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ABSTRACT
Here we explore a new algorithmic framework for multi-agent re-
inforcement learning, called Malthusian reinforcement learning,
which extends self-play to include fitness-linked population size dy-
namics that drive ongoing innovation. In Malthusian RL, increases
in a subpopulation’s average return drive subsequent increases in
its size, just as Thomas Malthus argued in 1798 was the relationship
between preindustrial income levels and population growth [24].
Malthusian reinforcement learning harnesses the competitive pres-
sures arising from growing and shrinking population size to drive
agents to explore regions of state and policy spaces that they could
not otherwise reach. Furthermore, in environments where there are
potential gains from specialization and division of labor, we show
that Malthusian reinforcement learning is better positioned to take
advantage of such synergies than algorithms based on self-play.
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1 INTRODUCTION
Reinforcement learning algorithms have considerable difficulty
avoiding local optima and continually exploring large state and
policy spaces. This is known as the problem of exploration. In
single-agent reinforcement learning, the main approach is to rely
on intrinsic motivations, e.g., for individual curiosity [2, 6, 25, 29,
30, 33], empowerment [22], or social influence [19].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

However, critical adaptation events in human history are diffi-
cult to explain with intrinsic motivations. Consider the dispersal
of homo sapiens out of Africa, where they first evolved between
200, 000 and 150, 000 years ago, throughout the globe, eventually oc-
cupying essentially all terrestrial climatic conditions and habitats by
14, 500 years before the present [13]. This example is relevant to AI
research because intelligence is often defined as an ability to adapt
to a diverse set of environments [23]. Essentially no other process
on earth has led so quickly to so much adaptive diversity as did the
expansion of human foragers throughout the globe1. Human forag-
ing communities were capable both of discovering water-finding
strategies suitable for the arid Australian desert as well as how to
hunt seals hiding beneath ice sheets and keep warm in the Arctic
[4]. From this perspective, the great dispersal of human foragers
can be seen as some of the best evidence for an “existence proof”
that intelligence, by this definition, is even possible. Yet there’s no
evidence that intrinsic motivations like curiosity played a role in it.
Rather, considerable evidence points to a variety of extrinsic motiva-
tion mechanisms as the main drivers of human migration including
climate change [11, 37] and demographic expansion [26, 31].

One perspective on the problem of exploration is that the diffi-
culty comes from the sparseness of extrinsic rewards. If extrinsic
rewards are very sparse, then it is hard to estimate state-value
functions and policy gradients since returns will have very high
variance. Thus intrinsic motivation methods produce frequent in-
termediate (dense) rewards in hopes of bridging the long gaps
between extrinsic rewards [7]. Multi-agent reinforcement learning
offers an alternative. Algorithms based on self-play like AlphaGo
[1, 18, 34, 35, 38] are aimed at an essentially single-agent objec-
tive, e.g., defeat a specific human grandmaster. Directly training by
single-agent reinforcement learning to accomplish that objective

1The rapid dispersal of homo sapiens across the globe and their adaptation to the full
range of diverse terrestrial habitats can be regarded as a great feat of intelligence. We
may even assess its universal intelligence ϒ by adapting the following definition from
[23], ϒ(π ) =

∑
h∈H 2−K (h)V π

h , where π is a policy, H is the set of terrestrial habitats,
V π
h is the expected value of the sum of rewards from inhabiting the habitat h, and

K (h) is a measure of the complexity of h. The complexity measure could be defined
as any sensible ecological distance metric measuring the distance from the ancestrally
adapted environment to h.
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is a lost cause. Since the untrained agent would never win a game,
it would never get any reward signal to learn from. Self-play, on
the other hand, provides an alternative incentive for agents to ex-
plore deeply through the strategy space. In two-player zero-sum,
it escapes local optima by learning to exploit them, diminishing
the returns available from such strategies, and thereby extrinsi-
cally motivating new exploration. Of course, life is not a zero-sum
game. Nevertheless, real-life feats of exploration like the dispersal
of homo sapiens out of Africa really were motivated in part by a
pressure to out-compete rivals in a struggle for scarce resources
that became increasingly difficult over time due to demographic
expansion. Moreover, local competition between individuals is a
universal feature of natural habitats, and underlies the evolution of
dispersal [20]. In this paper we investigate whether such population
size dynamics can be exploited as an algorithmic mechanism in
multi-agent reinforcement learning.

As an algorithmic mechanism, augmenting multi-agent rein-
forcement learning with population size dynamics appears to have
the requisite property needed to evade local optima and traverse
large state spaces. Strategies that work well at low densities do
not necessarily translate well to high densities, but success at any
density ensures density will increase further in the future. The rules
of the game therefore naturally shift over time in a manner that
depends on past outcomes. This ensures that species cannot remain
too long in comfortable local optima. When resources are scarce,
rising populations eventually dissipate gains from learning, forcing
agents to innovate just to maintain existing reward levels [8]2.

So far we’ve motivated introducing population dynamics to
multi-agent reinforcement learning by appealing to a competitive
struggle for existence against a well-matched foe, i.e., the same
argument underlying the performance of self-play in two-player
zero-sum games. However, there is more to life than competition.
As an algorithmic mechanism to promote learning in general-sum
multi-agent environments, population dynamics may also be more
suitable than self-play-based approaches. In particular, we will con-
sider whether this approach provides greater scope for adapting
to synergies between specialists, making it easier to discover joint
policies involving significant division of labor.

In this work we introduce a new algorithm for multi-agent re-
inforcement learning based on these principles of population dy-
namics. It is called Malthusian reinforcement learning because im-
provements in returns for any subpopulation translate directly into
increases in the size of that subpopulation in subsequent episodes.
Thus it may be evaluated on either the individual or the group level.
In this work we are interested in two specific questions:

(1) Is Malthusian reinforcement learning better at avoiding be-
coming stuck in bad local optima in individual policy space
than competing algorithms based on intrinsic motivation?

2[8] argues that preindustrial human populations generally oscillated around a fixed,
and only very slowly increasing, carrying capacity until the industrial revolution.
Similar oscillations in subpopulation sizes were recently observed in a large-scale
multi-agent learning simulation by [41]. As those authors pointed out, its possible for
population dynamics to endlessly oscillate rather than increasing over time. The same
is true for the strategies used by learning algorithms based on self-play. One fix that
was used in AlphaGo and elsewhere is to require agents to learn to defeat all previous
versions of themselves, not just the most recent [34, 35]. This prevents self-play-based
agents from endlessly learning and forgetting the same exploit and defense.

(2) Is it easier to evolve joint policies to implement heteroge-
neous mutualism behaviors with Malthusian reinforcement
learning than with alternative approaches based on self-
play?

2 MODEL
2.1 Characteristics of the Malthusian

reinforcement learning framework
Malthusian reinforcement learning differs from standard multi-
agent reinforcement paradigms in a number of ways.

(1) Malthusian reinforcement learning may be seen as an al-
gorithm for “community coevolution”. It produces a set of
communities, called islands in our terminology. Each island
has a set of agents implementing policies that should, if the
training was successful, function well together.

(2) Each individual is a member of a species. All individuals of
the same species share a policy neural network.

(3) The algorithm unfolds on two timescales corresponding to
(A) the population dynamics (ecological) time, and (B) policy
execution (behavioral) time.

(4) The population dynamics are linked to individual reinforce-
ment learning returns. If individuals of a given species per-
form well on a particular island then their population will
increase there in the future.

(5) During each episode all individuals of a given species gener-
ate experience to train a common neural network via v-trace
[12]. Experiences generated by individuals of a particular
species are used only to update their own species neural
network. After each episode the distribution over islands of
each species is updated by a policy gradient-like update rule.

(6) Conservation of compute: Biologically realistic population
dynamics all contain at least the possibility of exponential
growth. In practice, they are limited by carrying capacities,
i.e., by environment properties. Since Malthusian reinforce-
ment learning is mainly intended for multi-agent machine
learning applications rather than for ecological simulations
we cannot rely on resource constraints in the environment
to limit growth. Thus, to ensure it can be executed with
bounded compute resources, the population dynamic works
by maintaining probability distributions for each species
over the set of all islands. The probability assigned to any
given island may grow or shrink based on the individual re-
turns achieved there, but it is always constrained to be a valid
probability distribution. Compute remains bounded because
a fixed number of samples are used to assign individuals
to islands. The total population varies on any given island
from episode to episode, but across the entire archipelago,
the number of individuals is always constant.

2.2 Archipelagos, islands, and species
Island and Archipelago. an island is a multi-agent environment

where a variable number of agents can interact. An archipelago is a
set I of islands. Furthermore we will write NI = |I | the number of
islands in an archipelago.
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Archipelago
I the set of islands in the archipelago
NI the number of islands in an archipelago
i indexes islands
e indexes ecological scale time

Species
L the total number of species
Ψl a species
π l the policy network of a species
θ l the parameters of π l

µl the distribution of species l over the archipelago
wl the parameters of µl
∆NI the set of distributions over the archipelago
K total number of individuals
M = K

L number of species l individuals across all islands
kl labels individual k of species l

Population
Ψl
i,e the set of individuals of species l

allocated to island i at time-step e
ϕl,ie the average fitness received by species l

on island i at time e
ϕk l ,e the fitness received by individual kl of

species l at time e
η population entropy regularization weight
α population adaptation rate

Island
t indexes behavioral scale time
N the number of agents
S the state space
s a state
Ai the action space of player i
ai an action of player i
oi the observation of player i
ψ i (·) the function that maps s

to the observation oi of player i
p(st+1 |st ,a1, . . . ,aN ) is the transition kernel
r i (s,a1, . . . ,aN ) the reward of player i

Species. A species Ψl is a set of individuals sharing the same
policy network parameterization. There are L species indexed by l .
Each species is composed of a policy network π l with parameters
θ l which encodes the behavior of each individual of the species.
The distribution of agents of a given species l over the islands
is µl ∈ ∆NI (where ∆NI is the set of distributions over islands.
µl is defined as a softmax over weights wl . The total number of
individuals isK and the number of individuals per species isM = K

L .
We will denote each individual of a species l by kl .

The learning process unfolds over two timescales, a slow eco-
logical scale which adapts the distribution of species over islands
µl and a fast behavioral scale over which individuals execute their
policies. Species adapt π l to behave in the presence of others at the
level of the island. The ecological scale timesteps are indexed by e ,

and the behavioral scale timesteps are indexed by t . The ecological
scale ticks at the level of single episodes for the behavioral scale.

2.3 Population dynamics
The population dynamics govern how individuals of each species
are assigned to the different islands over the ecological time scale.
At a fixed ecological timestep e , individuals of each species are
assigned to islands by samplingM times from the distributions µl .
For each island, this yields an allocation Ψl

i,e , the set of individuals
from species l playing on island i at ecological timestep e .

Each island has its own environment, in general the islands could
have different environments from one another, though in this work
we only consider the case where they are all the same.

Over the course of ecological time, the population evolves ac-
cording to a gradient-based dynamic. At each timestep e , each
individual kl of each species l receives a fitness ϕk l ,e , which is
exactly its cumulative reward over the behavioral scale timesteps
that have elapsed during one step of the ecological timescale. The
per-island fitness for each species is then calculated as

ϕli,e =
©«

∑
k l ∈Ψli,e

ϕk l ,e
ª®®¬ /|Ψl

i,e | and 0 if Ψl
i,e = ∅ .

The distribution over islands for each species, µl (i) = ew
l
i /
∑
j e

w l
j ,

is updated according to policy gradient with entropy regulariza-
tion. Explicitly the distribution weights for species l over all islands
change according to a policy-gradient update

wl
e+1 = w

l
e + α


∑

i ∈{1, ...,NI }

∇w l µl (i)(ϕli,e − η log µ
l (i))

 .
The goal of the entropy regularization term is to enforce that

some minimal population of each species remains on sub-optimal
islands. Thus, the population distributions adapt over ecological
time so as to minimize the following loss:

∑
i ∈{1, ...,NI }

µl (i)(ϕli,e − η log µ
l (i))

 .
2.4 Multiagent Reinforcement Learning
A Partially Observable Markov Game (POMG) is sequential decision
model of a multiagent environment in which N individuals interact.
At each state s ∈ S of a POMG, each agent selects an action ai ∈ Ai

based on the observation oi of the state of the game they have. The
observation of player i is defined here as a function of the state
oi = ψ i (s). Then the state changes to s ′ ∼ p(.|s,a1, . . . ,aN ) and
the individuals receive reward r i (s,a1, . . . ,aN ). Each species learns
a policy π l (ai |oi ) given the experience of each of its individuals.
At each step, all individuals of a species collect trajectories of the
experience gathered in the island they have been assigned to. The
reinforcement learning algorithm produces gradient updates of the
parameters for each individual of the species. The gradient updates
are then averaged over all individuals of the species to update the
parameters {θl }{1, ...,L } . The V-trace algorithm is used to update
the parameters as described in [12] with truncation levels set to 1.
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Figure 1: At each iteration on the ecological timescale e, each island samples the players to participate in its next episode
according to the probability distributions µl over islands maintained by each species. Experienced trajectories from all con-
specifics, on all islands, are used to update the same species policy network π l . The distributions of returns to each species
over islands are used to update the distributions from which to sample players for the next episode.

Note that experience (observations, actions and rewards) from all
individuals of a species contribute equally, but that the individuals
may be spread non-uniformly over islands. This means that the
species parameter update may be disproportionately affected by
the performance of the species on particular islands.

RL Agent
LSTM Unroll Length: 20
Entropy Regularizer: ∼ log-uniform(0.00005, 0.05)
Baseline loss scaling: 0.5
Discount: 0.99
Optimization
RMSProp learning rate:∼ log-uniform(0.0001, 0.005)
RMSProp ϵ : 0.0001
RMSProp decay: 0.99
Batch size: 32

Function approximation: The neural network architecture was
similar to that of [27]. It consists of a convnet with 16 channels,
kernel size of 3, and stride of 1. The output of the convnet is passed

to a a 1-layer MLP of size 32, followed by a recurrent module
(an LSTM [17]) of size 64. The recurrent module’s output is then
linearly transformed into the the policy and value. All nonlinearities
between layers were rectified linear units.

Distributed computing: The island simulation and the species
neural network updates were implemented as separate processes,
potentially running on different machines. Islands produce trajec-
tories and send them to a circular queue on the species update
process. The species update process waits until it can dequeue a
complete batch of 32 trajectories, at which point it computes the
v-trace update.

Environments: The games studied in this work are all partially
observable in that individuals can only observe via a 15×15 RGB
window, centered on their current location. The action space con-
sists of moving left, right, up, and down, rotating left and right.
Each species was assigned a unique color, shared by all conspecifics
and preserved across all islands.
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3 RESULTS
3.1 Exploration experiments
Given an unrefined and infrequently emitted behavior, reinforce-
ment learning algorithms are very good at estimating its value with
respect to alternatives and refining it into a well-honed strategy for
achieving rewards. However, a central problem in reinforcement
learning concerns the initial origin of such behaviors, especially in
cases where the state space is too large for exhaustive search, and
there are many local optima where the policy’s reward gradient
becomes zero.

This section explores how population dynamics may drive in-
novation in individual behavior. To study this, we introduce a new
game that taxes individual exploration skills. It can be seen as a
multi-agent analog of the well-knownMontezuma’s Revenge single
player game that has often been used for studies of intrinsic moti-
vations for single-agent exploration [2, 3, 9, 25, 29]. We hold to the
game theory tradition of introducing each game with a facetious
(but hopefully memorable) story, and offer the following:

In the Clamity game, agents begin in the trochophore stage of
the bivalve mollusk lifecycle. They can freely swim around the map,
a partially observed grid-world (map size = 36 × 60, window size =
15×15. Then whenever they are ready, they can perform the *settle*
action. This action causes the agent to metamorphose into the adult
clam stage of their lifecycle at their current location and removes
their ability to swim. After settling, their shell grows around them,
up to amaximum size. Shell growth is also restricted by the presence
of adjacent shells from other clams. Each adult clam filters invisible
food particles from the ocean at a rate proportional to the size of its
shell, receiving reward for each food particle filtered. However, clam
shells that are adjacent to the shell of another individual become
unhealthy and do not filter any food. There are also nutrient patches
located a considerable distance away from the starting location
(more than 10 steps away, see maps in Fig. 2-A). Individuals that
settle near a nutrient patch so that it is either partially or fully
engulfed in their shell absorb additional nutrients from it. Episodes
terminate after T = 250 steps. Settling immediately on the first
action is a very attractive local optimum. The global optimum
solution is to swim quickly out to a nutrient patch and settle there
instead3.

Single-agent reinforcement learning algorithms become stuck in
the local optimum4 and fail to ever discover the nutrient patches. To
see why, consider the number of consecutive seemingly suboptimal
actions that an agent would have to take in order to discover a
nutrient patch. The settle action can be taken at any time, it always
provides some level of rewards, and once taken, prevents movement
for the rest of the episode. Thus any reasonable reinforcement
learning algorithm that follows the initial gradient of its experience
will reach the local optimum. If it starts out settling on step ts > 1,
it will receive an expected return of T − ts × reward rate. But if it
were to settle earlier instead, e.g., on step ts − 1, it would receive
a larger expected return. Thus there is a strong gradient from any
policy initialization to the local optimum of settling on step ts = 1.

3A video of the single-agent global optimum policy can be viewed here:
https://youtu.be/AIT3FTC9s4s.
4A video of the single-agent local optimum policy can be viewed here:
https://youtu.be/OHkpe9dVGyw.

Furthermore. since the environment is partially observable, a single
agent would need to choose to move in the same direction for
several steps despite registering no change at all in its observation
during that time.

On the other hand, Clamity can also be played by multiple agents
simultaneously. All the trochophores begin each episode nearby one
another in the center of the map. Since intersecting shells become
unhealthy and provide no reward, individuals are penalized for
settling too close to one another5. This provides a gradient that
incentivizes agents to swim away from the starting location to
avoid competing with one another for shell space. If the population
size is large enough then this competition-motivated spreading
eventually leads individuals to discover the nutrient patches6.

3.1.1 Experimental procedure. To make like-for-like compar-
isons between single-agent and multi-agent training regimes, we
adopt the following protocol. In parallel with the archipelago (NI
islands), we run L (the number of species) additional solitary islands.
On the l-th solitary island, a single individual of species l plays
each episode alone. All the experience generated on islands where
species Ψl appears, even its solitary island, is used to update its
policy π l . However, the amount of each species’s total experience
derived from the solitary island is comparatively small since in
this experiment, M = 960, the number of individuals of species l
appearing across all islands of the archipelago. The final results
are reported only from the solitary islands but reflect the policy
learning accumulated in the competitive archipelago setting.

Our single agent training protocol simply sets the number of
islands in the archipelago NI to 0 and replicates each solitary island
32 times. Since there is only a single species (L = 1), and all solitary
island replicas are the same as one another (though with different
random environment seeds), the result is exactly equivalent to the
A3C training regime [27].

This protocol also makes it easy to compare the proposed train-
ing regime where population sizes are dynamic and variable from
episode to episode to the case of a “standard self-play” training
regime, where population sizes are fixed. In this case, the archipelago
contains just one island inhabited by a fixed number of individu-
als. As before, most of the experience is generated from the island
where multiple individuals play. Results are reported only from the
(single) solitary island, just as it is in the dynamic case.

3.1.2 Results. Individuals of species trained by Malthusian re-
inforcement learning find the globally optimum single-player so-
lution, despite most of their experience coming from multi-player
islands. Individuals trained by two baseline single-agent reinforce-
ment learning algorithms completely fail to escape the local opti-
mum. The first baseline we tried had all the exact same hyperpa-
rameters as in the Malthusian case, but all of its experience was
in solitary islands (32 of them in parallel).7 The second single-
agent reinforcement learning algorithm baseline we tried was an
implementation of the current state-of-the-art in curiosity-driven

5A video of such a multiplayer bad outcome can be viewed here:
https://youtu.be/vrXOtHYMaPE.
6A video of a group of agents implementing a multiplayer global optimum joint policy
can be viewed here: https://youtu.be/TnxMnSClBHY.
7These hyperparameters were not tuned for the Malthusian case—they were prespeci-
fied before the runs of both methods, and not subsequently changed.
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Figure 2: Experiments with extrinsically and intrinsically motivated individual exploration using the Clamity game. (A) Local
optimum outcome. (B) Global optimum outcome. (C) Catastrophic multi-player outcome. (D) Multi-player global optimum.
(E) Returns as a function of the number of times the species playing on the evaluated solitary island was updated. Except
where indicated otherwise. reward values were smoothed over time with a window size of 100. Malthusian RL parameters
were α = 0.0001 and η = 1.5. Each episode lasted 250 behavior steps.

reinforcement learning, the intrinsic curiosity module provides a
pseudo-reward to the agents based on its prediction error in pre-
dicting the next timestep in the evolution of a compressed encoding
of its observations [25, 30]. In this case, augmenting the agent with
the intrinsic curiosity module is still insufficient to get it it to con-
sistently discover the nutrient patches. It does stumble upon them
from time to time, especially early on in training (Fig. 2, but does
not even do so consistently enough to register in a smoothed plot
of rewards versus time with a 100 step smoothing window (Fig. 2).
In contrast, individual members of species trained by Malthusian
reinforcement learning with dynamic population sizes consistently
implement globally optimal policies once they have discovered
them (Fig. 2).

Next we asked whether dynamic population sizes were specif-
ically important or whether the key was just the simultaneous
training in multi-agent islands with a given, sufficiently large, pop-
ulation size. We noticed that most runs with dynamical population
sizes converged to an island population size around 32 in the best
performing islands. Thus we ran several experiments where agents
trained in fixed population islands, evaluated on solitary islands as
before. We found that individuals that trained in a fixed population
size of 32 were able to discover the global optimum, but apparently
less consistently than in the case with dynamic population size (red
curve above navy curve in Fig. 2), and apparently with greater vul-
nerability to forgetting (the navy colored curve eventually declines
back to the local optimum).

3.2 Mutualism and specialization experiments
Solution concepts for general-sum games may involve mutualistic
interactions between synergistic strategies. Successful cooperative

joint strategies may be either homogeneous, as in facultative mutu-
alism, or heterogeneous. In nature, partners in mutually profitable
associations are often very different from one another so that they
can provide complementary capabilities to the partnership. In fact,
most known mutualisms involve partners from different kingdoms,
e.g., corals and their algae symbionts, vascular plants and mycor-
rhizal fungi, mammals and their gut bacteria, etc [5]. Moreover,
division of labor and the subsequent efficiency gains from special-
ization are thought to be key components of complex human society
[36].

However, it may be difficult to learn such mutually profitable
partnerships of widely divergent strategies with self-play. All part-
ners would need to represent all specializations, wasting valuable
representation capacity. In addition, a policy learned by self-play
requires a switching mechanism to break the symmetry and deter-
mine which sub-policy to emit in any given situation. For example,
an agent could learn to become a blacksmith if standing on the
left and a farmer if standing on the right. The complexity of the
switching policy is itself related to the extent of partial observabil-
ity in the environment. In some cases it may be very difficult to
determine the right proportion of individuals needed to perform
each part of the partnership at any given time, e.g. if the others’
strategies cannot easily be observed. It would be easier to learn a
heterogeneous set of policies, each one implementing only its own
part of the partnership. But then, it would seem that the number
of copies of each would have to be known in advance, thus adding
many new difficult-to-tune hyperparameters, one for each species.

In this section we explore whether Malthusian reinforcement
learning can find mutualistic partnerships more easily than other
multi-agent reinforcement learning methods, especially when there
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Figure 3: Experiments with the evolution of mutualism using the Allelopathy game. All results in this figure were smoothed
with a window size of 25 ecological steps. (A-D) Unbiased Allelopathy game. Malthusian RL parameters were α = 1e − 07 and
η = 0.3. E-H) Biased Allelopathy game. Malthusian RL parameters were α = 0.0001 and η = 0.01. (A, E) Maximum collective
return over all islands as a function of ecological time. (B, F)Maximumper capita collective return over all islands as a function
of ecological time. (C, G) Maximum island population size over all islands as a function of ecological time. (D, H) Minimum
number of times incurred a switching cost as a function of ecological time. ((I) Two screenshots of random procedurally
generated initial map configurations. Maps were procedurally generated by randomly placing shrubs at the start of each
episode. Episodes lasted 1000 behavior steps.

is a potential for gains from heterogeneous populations containing
multiple specialized members. To test this, we created another
partially observed Markov game environment. Again continuing
the game-theoretic tradition of accompanying each game with a
facetious and memorable story, we offer the following.

The Allelopathy game has two main rules. (1) shrubs grow in
random positions on an open field. Shrubs allelopathically sup-
press one another’s growth. That is, the probability that a seed of a
given type grows into a shrub in any given timestep is inversely
proportional to the number of nearby shrubs of other types. (2)
Agents in Allelopathy are herbivorous animals that can eat many
different types of shrub. However, switching frequently between
digesting different shrub types imposes a metabolic cost since dif-
ferent enzymes must be synthesized for each. Thus, agents benefit
from specialization in eating only a single type of shrub. Agents
receive increasing rewards for repeatedly harvesting the same type
of shrub (up to a maximum of r = 250). Rewards drop back down to
their lowest level, (r = 1), when the agent harvests a different type
of shrub (since that entails their switching into a different meta-
bolic regime). Thus an agent that randomly harvests any shrub
they come across is likely to receive low rewards. An agent that
only harvests a particular type of shrub while ignoring others will
obtain significantly greater rewards. The combined effect of these
two rules is to make it so that a specialist in any one shrub type
benefits from the presence of others who specialize in different
shrub types since their foraging increases the growth rate of all the
shrubs they do not consume.

We studied two variants of the Allelopathy game. The first vari-
ant, unbiased Allelopathy, has two shrub types A and B that appear
with equal probability. In the second variant, biased Allelopathy,

the two shrub types do not appear with the same frequency. TypeA
is significantly more common than type B. In addition, each shrub
of typeA consumed provides a maximum reward of 8 when at least
8 in a row are consumed. Whereas type B shrubs yield a maximum
reward of 250 for any agent that manages to consume that many
consecutively. Biased Allelopathy is a social dilemma since special-
ists in type B are clearly better off than specialists in type A, but
both do better when the other is around.

3.2.1 Results. Here the critical comparison is between homo-
geneous (L = 1) and heterogeneous (L > 1) population dynamics.
Therefore the object of study is the performance of the islands
rather than specific individuals. The Allelopathy environment con-
tains two niches, corresponding to specialization in consuming
either shrub type A or B. In the heterogeneous case, mutualistic
partnerships may develop from initial conditions where species in
proximity to one another randomly fill either role. This situation
features a gradient that guides each species in different directions.
Whichever species begins with a propensity toward role A ends
up specializing in role A. Likewise, the other species evolves to
specialize in role B, to the mutual benefit of both partners. On the
other hand, in the homogeneous case, it is still possible for mutual-
istic interactions to develop, but it is more difficulty since (1) both
specialized parts of the joint policy must be represented in the same
network, and (2) the policy must include a switching mechanism
that breaks the symmetry, determining which sub-policy to imple-
ment in each situation. Heterogeneous species avoid the need for
this symmetry breaking, and the relative proportions assigned to
each role are handled naturally by the adapting relative population
sizes (Fig. 4).
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The total number of individuals in each experiment was K =
960. Thus in the homogeneous L = 1 case, M = 960, and in the
heterogeneous L = 4 case, M = 240. The number of islands NI
was 60 in both dynamic population size conditions. In the fixed
population size conditions the number of islands was chosen so
that the total number of individual instances would still be 960, e.g.,
for fixed population size 32, this required NI = 960/32 = 30.

Results were similar for both the biased and unbiased Allelopa-
thy games. Heterogeneous (L = 4) population dynamics achieved
higher returns, both per capita, and in aggregate, than the other
tested methods including the homogeneous population (L = 1)
with size dynamics (Fig. 3). Interestingly both heterogeneous and
homogeneous runs converged to the same population size, but the
heterogeneous case increased more slowly to that point, and did so
while maintaining a higher per capita rate of return.

Figure 4: Representative island timecourses for theAllelopa-
thy game. The different lines represent different islands. No-
tice that the results are consistent across islands. (A-B) re-
sults from the unbiased Allelopathy game. (C-D) Results
from the biased Allelopathy game. (A, C) Collective return
per capita as a function of ecological time for four represen-
tative islands. (B, D) Island population size as a function of
ecological time for four representative islands.

4 DISCUSSION
This paper introduces Malthusian reinforcement learning, a multi-
agent reinforcement learning algorithm that motivates individual
exploration and takes advantage of possibilities for synergy to
evolve heterogeneous mutualisms. If populations rise when returns
improve then the problem itself shifts over time so no local opti-
mum need ever be reached. This gives rise to a strategy that we
may term exploration by exploitation. Individuals can always follow
the gradient of their experience, they need never depart from their
current estimate of the best policy just to explore the state space.
They will naturally explore it, just by following the gradient in a
changing world. Opportunities for heterogeneous mutualism may

also be detected by gradient following. Initially weak specialization
in one agent incentivizes its soon-to-be partner to specialize in a
complementary direction, which in turn catalyzes more specializa-
tion, and so on.

How does this paper’s proposed population dynamic relate to
dynamics studied in evolutionary theory? Our requirement of con-
servation of compute, that the number of individuals of a given
species on a given island may vary from episode to episode, but the
total number of individuals of each species in the archipelago is
always the same fixed value, implies that for populations to increase
on one island they much decrease elsewhere. Thus the population
dynamic introduced here may be understood as an evolutionary
model of migration. Moreover, since fitnesses are computed glob-
ally, i.e. relative to the entire archipelago, it is more similar to hard
selection models in evolutionary theory where populations are
regulated globally than soft selection, where population regulation
occurs locally within each island [14, 39, 40].

Other possible relationships between population size and inno-
vation have appeared in the evolutionary anthropology literature.
For instance, it is possible that—especially in preliterate societies—
larger populations provide for more protection from forgetting of
useful cultural elements since more elders, functioning as reposito-
ries of cultural knowledge, will be alive at any given time [15]. Or
alternatively, larger social networks may provide more opportuni-
ties for recombination of disparate cultural elements that originated
in farther and farther away contexts [4, 16, 21, 28]. As hypotheses
for the origin of innovative behaviors in biology, these possibilities
appear to be at odds with the mechanism implied by our algorithm,
since each could explain, for instance, the same correlations be-
tween brain size and group size across the primate order [10] as
well as innovation and (cultural) group size in humans [28, 32].
However, they are not mutually exclusive. In fact, all three mech-
anisms may even operate synergistically with one another. More
research is needed in order to tease apart the precise mechanisms in
biology. In computer science, we think this line of thought opens up
a goldmine of new algorithmic ideas concerning the combination
of population dynamics with social learning and imitation.
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