rest of the paper is organized as follows. In the
next section, we introduce an optimization model, called D-
EDDR, which integrates both the ED and the DR problems.
Section 3 reviews DCOPs and Dynamic DCOPs, and maps
the proposed D-EDDR problem to a dynamic DCOP. An
algorithm to solve such problem is then presented in Sec-
tion 4. Due to scalability issues, we propose a relaxation
of the D-EDDR problem in Section 5 and describe an algo-
rithm to solve the proposed relaxed problem in Section 6.
Additionally, we describe how this algorithm makes use of
GPGPUs to speed up the agents’ resolution. Section 7 dis-
cusses the theoretical properties of the algorithms presented.
We present related work in Section 8 and summarize our
evaluation of the proposed algorithms in Section 9. Finally,
Section 10 concludes the paper.

2. DISTRIBUTED ECONOMIC DISPATCH
WITH DEMAND RESPONSE (D-EDDR)

We now introduce the Distributed Economic Dispatch with
Demand Response (D-EDDR) problem, which integrates
both ED and DR problems. We describe related ED and
DR solution approaches in Section 8.

A power grid can be viewed as a network of nodes (called
buses in the power systems literature) that are connected
by distribution cables and whose loads are served by (elec-
tromechanical) power generators. Typically, a group of such
power generators are located in a single power station, and
a number of power stations are distributed in different ge-
ographic areas. Such a power grid can be visualized as an
undirected graph (V, E), in which buses (in V) are modeled
as graph nodes and transmission lines (in E ⊆ V × V) as
edges. This representation captures the ability of the current
to flow in both directions in a circuit. Figure 1 illustrates a
representation of the IEEE-30 Bus System, highlighting the
components described above.

We consider an n-bus power system, and we assume that
each bus injects and withdraws power through a generator
g ∈ G and a load l ∈ L, respectively, where G and L are,
respectively, the set of generators and loads in the problem.
Load buses can be dispatchable or non-dispatchable, based
on whether it is possible to defer a portion of the load. In
Figure 1, the generators are colored green, while the dis-
patchable loads are colored red.

We model each bus as an agent, capable of making au-
tonomous decision on its power consumption and generation.
W.l.o.g., we assume that there is exactly one generator and
one load in each bus. The case with multiple loads and gen-
erators per bus can be easily transformed into this simpler
model by precomputing the best operational conditions for
each output combination of loads and generation power.

When a load difference is revealed to the power system,
the ED problem is to regulate the output of the appropriate
units so that the new generation output meets the new load
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and the generators are at economic dispatch (i.e., running
efficiently according to some objective function). Near real
time power consumption monitoring from smart meters al-
lows short-term load prediction, which can supply the smart
grid with predictions on power consumption levels.

The D-EDDR problem with a time horizon H is formu-
lated as follows:

maximize

H∑
t=1

αt
(∑
l∈L

ul(L
t
l)−

∑
g∈G

cg(G
t
g)

)
(1)

where αt ∈ (0, 1] is a discount parameter that captures the
uncertainty in future predictions. Specifically, it is the prob-
ability associated with load prediction at time t, determined
by the forecaster. Ltl and Gtg represent, respectively, the de-
cisions upon the amount of power withdrawn by load l and
the amount of power injected by generator g, at time t. The
above objective includes the cost functions of the generators
as well as the utility functions of the customers’ loads, which
are defined, respectively, as:

cg(G
t
g)=αgG

t
g+βg(G

t
g)

2+|εg sin(φg(G
min
g −Gtg))| (2)

ul(L
t
l) =

{
βlL

t
l − 1

2
αl(L

t
l)

2 if Ltl ≤ βl
αl

1
2

(Lt
l )

2

βl
otherwise

(3)

as defined in [29] and [2], respectively, with
αg, βg, εg, φg, αl, βl being coefficients in R. The pres-
ence of valve-point effects2 for the generators are captured
by considering a sinusoidal term in the quadratic cost
function [34], which makes the optimization problem
non-convex.

The problem is subject to the following constraints:

Gmin
g ≤ Gtg ≤ Gmax

g ∀g ∈ G; 0<t≤H (4)

Lmin
l ≤ Ltl ≤ Lmax

l ∀l ∈ L; 0<t≤H (5)

Ltl ≤ L̇tl ∀l ∈ L; 0<t≤H (6)∑
l∈L

Ltl −
∑
g∈G

Gtg = 0 0<t≤H (7)

~LtL − ~GtG − B̂~θt = 0 0<t≤H (8)

|f tij | ≤ fmax
ij ∀(i, j) ∈ E ; 0<t≤H (9)

f tij = Bij(θ
t
i − θtj) ∀(i, j) ∈ E ; 0<t≤H (10)

Gt+1
g = Gtg + ∆t

pg ∀g ∈ G; 0<t≤H − 1 (11)

−∆max
pg ≤ ∆t

pg ≤ ∆max
pg ∀g ∈ G; 0<t≤H (12)

where L̇tl is the predicted maximum load at time step t.
Eqs. (4) and (5) express the lower and upper bounds for
power generation and load consumption at each generation
and load unit. These bound are derived by the physical
characteristics of generators and loads. Eq. (6) restricts the
loads to be within the predicted load limits. Eq. (7) ex-
presses the power supply-demand balance: The amount of
power generated must match the amount of power requested
at each time. Eq. (8) is a system of linear constraints de-
scribing the DC power flow. These constraints describe the
power flow through each transmission line which depend on
the power injections (from the generators), the power with-
drawals (from the loads), and the physical characteristics of

2 When a sequence of generator steam valves are opened,
there is a rippling effect on the generator’s power-cost curve,
called valve-point effect.
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Figure 2: Utility of Isolated ED vs Integrated ED with DR

the transmission lines, which are captured by the entries in
the matrix B̂. B̂ is an n-dimensional matrix whose entries
Bij describe the admittance associated to the transmission
line connecting buses i and j.3 In power systems, the admit-
tance is a measure of how easily a circuit will allow a current
to flow. The DC model is an extensively studied approxima-
tion to a full (nonlinear) AC power flow [37]. The DC load
flow relates real power to voltage phase angle, ignores reac-
tive power issues, and assumes voltages are close to normal.
~Gt, ~Lt, and ~θt are, respectively, the n dimensional vectors
of power generated, the power injected, and the bus phase
angles, associated to each unit in V at time t. The phase
angles describe the phase difference between the voltage and
current at the bus.

Eqs. (9) and (10) restrain the network flow over the line
connecting buses i and j, with fmax

ij denoting the line flow
limit. Such constraints relate the amount of power being
carried over each transmission line to the net injections and
withdraws of each bus (in turn, related to the bus volt-
age phase angles). Eqs. (11) and (12) express ramp con-
straints for each generator. That is, the maximum incre-
mental power that can be supplied or reduced in one time
step, and depends on the mechanical characteristics of the
generator. For more details on electrical power systems and
power flow study we refer the interested reader to [37].

To ensure stable operation of generators, prohibited op-
erating zones (POZs) are used to forbid the generators to
produce power within certain intervals [2, 29]. POZs are
formalized with the following constraint (where g1, . . . , gzg ,
are the POZs for generator g):

Gmin
g ≤ Gtg ≤ Gmin

g1

Gmax
gi−1

≤ Gtg ≤ Gmin
gi , if i = 2, . . . , zg

Gmax
gzg
≤ Gtg ≤ Gmax

g

(13)

Notice that the D-EDDR problem becomes non-smooth due
to the presence of POZs; coupled with the non-convex costs
(Eq. (2)) in the objective function, it makes the D-EDDR
optimization problem a particularly challenging one.

To empirically verify our hypothesis that an integrated
ED with DR approach will yield better results than the tra-
ditional approach of only considering ED, we ran a prelim-
inary experiment on an IEEE 30-bus system, where we op-
timally solve the convex optimization problem of D-EDDR,
and compare it against the optimal solution when DR is
not considered. Figure 2 shows the effect of applying the
integrated solution approach, yielding a larger utility.

3Bij =0 if no transmission line exists between buses i, j.
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(a) Example Initialized Table for Agent a1

G1
1 L1

1 . . . f1
12 f1

13 . . . Utility
10 23 . . . 21.3 1.3 . . . 70.4
9 23 . . . 20.3 2.2 . . . 71.3

. . . . . . . . . . . . . . . . . . . . .

(b) Example Initialized Table for Agent a2

G1
2 L1

2 . . . f1
12 f1

13 . . . Utility
5 10 . . . 1.6 2.2 . . . 10.0
6 10 . . . 3.2 -4.4 . . . 20.0

. . . . . . . . . . . . . . . . . . . . .

(c) Example Aggregated Table for Agent a2

G1
1 2 L1

1 2 . . . f1
12 f1

13 . . . Utility
15 33 . . . 22.9 3.5 . . . 80.4
16 33 . . . 24.5 -3.1 . . . 90.4
. . . . . . . . . . . . . . . . . . . . .

Table 1: Example Utility Tables

tables that it received from all its children agents and its own
utility table. Such process creates a new aggregated utility
table, where each row is the sum of one row from each of
the source tables. Thus, these operations differ from that of
DPOP. More specifically, assume that there are n tables that
need to be aggregated (e.g., the agent is aggregating the ta-
bles from its n�1 child agents and its own table), and let
~xi

r denote the r-th row of elements in the i-th table. Then,
the aggregated table has the following elements in each of
its row:

P
i ~x

i
ri

. The first 2 ·H columns of the resulting ta-
ble contain the total power injections and withdrawals of the
subtree at the aggregating agent; the next |F | ·H contain the
power flow values associated to the corresponding net injec-
tion;3 and the last column contains the sum of the utilities.
Importantly, the number of columns stays constant in the ag-
gregation step, whilst the number of rows in the resulting ta-
ble is the number of combinations of rows of the n utility
tables. Table 1(c) shows the result of aggregating the utility
tables in Table 1(a) and 1(b), where we assume that agent a1

is the child of agent a2.
Each non-root agent then sends the aggregated table up to

its parent, which repeats this process. The utilities thus prop-
agate up the pseudo-tree. Once the root agent aggregates its
utility tables, it prunes the rows of its aggregated table that
violates the remaining global constraints in Eqs. (7)–(10).
[Phase 4] Value Propagation: The root agent chooses its
value corresponding to the optimal row in its aggregated
table—the row with the maximum utility—and sends this
value and the row ID of the child’s utility table used to con-
struct the optimal row to each of its children agents. Each
child agent repeats the process and propagates the values
down the pseudo-tree.

5 Relaxed D-ED-DR
Unfortunately, DEEDS does not scale to problems of interest
due to a prohibitive amount of memory required and the size
of messages transmitted. The problem is with the size of the
utility tables generated and aggregated. If, for each combina-

3The net power injections at a bust are linearly related to the DC
line power flows, making such operation feasible.
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tion of generation and load values, there is a unique contribu-
tion to the line flows, then the number of rows in the utility
table initialized in Phase 2 is exactly the number of such com-
binations (i.e., (Gmax

a �Gmin
a ) · (Lmax

a �Lmin
a ) ·H) for agent a.

There are multiple possible contributions to the line flows per
combination of generation of load values. Thus, the number
of rows in the utility table cannot be bounded (since the line
flows are continuous values). This problem is exacerbated by
the aggregation procedure that creates an exponential number
of additional rows.

Let us introduce a relaxation of the D-ED-DR problem and
a relaxed version of DEEDS to address such issue. The reason
why all the possible contributions to the line flows for each
combination of generation and load values need to be stored
is due to the non-monotonicity of the line flow values aggre-
gation; the agents do not know whether the line flows violate
the global constraint until the contributions for all agents are
aggregated, which is done once the utility table reaches the
root agent. If the global constraint on the line flows could be
withdrawn, DEEDS would be significantly more scalable.

Thus, we relax the D-ED-DR problem by moving such
global constraint into the objective function, and transform-
ing it into a soft constraint with a penalty on the degree of its
violation. The resulting objective function is:

HX

t=1

↵t

0
@X

l2L
ul(L

t
l) �

X

g2G
cg(G

t
g) �

X

(i,j)2E
�t

ij

1
A (14)

with �t
ij as:

�t
ij =

(
! (|f t

ij | � fmax
ij )2 if

|ft
ij |

fmax
ij

> m

0 otherwise.

where ! 2 R+ and m 2 [0, 1] are parameters of the problem.
This approach is similar to the one used by researchers in the
power community [Sun et al., 1984].

6 Relaxed DEEDS
We now describe Relaxed DEEDS (R-DEEDS), an iterative
version of DEEDS that solves the relaxed D-ED-DR problem
optimally. Figure 2 shows the flow chart of the algorithm.
Similar to DEEDS, R-DEEDS agents also construct a pseudo-
tree (Phase 1) and initialize their utility tables (Phase 2).
Since the global constraint on the line flows are now in the ob-
jective function, each agent can now choose the line flow that
maximizes its utility for each combination of its generation
and load values. Thus, the number of rows in its initialized
utility table is at most the number of such combinations—
(Gmax

a � Gmin
a ) · (Lmax

a � Lmin
a ) · H for agent a.
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1 L1
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12 f1
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. . . . . . . . . . . . . . . . . . . . .
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Table 1: Example Utility Tables

tables that it received from all its children agents and its own
utility table. Such process creates a new aggregated utility
table, where each row is the sum of one row from each of
the source tables. Thus, these operations differ from that of
DPOP. More specifically, assume that there are n tables that
need to be aggregated (e.g., the agent is aggregating the ta-
bles from its n�1 child agents and its own table), and let
~xi

r denote the r-th row of elements in the i-th table. Then,
the aggregated table has the following elements in each of
its row:

P
i ~x

i
ri

. The first 2 ·H columns of the resulting ta-
ble contain the total power injections and withdrawals of the
subtree at the aggregating agent; the next |F | ·H contain the
power flow values associated to the corresponding net injec-
tion;3 and the last column contains the sum of the utilities.
Importantly, the number of columns stays constant in the ag-
gregation step, whilst the number of rows in the resulting ta-
ble is the number of combinations of rows of the n utility
tables. Table 1(c) shows the result of aggregating the utility
tables in Table 1(a) and 1(b), where we assume that agent a1

is the child of agent a2.
Each non-root agent then sends the aggregated table up to

its parent, which repeats this process. The utilities thus prop-
agate up the pseudo-tree. Once the root agent aggregates its
utility tables, it prunes the rows of its aggregated table that
violates the remaining global constraints in Eqs. (7)–(10).
[Phase 4] Value Propagation: The root agent chooses its
value corresponding to the optimal row in its aggregated
table—the row with the maximum utility—and sends this
value and the row ID of the child’s utility table used to con-
struct the optimal row to each of its children agents. Each
child agent repeats the process and propagates the values
down the pseudo-tree.

5 Relaxed D-ED-DR
Unfortunately, DEEDS does not scale to problems of interest
due to a prohibitive amount of memory required and the size
of messages transmitted. The problem is with the size of the
utility tables generated and aggregated. If, for each combina-
tion of generation and load values, there is a unique contribu-

3The net power injections at a bust are linearly related to the DC
line power flows, making such operation feasible.
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tion to the line flows, then the number of rows in the utility
table initialized in Phase 2 is exactly the number of such com-
binations (i.e., (Gmax

a �Gmin
a ) · (Lmax

a �Lmin
a ) ·H) for agent a.

There are multiple possible contributions to the line flows per
combination of generation of load values. Thus, the number
of rows in the utility table cannot be bounded (since the line
flows are continuous values). This problem is exacerbated by
the aggregation procedure that creates an exponential number
of additional rows.

Let us introduce a relaxation of the D-ED-DR problem and
a relaxed version of DEEDS to address such issue. The reason
why all the possible contributions to the line flows for each
combination of generation and load values need to be stored
is due to the non-monotonicity of the line flow values aggre-
gation; the agents do not know whether the line flows violate
the global constraint until the contributions for all agents are
aggregated, which is done once the utility table reaches the
root agent. If the global constraint on the line flows could be
withdrawn, DEEDS would be significantly more scalable.

Thus, we relax the D-ED-DR problem by moving such
global constraint into the objective function, and transform-
ing it into a soft constraint with a penalty on the degree of its
violation. The resulting objective function is:

HX

t=1

↵t

0
@X

l2L
ul(L

t
l) �

X

g2G
cg(G

t
g) �

X

(i,j)2E
�t
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1
A (14)

with �t
ij as:

�t
ij =

(
! (|f t

ij | � fmax
ij )2 if

|ft
ij |

fmax
ij

> m

0 otherwise.

where ! 2 R+ and m 2 [0, 1] are parameters of the problem.
This approach is similar to the one used by researchers in the
power community [Sun et al., 1984].

6 Relaxed DEEDS
We now describe Relaxed DEEDS (R-DEEDS), an iterative
version of DEEDS that solves the relaxed D-ED-DR problem
optimally. Figure 2 shows the flow chart of the algorithm.
Similar to DEEDS, R-DEEDS agents also construct a pseudo-
tree (Phase 1) and initialize their utility tables (Phase 2).
Since the global constraint on the line flows are now in the ob-
jective function, each agent can now choose the line flow that
maximizes its utility for each combination of its generation
and load values. Thus, the number of rows in its initialized
utility table is at most the number of such combinations—
(Gmax

a � Gmin
a ) · (Lmax

a � Lmin
a ) · H for agent a.

++

++

(a) Example Initialized Table for Agent a1

G1
1 L1

1 . . . f1
12 f1

13 . . . Utility
10 23 . . . 21.3 1.3 . . . 70.4
9 23 . . . 20.3 2.2 . . . 71.3

. . . . . . . . . . . . . . . . . . . . .

(b) Example Initialized Table for Agent a2

G1
2 L1

2 . . . f1
12 f1

13 . . . Utility
5 10 . . . 1.6 2.2 . . . 10.0
6 10 . . . 3.2 -4.4 . . . 20.0

. . . . . . . . . . . . . . . . . . . . .

(c) Example Aggregated Table for Agent a2

G1
1 2 L1

1 2 . . . f1
12 f1

13 . . . Utility
15 33 . . . 22.9 3.5 . . . 80.4
16 33 . . . 24.5 -3.1 . . . 90.4
14 33 . . . 21.9 4.4 . . . 81.3
15 33 . . . 23.5 -2.2 . . . 91.3
. . . . . . . . . . . . . . . . . . . . .

Table 1: Example Utility Tables

tables that it received from all its children agents and its own
utility table. Such process creates a new aggregated utility
table, where each row is the sum of one row from each of
the source tables. Thus, these operations differ from that of
DPOP. More specifically, assume that there are n tables that
need to be aggregated (e.g., the agent is aggregating the ta-
bles from its n�1 child agents and its own table), and let
~xi

r denote the r-th row of elements in the i-th table. Then,
the aggregated table has the following elements in each of
its row:

P
i ~x

i
ri

. The first 2 ·H columns of the resulting ta-
ble contain the total power injections and withdrawals of the
subtree at the aggregating agent; the next |F | ·H contain the
power flow values associated to the corresponding net injec-
tion;3 and the last column contains the sum of the utilities.
Importantly, the number of columns stays constant in the ag-
gregation step, whilst the number of rows in the resulting ta-
ble is the number of combinations of rows of the n utility
tables. Table 1(c) shows the result of aggregating the utility
tables in Table 1(a) and 1(b), where we assume that agent a1

is the child of agent a2.
Each non-root agent then sends the aggregated table up to

its parent, which repeats this process. The utilities thus prop-
agate up the pseudo-tree. Once the root agent aggregates its
utility tables, it prunes the rows of its aggregated table that
violates the remaining global constraints in Eqs. (7)–(10).
[Phase 4] Value Propagation: The root agent chooses its
value corresponding to the optimal row in its aggregated
table—the row with the maximum utility—and sends this
value and the row ID of the child’s utility table used to con-
struct the optimal row to each of its children agents. Each
child agent repeats the process and propagates the values
down the pseudo-tree.

5 Relaxed D-ED-DR
Unfortunately, DEEDS does not scale to problems of interest
due to a prohibitive amount of memory required and the size
of messages transmitted. The problem is with the size of the

3The net power injections at a bust are linearly related to the DC
line power flows, making such operation feasible.
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utility tables generated and aggregated. If, for each combina-
tion of generation and load values, there is a unique contribu-
tion to the line flows, then the number of rows in the utility
table initialized in Phase 2 is exactly the number of such com-
binations (i.e., (Gmax

a �Gmin
a ) · (Lmax

a �Lmin
a ) ·H) for agent a.

There are multiple possible contributions to the line flows per
combination of generation of load values. Thus, the number
of rows in the utility table cannot be bounded (since the line
flows are continuous values). This problem is exacerbated by
the aggregation procedure that creates an exponential number
of additional rows.

Let us introduce a relaxation of the D-ED-DR problem and
a relaxed version of DEEDS to address such issue. The reason
why all the possible contributions to the line flows for each
combination of generation and load values need to be stored
is due to the non-monotonicity of the line flow values aggre-
gation; the agents do not know whether the line flows violate
the global constraint until the contributions for all agents are
aggregated, which is done once the utility table reaches the
root agent. If the global constraint on the line flows could be
withdrawn, DEEDS would be significantly more scalable.

Thus, we relax the D-ED-DR problem by moving such
global constraint into the objective function, and transform-
ing it into a soft constraint with a penalty on the degree of its
violation. The resulting objective function is:

HX
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with �t
ij as:

�t
ij =

(
! (|f t

ij | � fmax
ij )2 if

|ft
ij |

fmax
ij

> m

0 otherwise.

where ! 2 R+ and m 2 [0, 1] are parameters of the problem.
This approach is similar to the one used by researchers in the
power community [Sun et al., 1984].

6 Relaxed DEEDS
We now describe Relaxed DEEDS (R-DEEDS), an iterative
version of DEEDS that solves the relaxed D-ED-DR problem
optimally. Figure 2 shows the flow chart of the algorithm.
Similar to DEEDS, R-DEEDS agents also construct a pseudo-
tree (Phase 1) and initialize their utility tables (Phase 2).
Since the global constraint on the line flows are now in the ob-
jective function, each agent can now choose the line flow that
maximizes its utility for each combination of its generation
and load values. Thus, the number of rows in its initialized

(a)

(b)

(c)

Figure 3: Example Utility Tables.

3. DYNAMIC DCOP REPRESENTATION
A Distributed Constraint Optimization Problem (DCOP)

[20, 23] is defined by 〈X ,D,F ,A, α〉, where: X ={xi}ni=1 is
a set of variables; D = {Di}ni=1 is a set of finite domains,
where Di is the domain of variable xi; F = {fi}mi=1 is a
set of utility functions (or constraints), where each k-ary
utility function fi : Di1 × . . .×Dik 7→ R ∪ {−∞} specifies
the utility of each combination of values of variables in its
scope (i.e., xi1 ,. . ., xik ); A= {ai}pi=1 is a set of agents and
α : X →A maps each variable to one agent. A solution is a
value assignment for all the problem variables satisfying the
problem constraints. Its utility is the sum of the evaluations
of all utility functions on it. The goal is to find a utility-
maximal solution. A Dynamic DCOP [24] is a sequence
of DCOPs 〈P1, P2, . . .〉, where each Pt is associated with a
particular time step t. The goal is to find a utility-maximal
solution for each DCOP in the sequence.

We now describe how one can model the D-EDDR prob-
lem as a Dynamic DCOP. The time steps in the Dynamic
DCOP correspond to the time steps of the D-EDDR prob-
lem. Thus, both the D-EDDR problem and the correspond-
ing Dynamic DCOP have a horizon of H. Each DCOP Pt in
the Dynamic DCOP has exactly the same agents, variables,
and domains, where the agents A correspond to the network
buses; each agent a ∈ A controls two variable: Ltl (l ∈ L)
and Gtg (g ∈ G)—i.e., a generator and a load; and the do-
main of each variable Di ∈ D corresponds to the possible
power that can be injected (Eq. (4)), if it is a generator, or
withdrawn (Eq. (5)), if it is a load. Additionally, the utility
functions include hard constraints that represent Eqs. (6),
(7), (12), and (13), which are constraints within each DCOP
Pt, and hard constraints that represent Eq. (11), which are
constraints between DCOPs Pt and Pt+1 of subsequent time
steps. Finally, the objective function in Eq. (1) is decom-
posed into |L ∪ G| unary constraints, one for each agent’s
variable—each agents controlling a load l ∈ L and a gener-
ator g ∈ G have constraints αt · ul(Ltl) and −αt · cg(Gtg).

This current formulation is incomplete as it does not in-

clude the constraints on the bus voltage phase angles ~θt and
the line flows f tij in Eqs. (8)–(10). Both the phase angles
and the line flows are continuous variables in the optimiza-
tion problem. However, since they are not decision variables
(like the load and generator variables), we formulate them
as environment variables, whose values are a function of the
decision variables in the problem. The constraints on these
variables can thus be checked for consistency given a com-
plete assignment for the decision variables. Note that the
determination of the values of the environment variables and
whether their constraints are violated cannot be enforced by

any unassisted single agent—as they depend on the values
of all the decision variables. Thus, one can view these envi-
ronment variables and their constraints as a single complex
global constraint in each DCOP of the Dynamic DCOP.

4. DEEDS
We now introduce the Distributed Efficient ED with DR

Solver (Deeds), a dynamic programming based approach
that can be used to solve D-EDDR problems. Deeds bears
similarities with DPOP [23], which is used to solve DCOPs.
We first describe a naive version of the algorithm that solves
the problem exactly. However, due to high complexity of the
EDDR problem, this approach is unsuitable to solve even the
smallest instance of our problems, even if we consider a sin-
gle time step horizon. We then introduce an approximated
version which offers better scalability.

Deeds is composed of the following four phases:

[Phase 1] Pseudo-tree Generation: Deeds constructs
a pseudo-tree using any existing a distributed pseudo-tree
construction algorithms, such as Distributed DFS [13].

[Phase 2] Utility Initialization: Each agent a constructs
its utility table Ua, where:

• The first 2 ·H columns of the table are all possible com-
binations of the generation and loads values of that agent
at the different time steps (i.e., G1

a, L1
a, G2

a, L2
a, . . .).

• The next |F | · H columns of the table correspond to the
contribution of that agent to all the line flows fij , given
its net injections (the amount of power generated menus
the one consumed at that bus) listed in the first 2 · H
columns. The generation and loads determine the possible
bus voltage phase angles through Eq. (8), which determine
the contributions to the line flows through Eq. (10).

• Finally, the last column is the utility associated to that
agent, and calculated according to the objective function
in Eq. (1).

Figures 3(a) and 3(b) illustrate two example utility ta-
bles of two agents, a1 and a2. During this phase, the agents
also prune the rows of its utility table that violates the con-
straints in Eqs. (6), (11)–(13).

[Phase 3] Utility Propagation: Once the utility tables
are generated, each leaf agent sends its utility table to its
parent, which then performs an aggregation operation be-
tween the tables that it received from all its children and
its own table. Such process creates a new aggregated utility
table, where each row is the sum of one row from each of
the source tables. Thus, these operations differ from that
of DPOP. More specifically, assume there are k tables to be
aggregated (e.g., the agent is aggregating the tables from
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its k−1 children and its own table), and let ~xir denote the
r-th row of elements in the i-th table. Then, the aggregated
table has the following

∑
i ~x

i
ri elements in each of its row:

• The first 2·H columns contain the total power injections
and withdrawals of the subtree at the aggregating agent.

• The next |F | ·H columns contain the power flow values
associated to the corresponding net injection.4

• The last column contains the sum of the utilities.

Importantly, the number of columns stays constant in the
aggregation step, whilst the number of rows in the resulting
table is the number of combinations of rows of the k utility
tables. More specifically, aggregating tables for two agents
a1 and a2, whose initial sizes are |Ti|=[(Gmax

ai −G
min
ai )·(Lmax

ai −
Lmin
ai )]H , for i=1 and 2, results in a new table with |T1×T2|

rows.
Figure 3(c) shows the result of aggregating the utility ta-

bles in Figures 3(a) and 3(b), where we assume that agent
a1 is the child of agent a2.

Each non-root agent then sends the aggregated table up
to its parent, which repeats this process. The utilities thus
propagate up the pseudo-tree. Once the root agent produces
the aggregated utility table, it prunes from it the rows vio-
lating the remaining global constraints in Eqs. (7)–(10).

[Phase 4] Value Propagation: The root agent chooses
its value corresponding to the optimal row in its aggregated
table—the row with the maximum utility—and sends this
value and the row ID of the child’s utility table used to
construct the optimal row to each of its children agents.
Each child agent repeats the process and propagates the
values down the pseudo-tree.

5. RELAXED D-EDDR
Unfortunately, Deeds does not scale to problems of in-

terest due to the excessive amount of resources required,
prohibiting the use of off-the-shelf complete DCOP algo-
rithms.5 The problem is with the size of the utility tables
generated and aggregated. If, for each combination of gen-
eration and load values, there is a unique contribution to
the line flows, then the number of rows in the utility table
initialized in Phase 2 is exactly the number of such combina-
tions (i.e.,[(Gmax

a −Gmin
a )·(Lmax

a −Lmin
a )]H) for agent a. There

are multiple possible contributions to the line flows per com-
bination of generation of load values. Thus, the number of
rows in the utility table cannot be bounded (since the line
flows are continuous values). This problem is exacerbated
by the aggregation procedure that creates an exponential
number of additional rows.

Let us introduce a relaxation of the D-EDDR problem and
a relaxed version of Deeds to address this issue. The reason
why all the possible contributions to the line flows for each
combination of generation and load values need to be stored
is due to the non-monotonicity of the line flow constraint;
the agents are unable to verify whether the line flows violate
the global constraint until the contributions for all agents are
aggregated, which is done once the utility table reaches the
root agent. In our example in Figure 3(c) the highlighted
rows describe the same injections and withdrawals, however

4 The net power injections at a bust are linearly related to
the DC line power flows, making such operation feasible.
5We used DPOP, a state-of-the art dynamic programming-
based algorithm.

their contributions to the line flows differ, thus both tables
rows need to be stored.

To cope with this issue, our D-EDDR relaxation moves the
global constraint on the line flows to the objective function,
transforming it into a soft constraint with a penalty on the
degree of its violation. The resulting objective function is:

H∑
t=1

αt

∑
l∈L

ul(L
t
l)−

∑
g∈G

cg(G
t
g)−

∑
(i,j)∈E

λtij

 (14)

with λtij as:

λtij =

 ω (|f tij | − fmax
ij )2 if

|ftij |
fmax
ij

> m

0 otherwise.

where ω ∈ R+ and m ∈ [0, 1] are parameters of the problem.
This approach is similar to the one used by researchers in
the power systems community [31, 35]. Such relaxation is
warranted, as regulations typically allow flows to be outside
a prescribed range for a very small amount of time (e.g., few
minutes). Note that the solution for the relaxed D-EDDR
approaches that of D-EDDR as ω tends to 0.

6. RELAXED DEEDS
We now describe Relaxed Deeds (R-Deeds), an iterative

version of Deeds that solves the relaxed D-EDDR problem
optimally. Figure 4 shows the flow chart of the algorithm.

Similar to Deeds, R-Deeds agents also construct a
pseudo-tree (Phase 1) and initialize their utility tables
(Phase 2). Since the global constraint on the line flows are
now in the objective function, each agent can select the line
flow that maximizes its utility for each combination of its
generation and load values. Thus, the number of rows in
its initialized utility table is at most the number of such
combinations—(Gmax

a −Gmin
a )H , or (Lmax

a −Lmin
a )H , for agent

a, with a ∈ G, or a ∈ L, respectively.
Additionally, during the aggregation step, the number of

rows of the table, that is a result of aggregating the tables
for two agents a1 and a2, is [((Gmax

a1 +Gmax
a2 )−(Gmin

a1 +Gmin
a2 ))·

((Lmax
a1 +Lmax

a2 )−(Lmin
a1 +Lmin

a2 ))]H , which is thus substantially
lower than |T1×T2|, with T1 and T2 representing the values
for the tables of agents a1 and a2, respectively. This ob-
servation is shown in our example in Figure 3(c). The row
highlighted dark gray will be preferred over the light gray
one, as its has the greatest utility between such two rows,
and the value combinations in the light gray row can hence
be eliminated.

R-Deeds agents propagate the utility table up to the root
agent analogously to agents in Deeds (Phase 3). However,
differently from Deeds, when the root agent checks for sat-
isfiability of the global constraints in Eqs. (7)–(10),

• If none of the rows satisfy all the constraints, it suggests
that the problem is insufficiently relaxed. Thus, it in-
creases ω by a factor of 2 based on the difference with
respect to its value in the last iteration,6 propagates this
information to all agents, and informs them to reinitialize
their utility tables with the new updated ω, and solve the
new relaxed problem in a new iteration.

6The larger the value of ω, the more relaxed the problem.
The relaxed problem is identical to the original one if ω=0.
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• If there is a row satisfying all the constraints, then the
problem may be overly relaxed. Thus, it decreases ω by
a factor of 2 based on the difference with respect to its
value in the last iteration, and this new relaxed problem
is solved in a new iteration.

This process repeats itself until some criteria is met (e.g., a
maximum number of iterations, convergence in the solution).
Finally, the algorithm runs the value propagation phase in
the same way as Deeds (Phase 4) before terminating.

One can further improve the algorithm’s scalability by not
considering all time steps together. We propose a further
approximation that solves the problem Hopt time steps at a
time. Thus, it first solves the subproblem with the first Hopt
time steps. Next, it solves the following subproblem with the
next Hopt time steps, and so on, until the entire problem
is solved. The satisfiability of the constraints between the
subsequent Hopt subproblems is ensured in Phase 2.

6.1 GPU Optimization
General Purpose Graphics Processing Units (GPGPUs)

are multiprocessor devices, offering hundreds of computing
cores and a rich memory hierarchy. A parallel computa-
tion is described by a collection of procedures executed by
several threads, which have access to several memory levels,
each with different properties in terms of speed and capac-
ity. GPGPUs support Single-Instruction Multiple-Thread
(SIMT) processing, where the same instruction is executed
by different threads, while handling different data.

A number of the operations of the algorithm can be sped
up through parallelization using GPGPUs. In particular,
the initialization and consistency checks of the the different
rows of the utility table can be done independently from
each other. Additionally, the aggregation of the different
rows of the utility tables can also be computed in parallel,
fitting well the SIMT processing paradigm. In our example
in Figure 3, all the rows of Table (c) can be computed in
parallel. Thus, we adopt a scheme similar to that proposed
in [9] to implement a GPGPU version of R-Deeds.

7. COMPLEXITY ANALYSIS
We report below a theoretical analysis on the network

load, messages size, and agent complexity provided by the
proposed Deeds algorithms. The network load and mes-
sages size are defined, respectively, as the total number of
messages exchanged by the agents, and as the size of the
largest message exchanged by the agents during problem
resolution. Since our algorithms rely on an inference-based
procedure, the agent’s complexity (i.e., the maximal number

of operations performed by the agents) is equivalent to the
size of the largest message exchanged.

Theorem 1. The network load of (R)-Deeds is linear in
the number of iterations and the number of buses in the prob-
lem.

Proof. At each iteration, the Utility Initialization phase is
carried by each (R)-Deeds agent independently, with no
need of coordination. When the leaf agents complete this
phase, they start the Utility Propagation phase, which re-
quires a linear number of messages, similarly to DPOP’s
Utility Propagation phase. Additionally, the Value Prop-
agation phase requires a linear number of messages, as in
DPOP. The updated value ω is propagated down the pseudo-
tree during the value propagation phase. Each agent can
thus start the next iteration immediately after completing
its value propagation step. 2

Let ` = maxai∈A |Di|Hopt be the largest size of the initial
utility table of the agents at each iteration.

Theorem 2. The size of the largest message exchanged by
the Deeds agents is O(`|A|).

Proof. Due to the inability of the agents to bound the flow
values associated to a particular net injection—which in turn
is caused by the presence of the global constraint on the line
flows (Eq. (9))—the aggregation of k tables of size O(`) pro-
duces a new table of size O(`k). The number of aggregation
steps performed by all Deeds agents is |A| (during the Util-
ity Propagation step, each agent aggregates the Utility ta-
bles received from its children). Thus, the size of the largest

message processed at each iteration is O(`|A|). 2

Theorem 3. The size of the largest message exchanged by
the R-Deeds agents is O(|A| · `).

Proof. During the aggregation step, the number of rows
of the table resulting by aggregating tables for k R-
Deeds agents a1, . . . , ak is:

[
(
∑k
i=1G

max
ai −

∑k
i=1G

min
ai ) ·

(
∑k
i=1 L

max
ai −

∑k
i=1 L

min
ai )

]Hopt , which is in O(k · `). Since R-
Deeds agents perform in total |A| aggregation operations
per iteration, the size of the largest message processed at
each iteration is O(|A| · `). 2

8. RELATED WORK
Within the power systems literature, the ED and the DR

solutions are typically implemented separately despite the
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Simulated Runtime (sec)
Normalized Quality

CPU Implementation GPU Implementation
Hopt 1 2 3 4 1 2 3 4 1 2 3 4

IE
E

E
B

u
se

s 5 0.010 0.044 3.44 127.5 0.025 (0.4x) 0.038 (1.2x) 0.128 (26.9x) 2.12 (60.2x) 0.8732 0.8760 0.9569 1.00
14 0.103 509.7 – – 0.077 (1.3x) 3.920 (130x) 61.70 (n/a) – 0.6766 0.8334 1.00 –
30 0.575 9084 – – 0.241 (2.4x) 79.51 (114x) – – 0.8156 1.00 – –
57 4.301 – – – 0.676 (6.4x) 585.4 (n/a) – – 0.8135 1.00 – –

118 174.4 – – – 4.971 (35.1x) – – – 1.00 – – –

Table 1: R-Deeds CPU and GPU Runtimes, Speedups (in parenthesis), and Normalized Solution Qualities.

strong coupling of the two problems [7]. While some re-
searchers have more recently proposed fully distributed ED
solutions as well as an integrated ED with DR solutions [41,
18], their approaches do not consider a time horizon, and are
limited to convex objective functions. In conventional ED,
the objective function is typically assumed to be piecewise
linear or quadratic, differentiable, and convex [37]. In this
paper, we consider non-convex, non-smooth objective func-
tions, which more realistically reflect the valve-point effects
and the POZs. We also note that non-linearities arise in
power flow analysis when AC models are introduced. Re-
cently, several studies addressing various convex AC relax-
ations have been proposed [5, 6]. There are other proposals
on non-convex objective functions [29, 40]; however, such
approaches are centralized and consider exclusively the ED
problem. An exception is given in [28], where the authors
study a distributed DR mechanism in a microgrid setting
(within a convex optimization context).

Finally, to the best of our knowledge, we are the first to
propose an integrated model with a time horizon. Most ap-
proaches are myopic and only considers a single time step.
The time horizon is important as it allows solutions that
consider ramp constraints—a large generator can typically
change its generation up to a maximum rate limit of sev-
eral MWs per minute. If the solution to the ED problem
requires the generator to change beyond this maximum rate
limit, then it must take several time steps to do so, possibly
resulting in suboptimal generation at the intermediate time
steps. This solution is only feasible if the model includes a
time horizon.

Within the AI community, researchers have also stud-
ied variants of the ED problem including several that use
DCOP-based approaches [19, 16, 12] and one that uses a
negotiation-based approach [39]. The main differences with
our work is that their proposals simplify the energy con-
straints by assuming that agents have direct discrete con-
trol over the power flows, and the problems are solved for
a single time step, thereby not taking into account ramp
rate constraints. AI researchers have also studied variants
of the DR problem including a proposal to use a central-
ized online stochastic optimization approach for a home au-
tomation system [27]. Scott and Thiébaux [28] and Fioretto
et al. [10] have also studied distributed DR mechanism for
the scheduling of shiftable loads in smart homes.To the best
of our knowledge, a combined ED and DR multi-timestep
framework is unique within the AI literature.

9. EMPIRICAL EVALUATION
We evaluate the proposed algorithms on 5 standard IEEE

Bus Systems,7 all having non-convex solution spaces:

7http://publish.illinois.edu/smartergrid/

• IEEE 5-Bus System: 1 generator, 5 loads, and 7 trans-
mission lines [17].

• IEEE 14-Bus System: 5 generators, 11 loads, and 20
transmission lines [36].

• IEEE 30-Bus System: 6 generators, 27 loads, and 41
transmission lines [1].

• IEEE 57-Bus System: 7 generators, 42 loads, and 80
transmission lines (as well as multiple transformers) [26].

• IEEE 118-Bus System: 54 generators, 91 loads, and
177 transmission lines (as well as multiple condensers and
transformers) [3].

The domains for generator and load variables, as well as
the transmission lines’ admittances and maximum flows, and
the cost coefficients for the generators are defined in the as-
sociated references. The coefficients εg, φg, are defined as
in [29]. We set one 10MW range POZ to a single generator
in each of the bus systems analyzed, similar to [11]. All the
generators are set with a 5MW ramp rate limit. We use a
1MW discretization unit for each load and generators. Thus,
the maximum domain sizes of the variables are between 100
and 320 in every experiment. For each test system, the
loads’ cost coefficient αl and βl are randomly sampled from
the normal distributions N (1, 0.1), and N (0.01, 0.001), re-
spectively, and the horizon H is set to 12.

We generate 30 instances for each test case. The perfor-
mance of the algorithms are evaluated using the simulated
runtime metric [30], and we imposed a timeout of 5 hours.
Results are averaged over all instances. These experiment
are performed on an AMD Opteron 6276, 2.3GHz, 128GB of
RAM, which is equipped with a GeForce GTX TITAN GPU
device with 6GB of global memory. If an instance cannot
be completed, it is due to runtime limits for the CPU im-
plementation of the algorithm, and memory limits for the
GPU implementation. We set the parameters for the itera-
tive algorithm m = 0.9 and ω = 100, as is done in [18], and
the number of iterations to 10. Automating this process is
the objective of future work.

We do not report evaluation against existing (Dynamic)
DCOP algorithms as the standard (Dynamic) DCOP models
cannot fully capture the complexities of the D-EDDR prob-
lem (e.g., environment variables with continuous values).

Table 1 tabulates the runtimes in seconds of R-Deeds
with both CPU and GPU implementations at varying Hopt.
It also tabulates the average solution quality found normal-
ized with the best solution found for each IEEE bus. We
make the following observations:

• The solution quality increases as Hopt increases.

• For the smaller test case with Hopt = 1, the CPU imple-
mentation is faster than the GPU one. However, for all
other configurations, the GPU implementation is much
faster than its CPU counterpart, with speedups up to
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Figure 5: Dynamic Simulation of the IEEE 30 Bus with heavy loads with high (left) and low (right) prediction probabilities.

130 times. The reported speedup increase with increasing
complexity of the problem (i.e., bus size and Hopt).

• The GPU implementation scales better than the CPU
implementation. The latter could not solve any of the
instances for the configurations with Hopt = 3 for the 14-
bus system and Hopt = 2 for the 57-bus system.

• We observe that the algorithms report satisfiable instances
within the first 4 iteration of the iterative process.

9.1 Dynamic Simulation on a State-of-the-Art
Power Systems Simulator

To validate the solutions returned by R-Deeds, we tested
the stability of the returned control strategy for the IEEE
30-Bus System on a dynamic simulator (Matlab SimPower-
Systems) that employs a detailed time-domain model and
recreates conditions analogous to those of physical systems.

An illustration of our Matlab Simulink model for the IEEE
30 Bus System is shown on the left-hand side of Figure 1.
The right-hand side of the figure also depicts the implemen-
tation of a generator and a dispatchable load.

We created the following scenarios:

• In the first scenario, load prediction probabilities are as-
sumed to be accurate. We perturb each load lt using
a normal distribution N (µ, σ) with µ = Ltl and σ =
(1− αt) · √µ.

• In the second scenario, load predictions are less accurate
and we use a larger variance σ = (1− αt) · 2√µ.

Figure 5 shows the dynamic response of the system fre-
quency, whose nominal value is 60 Hz, for the two scenarios.
The system frequency is at nominal value when the power
supply-demand is balanced. If more power is produced than
consumed, the frequency would rise and vice versa. Devia-
tions from the nominal frequency value would damage syn-
chronous machines and other appliances. Thus, to ensure
stable operating conditions, it is important to ensure that
the system frequency deviation is confined to be within a
small interval (typically 0.1 Hz).

In our experiment, the first 60 seconds of simulations are
tested enforcing the ED solution in a full load scenario (100%
of full load) using the same setting as in [18]. The rest of
the simulation deploys the ED-DR solution returned by R-
Deeds. While the resolution of the simulation is in microsec-
onds, R-Deeds agents sends only desired power injected and
withdrawn (schedules), computed offline, in one-minute in-
tervals; the simulator interpolates the power generated be-
tween the intervals. This scenario reflects real-life condi-
tions, where control signals are sent to actual generators

in intervals of several minutes. As expected, the frequency
deviation is more stable when the load predictions are ac-
curate. Crucially, the deviation in both cases is within 0.05
Hz, thereby ensuring system stability. In addition, we ob-
serve, during simulation, that the ED-DR solution is able
to reduce the total load up to 68.5%, showing the DR con-
tribution in peak demand reduction. Finally, the frequency
response of the ED-DR solution converges faster than that
of the ED only, with smaller fluctuations. The reason is be-
cause the supply-demand balance is better maintained by
coordinating simultaneously the generators and loads in the
system.

10. CONCLUSIONS
Responding to the recent call to action for AI researchers

to contribute towards the smart grid vision [25], this pa-
per makes three key contributions: (1) An integrated ED
and DR model for power systems, (2) a multi-agent based
approach to solve it which exploits structural problem de-
composition, and (3) a GPU parallelization of its opera-
tions. This model differs from existing work in the power
systems and AI literature primarily in its multi-timestep op-
timization problem, which is necessary to capture ramp con-
straints, as well as in its more realistic non-convex objective
function. The decentralized DCOP-based algorithm solves
a relaxed version of the integrated model and achieves sig-
nificant speedup through the use of GPUs on IEEE buses
of varying sizes. The proposed results are significant—
evaluations on a state-of-the-art power systems simulator
show that the solutions found are stable with acceptable fre-
quency deviations. Therefore, this work continues to pave
the bridge between the AI and power systems communities,
highlighting the strengths and applicability of AI techniques
in solving power system problems. Future work will focus
on scalability and on computing solutions using an iterative
process to refine the level of discretization for the generators
and load outputs.
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