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ABSTRACT

Modelling teammates’ policies in cooperative multi-agent
systems has long been an interest and also a big challenge
for the reinforcement learning (RL) community. The inter-
est lies in the fact that if the agent knows the teammates’
policies, it can adjust its own policy accordingly to arrive at
proper cooperations; while the challenge is that the agents’
policies are changing continuously because they are learning
concurrently to adapt to each other. In this paper, we present
ATTention Multi-Agent Deep Deterministic Policy Gradient
(ATT-MADDPG) to address this challenge. ATT-MADDPG
extends DDPG, a single-agent actor-critic RL method, with
two special designs. First, as a necessary step to model the
teammates’ policies, the agent should get access to the obser-
vations and actions of teammates. ATT-MADDPG adopts a
centralized critic to collect such information. Second, ATT-
MADDPG further enhances the centralized critic with an
attention mechanism in a principled way. This attention
mechanism introduces a special structure to explicitly model
the dynamic joint policy of teammates in an adaptive manner,
making sure that the collected information can be processed
in an effective way. As a result, all agents will cooperate
with each other efficiently. We evaluate our method on both
benchmark tasks and the real-world packet routing tasks.
Results show that ATT-MADDPG not only outperforms the
state-of-the-art RL-based and rule-based methods by a large
margin, but also achieves better scalability and robustness.
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1 INTRODUCTION

There are many real-world tasks involving multiple agents,
such as the network packet routing [30] and the autonomous
intersection management [5]. In the past decades, researchers
have made continuous attempts to apply reinforcement learn-
ing (RL) [28] to deal with these multi-agent tasks, because
solving these tasks using a learning-based method is a crucial
step to build artificial intelligent systems. However, it remains
an open question due to many challenges, e.g., the partial ob-
servability of agents, the cooperation and competition among
agents, the changing number of agents, and etc.

In this paper, we focus on the cooperative distributed
multi-agent RL setting. In cooperative setting, the agents
need to take collaborative actions to achieve a shared goal. In
distributed setting, the agents are located in different areas
with partial observability. A representative and important
task is the network packet routing, where the routers are
treated as the autonomous agents and the goal is to transmit
the packets using as less resources as possible.

Even in this simplified setting, it is still difficult to handle
such tasks. One of the key reasons is that the agent modelling
[1] is too complicated. Specifically, if the agent maintains the
models about teammates’ policies, it can adjust its own policy
accordingly to achieve a proper cooperation. Nevertheless,
since all agents are learning concurrently to adapt to each
other, their policies are changing continuously. This kind
of dynamically changing policy is very hard to model in
an accurate manner. Even if one can manage to do it, the
modelled policies are easily outdated. Hence, there is a great
need to design adaptive agent modelling methods.

In fact, modelling and exploiting teammates’ policies have
long been an interest for the RL community [1]. Traditionally,
most methods are introduced in Game Theory [8] or grid-
world setting, and they usually model each teammate’s policy
separately. However, it is hard to scale these methods to tasks
like packet routing, because they are generally designed to
handle a small number of discrete actions and agents.

Recently, deep reinforcement learning (DRL) [16] has been
explored to do agent modelling for large-scale tasks, and most
of the existing methods [6, 10, 11, 23] focus on improving the
deep Q-network (DQN) [21]. However, the learned policies
are usually centralized, and they are unsuitable to be applied
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in distributed systems. Actually, there are some methods
with the capacity to learn decentralized policies, such as
DQN-based methods [24, 27] and other approaches based
on actor-critic RL algorithm [3, 7, 18], but they investigate
into other topics (e.g., the credit assignment among multiple
agents) instead of the agent modelling problem.

To conclude, the above factors further necessitate adaptive
agent modelling methods that can train decentralized policy
to cope with large-scale distributed tasks.

In this paper, we present ATTention Multi-Agent Deep
Deterministic Policy Gradient (ATT-MADDPG) to try to
address the above requirements. Specifically, ATT-MADDPG
extends DDPG [17], a single-agent actor-critic DRL-based
algorithm, with two special designs. First, as a necessary
step to model the teammates’ policies, the agent should
get access to the observations and actions of teammates.
ATT-MADDPG adopts a centralized critic to collect these
information. Second, in order to make sure that the collected
information can be processed in an effective way to model
the teammates’ policies, ATT-MADDPG further embeds an
attention mechanism into the centralized critic in a principled
way. This attention mechanism introduces a special structure
to explicitly model the dynamic joint policy of teammates in
an adaptive manner. Once the teammates change their poli-
cies, the associated attention weight will change adaptively,
and the agent will adjust its policy quickly. Consequently, all
agents will cooperate with each other efficiently. Moreover,
the policy keeps decentralized because we do not change the
actor part of DDPG. The actor can generate action based
on its own observation history independently.

We evaluate ATT-MADDPG on the real-world packet
routing tasks as well as benchmark cooperative navigation
and predator prey tasks. In all tasks, ATT-MADDPG can
obtain more rewards than both the state-of-the-art RL-based
methods and rule-based methods. Experiments also show that
ATT-MADDPG achieves better scalability and robustness.
Furthermore, we conduct experiments on packet routing
task to reveal some insights about the attention mechanism,
and on cooperative navigation task to show the cooperation
among the policies of agents.

2 BACKGROUND

DEC-POMDP. We consider a multi-agent setting that can
be formulated as DEC-POMDP [2]. It is formally defined

as a tuple ⟨𝑁,𝑆, �⃗�, 𝑇, �⃗�, �⃗�, 𝑍, 𝛾⟩, where 𝑁 is the number of

agents; 𝑆 is the set of state 𝑠; �⃗� = [𝐴1, ..., 𝐴𝑁 ] represents the
set of joint action �⃗�, and 𝐴𝑖 is the set of local action 𝑎𝑖 that

agent 𝑖 can take; 𝑇 (𝑠′|𝑠, �⃗�) : 𝑆 × �⃗� × 𝑆 → [0, 1] represents

the state transition function; �⃗� = [𝑅1, ..., 𝑅𝑁 ] : 𝑆 × �⃗� → R𝑁

is the joint reward function; �⃗� = [𝑂1, ..., 𝑂𝑁 ] is the set of
joint observation �⃗� controlled by the observation function

𝑍 : 𝑆 × �⃗� → �⃗�; 𝛾 ∈ [0, 1] is the discount factor.
In a given state 𝑠, each agent takes an action 𝑎𝑖 based

on its own observation (history) 𝑜𝑖, resulting in a new state
𝑠′ and a reward 𝑟𝑖. The agent tries to learn a policy 𝜋𝑖 :
𝑂𝑖 × 𝐴𝑖 → [0, 1] that can maximize E[𝐺𝑖] where 𝐺𝑖 is the

discount return defined as 𝐺𝑖 =
∑︀𝐻

𝑡=0 𝛾
𝑡𝑟𝑡𝑖 , and 𝐻 is the

time horizon. In practice, we map observation history instead
of the current observation to an action. In our cooperative
setting, 𝑟𝑖 = 𝑟𝑗 for different agents 𝑖 and 𝑗. We also assume
that the environment is joint fully observable [2], i.e.,

𝑠 , �⃗� = ⟨𝑜𝑖, �⃗�−𝑖⟩ where �⃗�−𝑖 is the joint observation (history)
of teammates of agent 𝑖.

Reinforcement Learning (RL). RL [28] is generally
used to solve special DEC-POMDP problems where 𝑁 = 1.
In practice, the Q-value function 𝑄𝜋(𝑠, 𝑎) is defined as

𝑄𝜋(𝑠, 𝑎) = E𝜋[𝐺|𝑆 = 𝑠,𝐴 = 𝑎] (1)

then the optimal policy is derived by 𝜋* = argmax𝜋 𝑄𝜋(𝑠, 𝑎).
Policy Gradient methods [29] directly learn the parameter-

ized policy 𝜋𝜃 = 𝜋(𝑎|𝑠; 𝜃), which is an approximation of any
policy 𝜋. To maximize the objective 𝐽(𝜃) = E𝑠∼𝑝𝜋,𝑎∼𝜋𝜃 [𝐺],
the parameters 𝜃 are adjusted in the direction of ∇𝜃𝐽(𝜃) =
E𝑠∼𝑝𝜋,𝑎∼𝜋𝜃 [∇𝜃 log 𝜋(𝑎|𝑠; 𝜃)𝑄𝜋(𝑠, 𝑎)], where 𝑝𝜋 is the stable
state distribution. We can use deep neural network 𝑄(𝑠, 𝑎;𝑤)
to approximate 𝑄𝜋(𝑠, 𝑎), resulting in the actor-critic algo-
rithms [9, 15]. Both the parameterized actor 𝜋(𝑎|𝑠; 𝜃) and
critic 𝑄(𝑠, 𝑎;𝑤) are used during training, while only the
actor 𝜋(𝑎|𝑠;𝜃) is needed during execution. This merit
will be used to train decentralized policies in our method.

Deterministic Policy Gradient (DPG) [26] is a special actor-
critic algorithm where the actor adopts a deterministic policy
𝜇𝜃 : 𝑆 → 𝐴 and the action space 𝐴 is continuous. Deep DPG
(DDPG) [17] uses deep neural networks to approximate 𝜇𝜃(𝑠)
and 𝑄(𝑠, 𝑎;𝑤). DDPG is an off-policy method, which applies
the target network and experience replay to stabilize training
and to improve data efficiency. Specifically, the critic and
actor are updated based on the following equations:

𝛿 = 𝑟 + 𝛾𝑄(𝑠′, 𝑎′;𝑤−)|𝑎′=𝜇
𝜃− (𝑠′) −𝑄(𝑠, 𝑎;𝑤) (2)

𝐿(𝑤) = E(𝑠,𝑎,𝑟,𝑠′)∼𝐷[(𝛿)2] (3)

∇𝜃𝐽(𝜃) = E𝑠∼𝐷[∇𝜃𝜇𝜃(𝑠) * ∇𝑎𝑄(𝑠, 𝑎;𝑤)|𝑎=𝜇𝜃(𝑠)] (4)

where 𝐷 is the replay buffer containing recent experience
tuples (𝑠, 𝑎, 𝑟, 𝑠′); 𝑄(𝑠, 𝑎;𝑤−) and 𝜇𝜃−(𝑠) are the target net-
works whose parameters 𝑤− and 𝜃− are periodically updated
by copying 𝑤 and 𝜃.

contextual vector

attention weight vector

𝑆𝑘𝑆2 𝑆𝐾 𝑇𝑆1

𝐶

𝑊

… …

Figure 1: The Soft Attention [19, 32].

Attention Mechanism. The Soft Attention [32] (some-
times referred as Global Attention [19]) is the most popular
one as shown in Figure 1. The inputs are several source vec-
tors [𝑆1, 𝑆2, .., 𝑆𝑘, .., 𝑆𝐾 ] and one target vector 𝑇 . The model
can adaptively attend to more important 𝑆𝑘, where the im-
portance is measured by a user-defined function 𝑓(𝑇, 𝑆𝑘);
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and the important information contained in 𝑆𝑘 can be en-
coded into a contextual vector 𝐶 adaptively according to the
normalized importance score 𝑤𝑘 as follows:

𝑤𝑘 =
exp(𝑓(𝑇, 𝑆𝑘))∑︀𝐾
𝑖=1 exp(𝑓(𝑇, 𝑆𝑖))

; 𝐶 =

𝐾∑︁
𝑘=1

𝑤𝑘𝑆𝑘 (5)

Besides, the attention weight vector𝑊 , [𝑤1, 𝑤2, .., 𝑤𝑘, .., 𝑤𝐾 ]
can also be seen as a probability distribution because∑︀𝐾

𝑘=1 𝑤𝑘 ≡ 1. The ingenuity for generating a probability
distribution adaptively will be applied in our method.

3 ATTENTION MULTI-AGENT DDPG

Before digging into the details, we list the key variables used
in this paper in Table 1. Please notice the differences between

�⃗�−𝑖, �⃗�−𝑖(�⃗�−𝑖|𝑠) and �⃗�−𝑖(�⃗�−𝑖|𝑠).

Table 1: The key variables used in this paper.

�⃗� The joint action of all agents.

𝑎𝑖 The local action of agent 𝑖.

�⃗�−𝑖 The joint action of teammates of agent 𝑖.

The action set �⃗�, 𝐴𝑖, �⃗�−𝑖 are denoted similarly.

The observation (history) �⃗�, 𝑜𝑖, �⃗�−𝑖 are denoted similarly.

The policy �⃗�, 𝜋𝑖, �⃗�−𝑖 are denoted similarly.

𝑠′ The next state after 𝑠.

�⃗�′, 𝑜′𝑖, �⃗�
′
−𝑖, �⃗�

′, 𝑎′
𝑖, and �⃗�′

−𝑖 are denoted similarly.

�⃗�−𝑖 The joint policy of teammates of agent 𝑖.

�⃗�−𝑖(�⃗�−𝑖|𝑠)
The probability value for generating �⃗�−𝑖

under policy �⃗�−𝑖. Σ�⃗�−𝑖∈�⃗�−𝑖
�⃗�−𝑖(⃗𝑎−𝑖|𝑠) = 1.

�⃗�−𝑖(�⃗�−𝑖|𝑠)
The probability distribution over the

joint action space �⃗�−𝑖 under policy �⃗�−𝑖.

3.1 The Overall Approach

To make our method more easy to understand, we present the
overall approach without considering the proposed attention
mechanism. We will introduce it in the next section.

Specifically, the overall approach adopts a general under-
lying architecture, namely, Independent Actors with Cen-
tralized Critics (IACC). As can be seen from Figure 2, the
centralized critic 𝑄𝑖 (i.e., the Q-value function that is related
to agent 𝑖) can get access to the observations and actions of
all agents, while the independent actor 𝜋𝑖 can only get ac-
cess to its own observation 𝑜𝑖. Accordingly, ATT-MADDPG
works as follows during training.

Step 1: the actors 𝜋𝑖 generate the actions 𝑎𝑖 based on their
own observations 𝑜𝑖 to interact with the environment.

Step 2: the centralized critics estimate the Q-values 𝑄𝑖

based on the observations and actions of all agents.
Step 3: after receiving the feedback reward from the envi-

ronment, the actors and critics are jointly trained using back
propagation (BP) based on Equation 10, 11, and 12.

Although the overall approach is simple, it has great ability
to address the agent modelling problem in distributed setting:
(1) note that only step 1 is needed during execution, thus the

𝑶𝑵𝑨𝑵𝑨𝟏𝑶𝟏

decentralized execution

π𝟏 π𝑵

𝑸𝟏 𝑸𝑵

. . .

. . .

. . .

centralized training

environment

BP BP

reward reward

step 1

step 2

step 3

Figure 2: The overall approach of ATT-MADDPG.

independent actor 𝜋𝑖 can learn decentralized policies that
are suitable for distributed execution; (2) generally, there is
no way to model the policies of other agents without firstly
accessing their observations �⃗�−𝑖 and actions �⃗�−𝑖; in step 2,
the centralized critic 𝑄𝑖 is designed to collect �⃗�−𝑖 and �⃗�−𝑖,
which forms the necessary foundation to do agent modelling.

In fact, the overall approach is the same as MADDPG [18],
but we present ATT-MADDPG as an extension of DDPG
rather than MADDPG due to the following reasons. (1) We
design it from the perspective of agent modelling. (2) Many
methods [3, 7, 20] also adopt the IACC architecture. (3)
Applying attention to this architecture in a principled way
is not an easy task. As shown in the next section, we achieve
this by analysing Equation 7, which is derived based on the
insight from agent modelling. It is our key contribution that
makes ATT-MADDPG a novel and principled method.

3.2 The Attention Critic

To arrive at a proper cooperation, the agent is expected to
model the teammates’ policies and to adjust its own policy
accordingly. We design and embed a kind of Soft Attention
into the centralized critic, making sure that the dynamic
joint policies of teammates can be modelled adaptively.

To make our design more easy to understand, we introduce
it based on the assumption that the action is discrete. The
extension to continuous action is presented in Section 3.3.

Recall that the environment is influenced by �⃗� in multi-
agent setting. From the perspective of agent 𝑖, the outcome
of 𝑎𝑖 taken in 𝑠 is dependent on �⃗�−𝑖. Therefore, similar to
the definition of 𝑄𝜋(𝑠, 𝑎) in Equation 1, we define the Q-
value function relative to the joint policy of teammates as

𝑄
𝜋𝑖|�⃗�−𝑖

𝑖 (𝑠, 𝑎𝑖) as previous study [10], and our new objective

is to find the optimal policy 𝜋*
𝑖 = argmax𝜋𝑖 𝑄

𝜋𝑖|�⃗�−𝑖

𝑖 (𝑠, 𝑎𝑖).

Mathematically, 𝑄
𝜋𝑖|�⃗�−𝑖

𝑖 (𝑠, 𝑎𝑖) can be calculated by1

𝑄
𝜋𝑖|�⃗�−𝑖

𝑖 (𝑠, 𝑎𝑖) = E�⃗�−𝑖∼�⃗�−𝑖 [𝑄
𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖)] (6)

= Σ�⃗�−𝑖∈�⃗�−𝑖
[�⃗�−𝑖(⃗𝑎−𝑖|𝑠)𝑄𝜋𝑖

𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖)] (7)

1The detailed derivation can be found in [10].
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Attention
Module

𝑨𝟑=𝒓𝑶𝟑𝑨𝟐=𝒍𝑶𝟐𝑨𝟏=𝒓𝑶𝟏

𝑸𝟏
𝟏(𝒔, 𝒂𝟏

𝒓|𝒂−𝟏
𝒍𝒍 ) 𝑸𝟏

𝟐(𝒔, 𝒂𝟏
𝒓|𝒂−𝟏

𝒍𝒓 ) 𝑸𝟏
𝟑(𝒔, 𝒂𝟏

𝒓|𝒂−𝟏
𝒓𝒓 ) 𝑸𝟏

𝟒(𝒔, 𝒂𝟏
𝒓|𝒂−𝟏

𝒓𝒍 )

𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓

𝑸𝟏
𝒄(𝒔, 𝒂𝟏

𝒓 , 𝒂−𝟏
𝒍𝒓 )

contextual
Q-value

action conditional
Q-values

attention weight

𝒉𝟏

𝑾𝟏

𝑸𝟏

K-head
Module

real
Q-value

: fully-connected layer

: attention operation

Figure 3: The attention critic of ATT-MADDPG.
For clarity, we only show the detailed generation of
𝑄1 using a three-agent example: the discrete action
space is {𝑙, 𝑟}, and the agents prefer to take the ac-
tions 𝑟, 𝑙, and 𝑟, respectively. In this case, the second
action conditional Q-value 𝑄2

1 will contribute more
weights to the computation of the contextual Q-value
𝑄𝑐

1, as indicated by thicker red links. We call 𝑄𝑖 the
real Q-value, 𝑄𝑐

𝑖 the contextual Q-value, and 𝑄𝑘
𝑖 the

action conditional Q-value. The difference is that 𝑄𝑐
𝑖

and 𝑄𝑘
𝑖 are multi-dimensional vectors, while 𝑄𝑖 is the

real scalar Q-value used in Equation 10, 11, and 12.

Equation 7 implies that in order to estimate 𝑄
𝜋𝑖|�⃗�−𝑖

𝑖 (𝑠, 𝑎𝑖),
the critic network of agent 𝑖 should have the abilities:

(1) to estimate 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖) for each �⃗�−𝑖 ∈ �⃗�−𝑖;

(2) to calculate the expectation of all 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖)

2.

To estimate 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖) for each �⃗�−𝑖 ∈ �⃗�−𝑖, we design a

𝐾-head Module where𝐾=|�⃗�−𝑖|. As shown at the bottom of
Figure 3, the 𝐾-head Module generates 𝐾 action conditional
Q-value 𝑄𝑘

𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) for each �⃗�−𝑖 to approximate the
true 𝑄𝜋𝑖

𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖), where 𝑤𝑖 is the parameters of the critic

network of agent 𝑖. Specifically, 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) is generated

using 𝑎𝑖 and all observations ⟨𝑜𝑖, �⃗�−𝑖⟩ = �⃗� , 𝑠; as for the
information about �⃗�−𝑖, it is provided by an additional hidden
vector ℎ𝑖(𝑤𝑖), which will be introduced shortly3.

To calculate the expectation of all 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖), the

weights �⃗�−𝑖(⃗𝑎−𝑖|𝑠) of all 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖) are also required as

indicated by Equation 7. However, it is hard to approximate
these weights. On one hand, for different 𝑠, the teammates
will take different �⃗�−𝑖 with different probabilities �⃗�−𝑖(⃗𝑎−𝑖|𝑠)
based on the policy �⃗�−𝑖. On the other hand, the policy �⃗�−𝑖

is changing continuously, because the agents are learning
concurrently to adapt to each other.

2The expectation is equivalent to the weighted summation, and the
weight of 𝑄

𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖) is �⃗�−𝑖(�⃗�−𝑖|𝑠) as shown in Equation 7.

3This is why we use 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) instead of 𝑄𝑘

𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖) to
represent the defined action conditional Q-value.

We propose to approximate all �⃗�−𝑖(⃗𝑎−𝑖|𝑠) ∈ �⃗�−𝑖(�⃗�−𝑖|𝑠)
jointly by a weight vector 𝑊𝑖(𝑤𝑖) , [𝑊 1

𝑖 (𝑤𝑖), ...,𝑊
𝐾
𝑖 (𝑤𝑖)],

where 𝑤𝑖 is the parameters of the critic network of agent
𝑖. That is to say, we use 𝑊𝑖(𝑤𝑖) to approximate the prob-

ability distribution �⃗�−𝑖(�⃗�−𝑖|𝑠), rather than approximating
each probability value �⃗�−𝑖(⃗𝑎−𝑖|𝑠) separately. A good 𝑊𝑖(𝑤𝑖)
should satisfy the following conditions: (1) Σ𝐾

𝑘=1𝑊
𝑘
𝑖 (𝑤𝑖) ≡ 1,

such that 𝑊𝑖(𝑤𝑖) is a probability distribution indeed; (2)
𝑊𝑖(𝑤𝑖) can change adaptively when the joint policy of team-
mates �⃗�−𝑖 is changed, such that 𝑊𝑖(𝑤𝑖) can really model the
teammates’ joint policy in an adaptive manner.

Recall that the attention mechanism is intrinsically suit-
able for generating a probability distribution in an adaptive
manner (please refer Section 2), so we leverage it to design
an Attention Module . As shown at the middle of Figure 3,
Attention Module works as follows.

Firstly, a hidden vector ℎ𝑖(𝑤𝑖) is generated based on all
actions of teammates (i.e., �⃗�−𝑖).

Then, the attention weight vector 𝑊𝑖(𝑤𝑖) is generated
by comparing ℎ𝑖(𝑤𝑖) with all action conditional Q-values
𝑄𝑘

𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖). Specifically, we apply the dot score function
[19] to calculate the element 𝑊 𝑘

𝑖 (𝑤𝑖) ∈ 𝑊𝑖(𝑤𝑖):

𝑊 𝑘
𝑖 (𝑤𝑖) =

exp(ℎ𝑖(𝑤𝑖)𝑄
𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖))∑︀𝐾

𝑘=1 exp(ℎ𝑖(𝑤𝑖)𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖))

(8)

Lastly, the contextual Q-value 𝑄𝑐
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖) is calcu-

lated as a weighted summation of 𝑊 𝑘
𝑖 and 𝑄𝑘

𝑖 :

𝑄𝑐
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖) =

𝐾∑︁
𝑘=1

𝑊 𝑘
𝑖 (𝑤𝑖)𝑄

𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) (9)

Summary: Teammates have been considered in Equation
7, while Equation 9 is an approximation of Equation 7, be-
cause 𝑊 𝑘

𝑖 (𝑤𝑖) and 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) can learn to approximate

�⃗�−𝑖(⃗𝑎−𝑖|𝑠) and 𝑄𝜋𝑖
𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖), respectively. Thus, the agents

controlled by ATT-MADDPG can cooperate efficiently.

3.3 Key Implementation

Attention Module. After getting the contextual Q-value
𝑄𝑐

𝑖 (𝑠, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖), we need to transform the multi-dimensional
𝑄𝑐

𝑖 into a scalar real Q-value 𝑄𝑖 using a fully-connected layer
with one output neuron, as shown at the top of Figure 3.

The reason is that many researches have shown that multi-
dimensional vector works better than scalar when implement-
ing the Soft Attention [32]. In our Attention Module, we
also find that vector works better than scalar, so the 𝑄𝑐

𝑖 ,
𝑄𝑘

𝑖 , ℎ𝑖(𝑤𝑖) and 𝑊𝑖(𝑤𝑖) are all implemented using vectors.
However, the standard RL adopts a scalar real Q-value 𝑄𝑖,
thus we should transform 𝑄𝑐

𝑖 into a scalar real Q-value 𝑄𝑖.
𝐾-head Module. We have limited the above discussion

to discrete action space. A natural question is that should

we generate one 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) for each �⃗�−𝑖 ∈ �⃗�−𝑖? What

if the action space is continuous?

In fact, there is no need to set 𝐾 = |�⃗�−𝑖|. Many
researchers have shown that only a small set of actions are
crucial in most cases, and the conclusion is suitable for both
continuous [26] and discrete [31] action space environments.
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We argue that if 𝑄𝑘
𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) could group similar �⃗�−𝑖

(i.e., representing different but similar �⃗�−𝑖 using one Q-value
head), it will be much more efficient. As deep neural network
is an universal function approximator [4, 12, 25], we expect
that our method can possess this ability. Further analysis in
Section 4.1.3 also indicates that our hypothesis is reasonable.
Hence, we adopt a small 𝐾 even with continuous action.

Parameter Updating Method. Since the critic network
has considered the observations and actions of all agents, the
network’s output (i.e., the real Q-value 𝑄𝑖) can be repre-
sented as 𝑄𝑖(⟨𝑜𝑖, �⃗�−𝑖⟩, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖). Therefore, we can extend
Equation 2, 3 and 4 into multi-agent formulations:

𝛿𝑖 = 𝑟𝑖 + 𝛾𝑄𝑖(⟨𝑜′𝑖, �⃗�′−𝑖⟩, 𝑎′
𝑖, �⃗�

′
−𝑖;𝑤

−
𝑖 )|𝑎′

𝑗=𝜇
𝜃
−
𝑗

(𝑜′𝑗)

− 𝑄𝑖(⟨𝑜𝑖, �⃗�−𝑖⟩, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖) (10)

𝐿(𝑤𝑖) = E(𝑜𝑖,�⃗�−𝑖,𝑎𝑖 ,⃗𝑎−𝑖,𝑟𝑖,𝑜
′
𝑖,�⃗�

′
−𝑖)∼𝐷[(𝛿𝑖)

2] (11)

∇𝜃𝑖𝐽(𝜃𝑖) = E(𝑜𝑖,�⃗�−𝑖)∼𝐷[∇𝜃𝑖𝜇𝜃𝑖(𝑜𝑖)

* ∇𝑎𝑖𝑄𝑖(⟨𝑜𝑖, �⃗�−𝑖⟩, 𝑎𝑖, �⃗�−𝑖;𝑤𝑖)|𝑎𝑗=𝜇𝜃𝑗
(𝑜𝑗)] (12)

In practice, we adopt the centralized training with decen-
tralized execution paradigm [3, 7, 18, 22] to train and deploy
our model, thus the information in the above equations can be
collected easily. Besides, the 𝐾-head Module and Attention
Module are submodules embedded in the centralized critic,
so they can be optimized jointly with the agent’s policy in
an end-to-end manner using back propagation.

3.4 The Discussion

Our attention critic has great ability to explicitly model the
dynamic joint policy of teammates in an adaptive manner.
This can be understood from three perspectives.

The first perspective is the joint policy. Equation 8 makes
sure that Σ𝐾

𝑘=1𝑊
𝑘
𝑖 (𝑤𝑖) ≡ 1, thus 𝑊𝑖(𝑤𝑖) must be able to

represent the probability distribution �⃗�−𝑖(�⃗�−𝑖|𝑠) of a specific
joint policy �⃗�−𝑖.

The second perspective is the adaptive manner. That is
to say, 𝑊𝑖(𝑤𝑖) can react to the teammates’ dynamic policies
adaptively. The reason is that the action conditional Q-value
𝑄𝑘

𝑖 (𝑠, 𝑎𝑖 |⃗𝑎−𝑖;𝑤𝑖) has considered all actions of the agent team,
thus its values can be estimated using the experience tuple
(𝑠, ⟨𝑎𝑖, �⃗�−𝑖⟩, 𝑟𝑖, 𝑠′) , (⟨𝑜𝑖, �⃗�−𝑖⟩, ⟨𝑎𝑖, �⃗�−𝑖⟩, 𝑟𝑖, ⟨𝑜′𝑖, �⃗�′−𝑖⟩), which
is independent of the current �⃗�−𝑖. It means that 𝑄𝑘

𝑖 has no
need to shift its values even if �⃗�−𝑖 has changed (yet 𝑄𝑘

𝑖 still
need to be learned). Given a stable 𝑄𝑘

𝑖 , the attention weight
𝑊𝑖(𝑤𝑖) can adapt to different �⃗�−𝑖 easily, and the agent will
adjust its policy quickly.

The last perspective is that the attention critic network is
designed based on mathematical analysis, which introduces a
special structure to explicitly approximate Equation 7. This is
similar to the renowned Dueling Network [31], which explicitly
approximates the Q-value as the summation of the advantage
and the baseline (i.e., 𝑄(𝑠, 𝑎) = 𝐴(𝑠, 𝑎) + 𝑉 (𝑠)). In contrast,
if the centralized critic is implemented using fully-connected
network like previous studies [7, 18, 20], it will be difficult
for the fully-connected critic network to accomplish such
meticulous task.

4 EXPERIMENT

The experiments are conducted based on the following set-
tings. The actor adopts feedforward network with two hidden
layers. Unless otherwise specified, the critic adopts 4-head
attention network as shown in Figure 3. For both actors and
critics, hidden layer has 32 neurons. Other hyperparameters
are as follows: the learning rates of actor, critic and target
networks are 0.001, 0.01 and 0.001, respectively; replay buffer
size is 100000; batch size is 128; discount factor is 0.95.

4.1 The Packet Routing Environment

Environment Description. In the information era, packet
routing is a very fundamental and critical task on the Internet.
We evaluate our methods on the routing tasks shown in
Figure 4. The small topology is most classical in the Internet
Traffic Engineering community [13]. The large topology is
based on the real needs of our industrial collaborator. In each
topology, there are several edge routers. Each edge router has
an aggregated flow that should be transmitted to other edge
routers through available paths (e.g., in Figure 4(a), 𝐵 is set
to transmit flow to 𝐷, and the available paths are 𝐵𝐸𝐹𝐷
and 𝐵𝐷). Each path is made up of several links, and each
link has a link utilization, which equals to the ratio of the
current flow on this link to the maximum flow transmission
capacity of this link. The necessity of cooperation among
routers is as follows: one link can be used to transmit the flow
from more than one router, so the routers should not split
too much or too little flow to the same link at the same time;
otherwise this link will be either overloaded or underloaded.

C

D
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E F

A
Paths:
AC
AEFC
BEFD
BD

(a) The small topology.

Paths:
A16C
A146C
A147C
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A257C
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A
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1
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7

85

4

3

2

(b) The large topology.

Figure 4: The packet routing environment. The large
topology has the same complexity as the real Abilene
Network4 in terms of the numbers of routers, links
and paths. It is used for scalability test.

Problem Definition. The routers are controlled by our
algorithm, and they try to learn a good flow splitting policy to
minimize the Maximum Link Utilization in the whole network
(MLU). The intuition behind this objective is that high link
utilization is undesirable for dealing with bursty traffic5.
The observation includes the flow demands in the routers’
buffers, the latest ten steps’ estimated link utilizations and the
latest action taken by the router. The action is the splitting
ratio of each available path. The reward is 1−𝑀𝐿𝑈 because
we want to minimize MLU. Exploration bonus based on local
link utilization can be added accordingly.

4A backbone network https://en.wikipedia.org/wiki/Abilene Network.
5The detailed advantages of minimizing MLU is discussed in [13].
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Figure 5: The average rewards on small topology.

Figure 6: The average rewards on large topology.

Baseline. MADDPG [18] and PSMADDPGV2 [3] are
adopted as baselines, because they are the state-of-the-art
RL-based methods that can deal with distributed tasks with
continuous action space. They also apply centralized critics
to collect teammates’ information, but without attention
mechanism. MADDPG uses plain fully-connected network to
implement the centralized critic, while PSMADDPGV2 uses
the parameter sharing method (i.e., sharing part of the critic
network with other agents) to model other agents inexplicitly.
In addition, Khead-MADDPG and the rule-based WCMP are
compared. WCMP [14, 34] is a Weighted-Cost version of the
Equal-Cost Multi-Path routing algorithm6, which is the most
popular multi-path routing algorithm applied in real-world
routers. Khead-MADDPG is an ablation model that directly
merges the branches of 𝐾-head Module to generate the real
Q-value, and there is no attention mechanism in this model.

4.1.1 Simple Case Test and Scalability Test. The average
rewards of 20 independent experiments are shown in Fig-
ure 5 and 6. As can be seen, for the small topology, ATT-
MADDPG can obtain more rewards than MADDPG and
PSMADDPGV2, while the Khead-MADDPG model does not
work at all. It means that the combination of 𝐾-head Module
and Attention Module (but not a single 𝐾-head Module)
is necessary for achieving good results. The performance of
PSMADDPGV2 turns out to be unsatisfactory, which may
result from the heterogeneity of the agents.

For the large topology, ATT-MADDPG outperforms other
methods by a larger margin. It indicates that ATT-MADDPG
has better scalability. A possible reason is that the Attention
Module can make the Q-value estimation attend to the ac-
tions of more relevant agents (and accordingly, the influence
of irrelevant agents is weakened). Take Figure 4(b) as an
example, agent4 is very likely to attend to agent1 and agent2

6https://en.wikipedia.org/wiki/Equal-cost multi-path routing.

Figure 7: The robustness test on small topology.

Figure 8: The robustness test on large topology.

rather than agent3. This property enables ATT-MADDPG
to work well even within a complex environment with an
increasing number of agents. In contrast, without a mecha-
nism to explicitly model the agents, MADDPG will not be
furnished with such scalability.

For both topologies, ATT-MADDPG exhibits better per-
formance than the rule-based WCMP after training a thou-
sand episodes. The reason lies in that the RL-based ATT-
MADDPG can take the future effect of actions into consider-
ation, which is in favor of accomplishing the cooperation at a
high level, whereas the rule-based WCMP can only consider
the current effect of actions.

4.1.2 Robustness Test. ATT-MADDPG introduces a spe-
cial hyperparameter 𝐾. It is necessary to investigate how the
setting of 𝐾 influences the performance. As mentioned before,
the above results are obtained when 𝐾 = 4. We further set
𝐾 as 2, 8, 12 and 16 to conduct the same experiments. The
average rewards of 20 independent experiments are shown in
Figure 7 and 8. As can be observed, for the small topology,
the obtained rewards are increasing as 𝐾 becomes greater,
and there is a great increase when 𝐾 is set to 8. For the
large topology, a small increase is observed when 𝐾 is set to
16. Overall, ATT-MADDPG can obtain more rewards than
MADDPG in all settings. Consequently, it can be concluded
that ATT-MADDPG can stay robust at a wide range of 𝐾
to achieve good results.

4.1.3 Further Study on 𝐾-head and Attention. In Section
3.3, we claim that the attention weight 𝑊 𝑘

𝑖 (𝑤𝑖) is used to
approximate the probability �⃗�−𝑖(⃗𝑎−𝑖|𝑠), and the 𝐾-head
Module is expected to have the ability to group similar �⃗�−𝑖.
In this experiment, we want to verify whether the above
claim is consistent with the experimental results. Specifically,
we randomly sample 30 non-cherry-picked experience tuples
(𝑠, 𝑎,𝑄(𝑠, 𝑎)) from the replay buffer, and show the different
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(b) The attention weights.

Figure 9: The Q-values and attention weights gener-
ated by router 𝐵 in the small topology.

heads’ Q-values and the attention weights of these samples in
Figure 9. We only show 30 samples to make the illustration
easy to read. As can be seen, head4 has the smoothest Q-
values, and the weights of head4 are much greater than the
weights of other heads. In contrast, head1 has a large range of
Q-value volatility, and the weights of head1 are much smaller.

The above phenomenon leads us to believe that the 𝐾-
head Module can group similar �⃗�−𝑖 indeed. For example,
the heavily weighted head4 may represent a large set of non-
crucial �⃗�−𝑖 (e.g., a flow splitting ratio between [0.3, 0.7]),
while the lightly weighted head1 may represent a small set
of crucial �⃗�−𝑖 (e.g., a flow splitting ratio between [0.8, 0.9]).
The explanation is as follows. From the perspective of Q-
value, since head4 may represent the non-crucial �⃗�−𝑖, most
local actions 𝑎𝑖 will not have a great impact on the 𝑀𝐿𝑈
(and accordingly, the reward and the Q-value); therefore it
is reasonable that head4 has smooth Q-values. From the
perspective of attention weight, as head4 may represent a
large set of non-crucial �⃗�−𝑖 that are preferred by many
routers, the probability summation Σ�⃗�−𝑖

�⃗�−𝑖(⃗𝑎−𝑖|𝑠) of the

�⃗�−𝑖 grouped by head4 will be great; given that the attention
weight is an approximation of the probability �⃗�−𝑖(⃗𝑎−𝑖|𝑠), it
will be reasonable that head4 has greater attention weights
than other heads. The Q-values and the attention weights of
head1 can be analysed similarly to show that our hypothesis
(i.e., the 𝐾-head Module can group similar �⃗�−𝑖) is reasonable.

4.2 The Benchmark Environment

We consider two benchmark environments that are also adopt-
ed by MADDPG. They are shown in Figure 10.

agent

landmark

(a) Cooperative Navigation.

randomly
escape

predator

prey

(b) Predator Prey.

Figure 10: The benchmark environments.

Cooperative Navigation (Co. Na.). Three agents and
three landmarks are generated at random locations of a 10-by-
10 2D plane. The agents are controlled by our algorithm, and
they try to cooperatively cover all landmarks. The observa-
tion is the relative positions and velocities of other agents
and landmarks. The action is the velocity. The reward is
the negative proximity of any agent to each landmark.

Predator Prey (Pr. Pr.). Three predators and a prey
are generated at random locations of a 10-by-10 2D plane.
The predators are controlled by our algorithm, and they
try to cooperatively catch the prey. The observation and
action are the same as those of the cooperative navigation
environment. The reward is the negative proximity of any
predator to the prey. In addition, the predators will get a 10
reward when they catch the prey.

Baseline. Besides MADDPG, PSMADDPGV2 and Khead-
MADDPG, we also compare with a rule-based method called
GreedyPursuit: for cooperative navigation, the agent always
goes to the nearest landmark; for predator prey, the predator
always goes to the current location of the prey.

Table 2: The average final stable rewards.

Co. Na. Pr. Pr.

ATT-MADDPG, 𝐾=2 -1.279 3.986

ATT-MADDPG, 𝐾=4 -1.268 3.589

ATT-MADDPG, 𝐾=8 -1.322 3.012

ATT-MADDPG, 𝐾=12 -1.353 3.170

ATT-MADDPG, 𝐾=16 -1.317 3.004

PSMADDPGV2 -1.586 2.473

MADDPG -1.767 1.920

GreedyPursuit -2.105 1.903

Khead-MADDPG -2.825 1.899

The Result. The average final stable rewards of 50 in-
dependent experiments are shown in Table 2. We see that
ATT-MADDPG can obtain more rewards than all baselines
in both environments. It indicates that our method asserts it-
self with general applicability and good performance. Besides,
in contrast to the results in the packet routing environments,
PSMADDPGV2 works better than MADDPG in the current
environments. The reason may be that the agents are homo-
geneous in current environments, which makes the parameter
sharing method more efficient. GreedyPursuit performs badly
because it does not consider that the teammates will go to
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timestep

Figure 11: A convergent joint policy learned by ATT-MADDPG under an instance of the cooperative navi-
gation task. L1, L2 and L3 represent different landmarks. A1, A2 and A3 stand for different agents. The red
arrows indicate the agents’ actions. Note that one picture stands for several timesteps.

the same landmark, and that the prey will escape to other
place. The Khead-MADDPG behaves even worse, because it
sometimes cannot converge well, resulting in random agents.

Policy Analysis. Figure 11 shows a convergent joint pol-
icy learned by ATT-MADDPG under the cooperative navi-
gation task. In the beginning (i.e., the first picture), A1 and
A2 share the closest landmark L2, while A3 is very closed to
L1 and L3. Therefore, A1 “hesitantly” moves to the center of
L1 and L2, A2 to the center of L2 and L3, A3 to the center
of L1 and L3. After some timesteps, the state changes to the
second picture. At this point, A2 and A3 “realise” that A1
will go to L1. Thus, A2 directly moves to L2, A3 to L3, and
A1 to L1 in the following timesteps (i.e., the three pictures in
the middle). Consequently, the agents cover to all landmarks
as shown in the last picture. These behaviors indicate that
the agents really learned a cooperative joint policy.

5 RELATED WORK

Agent modelling is the process of constructing models for
other agents based on the interaction history. The models
include any property of interest such as belief, policy, action
[1]. Traditionally, most methods are based on the Game
Theory [8] or grid-world settings, which are hardly scaled to
real-world applications like the network packet routing.

Recently, DRL-based methods has been explored to do
agent modelling for large-scale problems. Our method is an
instance of such method, and the most relevant researches
are DRON [10], DPIQN [11], LOLA [6], SOM [23], Mean
Field Reinforcement Learning (MFRL) [33]. DRON embeds
the opponent’s action into the agent’s policy network. In this
way, the opponent’s action can be seen as a hidden variable of
the agent’s policy. Another gating network is used to control
how much the hidden variable influences the policy. DPIQN
is very similar to DRON. It embeds the collaborator’s policy
feature into the controllable agent’s DQN [21], such that
it is able to generate cooperative actions. LOLA explicitly
includes an additional term into the agent’s policy updating
rules. This additional term can account for the impact to
other agents. SOM trains a shared policy network for all
agents. The input of the policy network contains a goal field
to distinguish different agents. The authors find that the
policy network can model the agent’s action to some extent.
MFRL approximately models the interaction among multiple

agents by that between a single agent and the mean effect
of other teammates. However, these methods usually train
centralized policies for tasks with discrete action space, while
our method can generate decentralized policies for tasks with
continuous action space. A few DQN-based methods [24, 27]
can generate decentralized policies; the baseline MADDPG
[18] and PSMADDPGV2 [3] can train decentralized policies
with continuous action space; however, they address other
problems such as credit assignment and competitive agents
instead of the agent modelling problem.

6 CONCLUSION

This paper presents a novel actor-critic RL method to model
and exploit teammates’ policies in cooperative distributed
multi-agent setting. Our method embeds an attention mech-
anism into a centralized critic, which introduces a special
structure to explicitly model the dynamic joint policy of
teammates in an adaptive manner. Consequently, all agents
will cooperate with each other efficiently. Furthermore, our
method can train decentralized policy to handle real-world
distributed tasks like the network packet routing.

We evaluate our method on both benchmark tasks and
the real-world packet routing tasks. The results show that it
not only outperforms the state-of-the-art RL-based methods
and rule-based methods by a large margin, but also achieves
good scalability and robustness. Moreover, to better under-
stand our method, we also conduct thorough experiments:
(1) the ablation model illustrates that all components of the
proposed model are necessary; (2) the study on Q-values
and attention weights demonstrates that our method has
mastered a sophisticated attention mechanism indeed; (3)
the analysis of a concrete policy shows that the agents really
learned a cooperative joint policy.
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