
Minimizing Travel in the Uniform Dispersal Problem for
Robotic Sensors

Michael Amir

ammicha3@cs.technion.ac.il

Technion - Israel Institute of Technology

Haifa, Israel

Alfred M. Bruckstein

freddy@cs.technion.ac.il

Technion - Israel Institute of Technology

Haifa, Israel

ABSTRACT
The limited energy capacity of individual robotic agents in a swarm

often limits the possible cooperative tasks they can perform. In this

work, we investigate the problem of covering an unknown con-

nected grid environment (e.g. a maze or connected corridors) with a

robotic swarm so as to minimize the maximal number of steps that

each member of the swarm makes and their activity time before

their work is finished, thereby minimizing the energy requirements.

The robots are autonomous, anonymous and identical, with local

sensors and finite memory, and possess no communication capabil-

ities. They are assumed to disperse over time from a fixed location,

and to move synchronously. The robots are tasked with occupying

every cell of the environment, while avoiding collisions.

In the literature such topics are known as uniform dispersal
problems. The goal of minimizing the number of steps traveled

by the robots has previously been studied in this context. Our

contribution is a local robotic strategy for simply connected grid

environments that, by exploiting their topology, achieves optimal

makespan (the amount of time it takes to cover the environment)

and minimizes the maximal number of steps taken by the individual

robots before their deactivation. The robots succeed in discovering

optimal paths to their eventual destinations, and finish the covering

process in 2V − 1 time steps, where V is the number of cells in the

environment.

KEYWORDS
Mobile robot; Minimizing movement; Unknown environment; Uni-

form dispersal; Grid environment; Area coverage

ACM Reference Format:
Michael Amir and Alfred M. Bruckstein. 2019. Minimizing Travel in the

Uniform Dispersal Problem for Robotic Sensors. In Proc. of the 18th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION AND RELATEDWORK
The objective of swarm robotics is to enable a large group of simple

and autonomous mobile robots to work cooperatively towards

complex goals. It is often the case, e.g. when the robots are traveling

large distances or are airborne, that a lot of energy is required for

the sustained activity of robots in the swarm. In this work, we

are interested in solving the uniform dispersal problem for simply

connected grid environments while minimizing the movement and

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

active time of each individual robot, in order to minimize the energy

requirements.

In many real life scenarios, e.g. mapping or hazard detection,

one is interested in deploying agents over an unknown area and

covering it for the purposes of sensing or reacting [17]. The use

of swarm robotics to solve such problems has many inherent ad-

vantages, such as scalability, greater coverage, and autonomy in

mission execution. In uniform dispersal, a large number of mobile

robots emerge over time from a source or several source locations

(called “doors” in the literature), and are tasked to completely cover

an unknown environment R by occupying every location and to

terminate their work in finite time [3]. The robots must not collide

(i.e. two robots must never occupy the same location), nor step

outside the boundaries of the environment.

Hsiang et al. [19] [18] introduced the problem of uniform dis-

persal in discrete planar domains by mobile robots endowed only

with finite memory, local sensors, and local communication. Their

DFS-esque “follow the leader” strategy enables robots to cover the

environment in optimal time, assuming a synchronous time scheme.

Much follow-up work has focused on achieving dispersal with

weaker models of robots, e.g. disallowing communication, reducing

memory, or assuming asynchronous time [3] [15] [4]. Barrameda

et al. [3] have shown that the dispersal problem is intractable under

the usual assumptions if the robots are assumed to be oblivious

(that is, to possess no persistent states), though there have been

attempts to get around this limitation using randomization [16]. It

is standard to assume that the robots are moving in a connected

grid environment, as any 2D space can be approximated well by

pixelation into tiny grid cells of uniform size.

From a theoretical perspective, the problem of dispersing and

coordinating mobile robotic agents while minimizing movement or

energy has been studied extensively both as a centralized motion

planning problem and in distributed sensor networks [9] [21] [11],

and various computational hardness results have been proven in the

case of general graph environments [8]. More broadly, multi-agent

scheduling problems have been studied in the presence of energy

constraints [13]. Specifically in the context of uniform dispersal for

robotic sensors, the question of minimizing travel for orthogonal

areas that we here concern ourselves with was discussed in the

original paper by Hsiang et. al [19] and soon after in Stainzberg’s

doctoral dissertation [25], and more recently in [14] and [16].

In recent decades there has been considerable effort dedicated to

the algorithmic problems of agent coverage or exploration, wherein

a robot or team of robots must completely explore, occupy, or map

an area. Attention has been given to the case of a single robot tasked

with visiting every vertex of a graph or grid environment [5] [28], to

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

113

single- and multi-robot path planning [1], to natural or pheromone-

based computation models [23] [26] [27], to related formation or

dispersal problems [22] [7], and to a multitude of other topics. We

refer the reader to [12] or [2] for recent surveys. The problem of

uniform dispersal distinguishes itself from many of these by its

distinctly online nature. The robots emerge onto the environment

at different times and must successfully embed themselves into the

ongoing exploration effort, without colliding with other robots, and

without interrupting the constant outflow of new robots. They must

do this under stringent computational, sensory, and communication

restrictions–in most recent models, the robots, modelled as finite

automata, are not allowed to talk to each other, and cannot even tell

the difference between environmental obstacles and the presence

of robots active in the formation. We find it fairly surprising that

under these restrictions, robots are capable of exploring an entirely

unknown environment in theoretically optimal time, as well as (we

shall see) walk only in shortest paths to their destinations while

doing so.

Much attention has been given to the problem of deployment

and coverage in GPS-denied environments, as this may enable the

deployment of robotic fleets outside laboratory conditions and their

utilization in real world scenarios. Dispersal strategies that operate

under stringent restrictions on communication and sensing may be

especially relevant to future investigations in this domain. Imple-

mentation, however, forms a technical barrier, as when looking at

the problem of generating robust uniform coverage from a systems

perspective the issues of relative visual localization - range, angu-

lar coverage and persistence - become important. There has been

progress towards overcoming these barriers in a number of differ-

ent settings. In [6] the authors discuss a visual relative localization

method suited for autonomous navigation and obstacle avoidance

in indoor environments, for mobile robots with limited compu-

tational power. In [24] the authors present a visual localization

method based on an image processing algorithm suitable for use on

small quadcopters. The algorithm assumes all the quadcopters have

identical but specific markings that ease the localization. These are

but examples of the sensors an agent might use when implementing

strategies that operate under such restrictions.

Our contribution: Working in a synchronous time setting,

Hsiang et al. [19] pose the problem of minimizing the total and

individual number of steps the robots take (the “total travel” and

“individual travel”), while achieving optimal makespan–the time

before complete coverage of the environment. They describe sev-

eral algorithms for general grid environments that consecutively

improve on each other in this respect, but these algorithms do not

achieve a global optimum.

We describe a local uniform dispersal strategy that, for sim-
ply connected grid environments, achieves optimal makespan and

minimizes the total travel and maximal individual travel. The strat-

egy’s goal is to enable a robot to settle in place as soon as possible,

thereby minimizing the energy consumption. It exploits the ability

to decompose simply connected environments into a tree of simply

connected sub-environments via “halls”–defined as corners of the

environment that also have an obstacle located diagonally opposite

to them. We work in a setting similar to [19], where time is synchro-

nous and robots have local sensors and finite memory. Specifically,

the robots require 5 bits of persistent memory (2
5
persistent states),

and a visibility span of Manhattan distance 2. As is sometimes as-

sumed, e.g. in [15], they are initialized with a common notion of

up, down, left and right. Unlike [19], our algorithm works without

assuming any inter-robot communication capabilities: the robots

are only capable of seeing environmental obstacles (including other

robots that block them), and are unable to distinguish between

kinds of obstacles.

By attempting to restrict their movement to as few directions

as possible, our strategy enables the robots to travel in shortest

paths from their arrival point to their eventual, a-priori unknown,

settling point. The robots finish dispersing in 2V − 1 time steps,

where V is the number of cells in the environment.

We show further that no local strategy can minimize total travel

in the general case, i.e. for general grid environments.

2 MODEL
Consider the integer grid Z2 = Z × Z, whose vertices are points
(x ,y) where x and y are both integers, and (x1,y1) is connected to

(x2,y2) if and only if the Manhattan distance |x1 − x2 | + |y1 −y2 | is
exactly 1. A grid environment or region R is defined as a connected

sub-graph of Z2. The complement of R, denoted Rc , is defined as

the sub-graph Z2 − R of Z2. We call the vertices of Rc walls.

Definition 2.1. A region R is said to be simply connected if and

only if any path v1v2 . . .v1 of vertices in R that forms a closed

curve does not surround any vertices of Rc .

In particular, a region R is simply connected if Rc is connected.
A robot is a mobile point in R with limited vision and small

finite memory. No two robots may occupy the same location. The

visibility range of all robots is assumed to be 2, meaning at every

time step, a robot is aware of unoccupied vertices in R that are

at a Manhattan distance of 2 or less from it. It infers from this

the positions of local obstacles (walls or other robots), but cannot
distinguish between types of obstacles. All robots have a shared

notion of up, down, left and right upon emergence from s .
Time is discretized to steps of t = 1, 2, At every time step,

all robots perform a Look-Compute-Move operation sequence, in

which they examine their environment and move to a new location

based on a computation they perform (a robot may also choose to

stay in place - this counts as a move). This occurs synchronously,

meaning that all robots move to their computed next location at the

same time. The “beginning” of a time step refers to the configuration

of the robots at that time step before the robots move. The “end” of

a time step is the configuration at that time step after the robots

move.

We denote by prev(A) the position of a robot A at the begin-

ning of the previous time step, and by next(A) its position at the

beginning of the next time step.

A given robot is either active or settled. All robots are initially
active, and eventually become settled at the end of some time step.

Settled robots never move from their current position.

A unique vertex s in R is designated as the source or “door”

vertex. If at the beginning of a time step there is no mobile robot at

s , a new robot emerges at s at the end of that time step.

Energy and total travel. The “travel” Ti of the ith robot is the

number of time steps t that begin and end with the robot still active.

This definition includes steps where the robot does not change

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

114

location, since we wish to relate travel to energy expenditure (e.g.,

a quadcopter floating or circling in place is still traveling, and

consumes just as much energy). The total travel of the robots is then

the sum

∑
Ti over all robots, and can be seen as the total amount

of energy the robots consume before they settle.

3 FIND-CORNER DEPTH-FIRST SEARCH
We describe a local rule, “Find-Corner Depth-First Search” (Algo-

rithm 1), that enables the robots to disperse over a simply-connected

region R. As in [19], the algorithm has a makespan of 2V −1 (where
V is the number of cells in R, or equivalently, the total area of R
when setting every cell to be a unit square). We note that since at

best, robots arrive at s once per two time steps, this is the lowest

possible makespan.

The purpose of FCDFS is to minimize the individual travel and

total travel of the robots. It does this by ensuring that the path of

a robot from s to its eventual destination (the vertex at which it

settles) is a shortest path in R.
The idea of the algorithm lies in the distinction between a corner

and a hall (see Figure 1 and Figure 2):

Definition 3.1. A vertex v of a grid environment R is called a

corner if either:
(a) v has one or zero neighbours in R, or
(b) v has precisely two neighbours u and u ′ in R, and u and u ′

have a common neighbourw that is distinct from v .

Definition 3.2. A vertex v of R is called a hall if it has precisely
two neighbours u and u ′, and u and u ′ are both adjacent to the

same vertexw in Rc .

Figure 1: Corners. (Blue vertices are walls; vertices in Rc).

Figure 2: A hall.

Essentially, halls are vertices in R that are blocked by walls on

two sides, and have an additional wallw diagonal to them. Corners

are either dead-ends, or vertices in R that are blocked by walls on

two sides, and have a vertexw of R diagonal to them. If v is either

a hall or a corner, w is called the “diagonal” of v , and is denoted

diaд(v). We observe that diagonals are uniquely specified.

Robots executing FCDFS attempt to move only in ‘primary’ and

‘secondary’ directions, where the secondary direction is always a

90-degree clockwise rotation of the primary direction (for example

"up and right", "right and down", or "down and left"). They may only

change their primary direction once they arrive at a hall, and they

become settled once both their primary and secondary directions

are blocked and they are at a corner.

For the rest of this section, let R(t) be the environment R at time

t , i.e. the initial environment R where we have removed from R
every vertex that is occupied by a settled robot at the beginning of

time step t .
A robot at time t is searching for the corners and halls of R(t).

However, robots executing FCDFS are unable to distinguish be-

tween active robots, and walls or settled robots. Hence, it is impor-

tant to design the algorithm so that a robot never misidentifies a

corner of R(t) as a hall, or vice-versa, due to an active robot (rather

than a wall or a settled robot) occupying the diagonal and being

identified as an obstacle. For this purpose we enable our robots to

remember their two previous locations. We will show that an active

robot can occupy the diagonal of a corner at time t if and only if its

predecessor occupied this diagonal at time t − 2, thereby allowing

the predecessor to distinguish between ’real’ and ’fake’ halls.

Algorithm 1 Find-Corner Depth-First Search

Let v be the current location of A.
if every neighbouring vertex of v is occupied then

Settle.

else if A has never moved then ▷ Initialization

Search clockwise, starting from the "up" direction, for an

unoccupied vertex, and set primary direction to point to that

vertex.

end if
if A can move in its primary direction then

Step in the primary direction.

else if A can step in secondary direction then
Step in the secondary direction.

else ▷We are at a corner or a hall.

if prev(prev(A)) = diaд(v) ∨ diaд(v) is unoccupied then
Settle.

else ▷We think we are at a hall.

Set primary direction to point to the neighbour of v dif-

ferent from prev(A).
Move in the primary direction.

end if
end if

3.1 Analysis
In this section we give an analysis of the FCDFS algorithm. To start,

we require some lemmas about corners and halls.

Lemma 3.3. Let c be a corner of a simply connected region R. Then:

(a) R − c is simply connected.
(b) For any two vertices u,v in R − c , the distance between u and

v is the same as in R.

Proof. Removing c does not affect connectedness, nor does it
affect the distance from u to v , as any path going through c can
instead go through diaд(c). Further, as c is adjacent to two walls,

no path in R − c can surround it, so R − c also remains simply

connected. □

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

115

An articulation point (also known as a separation or cut vertex)

is a vertex of a graph whose deletion increases the number of

connected components of the graph (i.e. disconnects the graph)

[10].

Lemma 3.4. The halls of a simply connected region are articulation
points.

Proof. Let h be a hall of a simply connected region R. Suppose
for contradiction that h is not an articulation point, and let u and

u ′ be the neighbours of h. Then there is a path from u to u ′ that
does not pass through h. Let P be this path, and let P ′ be the path
from u to u ′ that goes through h.

When embedded in the plane in the usual way, R is in particu-

lar a simply connected topological space. The hall h is embedded

onto a unit square, whose four corners each touch a wall: three

touch the two walls adjacent to h, and the fourth touches diaд(h).
Joined together to form a closed curve, the paths P and P ′ form a

rectilinear polygon that must contain at least one corner of h in its

interior. Hence, the curve PP ′ contains a part of Rc–and we get a

contradiction to the simply connected assumption. (See Figure 3).

Figure 3: The two possibilities for PP ′.

□

Lemma 3.4 indicates that R can be decomposed into a tree struc-

ture T (R) as follows: first, delete all halls of R to form separated

connected components. Let C1,C2, . . . ,Cn be these components,

where Ci also includes its adjacent halls. Letting the vertices of

T (R) be these components, connect Ci and Cj by an edge if they

share a hall. We set C1 to be the root of the tree, and the connected

component containing the door vertex s .
By Lemma 3.3, assuming our robots correctly stop only at cor-

ners, R(t) can in the samemanner be decomposed into a treeT (R(t))
whose connected components are C1(t),C2(t), These compo-

nents are each a sub-graph of a connected component of T (R).
Let A1,A2, . . . denote the robots that emerge from s in the order

of arrival. In the next several propositions, wemake the no fake halls
at time t assumption: this is the assumption that for any t ′ < t , at
the end of time step t ′: robots can only become settled at corners of

R(t ′), and can only change primary directions at halls of R(t ′). We

do not include the initialization of a primary direction when a robot

arrives at s . We will later show that the “no fake halls” assumption

is always true, so the propositions below hold unconditionally.

Proposition 3.5. Assuming no fake halls at time t , a robot Ai
active at the beginning of time step t has traveled an optimal path in
R from s to its current position.

Proof. By the assumption, the only robots that became settled

did so at corners. Consequently, by Lemma 3.3, R(t) is a connected
graph, and there is a path in R(t) from s to Ai . The path Ai took
might not be in R(t), but whatever articulation points (and in par-

ticular halls) Ai passed through must still exist, by definition.

Since Ai is active at the beginning of time t , by the algorithm, it

has taken a step every unit of time up to t . Until Ai enters its first
hall, and between any two hallsAi passes through, it only moves in

its primary and secondary directions. This implies that the path Ai
takes between the halls of R(t) must be optimal (since it is optimal

when embedded onto the integer grid Z2). We note also that Ai
never returns to a hall h it entered a connected component of R(t)
from, since the (possibly updated) primary direction pulls it away

from h.
We conclude that Ai ’s path consists of taking locally optimal

paths to traverse the connected components of the tree T (R(t)) in
order of increasing depth. Since in a tree there is only one path

between the root and any vertex, this implies that Ai ’s path to its

current location is at least as good as the optimal path in R(t). By
Lemma 3.3, b, this implies that Ai ’s path is optimal in R. □

Corollary 3.6. Assuming no fake halls at time t ,
(a) For all i < j , the distance between the robotsAi andAj , if they

are both active at the beginning of t , is at least 2(j − i)
(b) No collisions (two robots occupying the same vertex) have

occurred.

Proof. For proof of (a), note that at least two units of time pass

between every arrival of a new robot (since in the first time step

after its arrival, a newly-arrived robot blocks s). Hence, when Aj
arrives, Ai will have walked an optimal path towards its eventual

location at time t , and it will be at a distance of 2(j − i) from s . This
distance is never shortened up to time t , as Ai will keep taking a

shortest path.

(b) follows immediately from (a). □

From Corollary 3.6 and determinism, we get:

Lemma 3.7. Suppose Ai is active at the beginning of time step t .
Assuming no fake halls at time t , next(Ai+1) = prev(Ai).

We note that Lemma 3.7 also indicates that if at the beginning of

time step t , Ai is active, then Ai+1 will be active at the beginning
of time step t + 1.

We can now show that the “no fake halls” assumption is true,

and consequently, the propositions above hold unconditionally.

Proposition 3.8. For any t , at the end of time step t : robots only
become settled at corners of R(t), and only change primary direc-
tions halls of R(t) (not including the primary direction decided at
initialization).

Proof. The proof of the proposition is by induction. The base

case for t = 1 is trivially true.

Suppose that up to time t − 1, the proposition holds. Note that

this means the “no fake halls” assumption holds up to time t , so we
can apply the lemmas and propositions above to the algorithm’s

configuration at the beginning of time t .
We will show that the proposition statement also holds at time t .

Let Ai be an active robot whose location at the beginning of t is v .

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

116

First, consider the case where v = s . The algorithm only enables

Ai to settle at s if it is surrounded by obstacles at all directions.

Any obstacle adjacent to Ai must be a wall of R(t) (as any active

robot must be at a distance at least 2 from Ai , due to Corollary 3.6).

Hence, if Ai settles at s , s is necessarily a corner, as claimed.

We now assume thatv , s . We separate the proof into two cases:

Case 1: Suppose Ai becomes settled at the end of time step t .
Then by the algorithm, at the beginning of t , Ai detects obstacles
in its primary and secondary directions. These must be walls of

R(t) due to Corollary 3.6, so v is either a corner or a hall of R(t).
Since Ai settled, we further know that either diaд(v) is empty, or

prev(prev(Ai)) = diaд(v). In the former case, v is a corner of R(t).
In the latter case, we know from Lemma 3.7 and from the fact that

no collisions occur that the only obstacle detected atdiaд(v) isAi+1,
which is an active robot, so v is again a corner of R(t). In either

case a corner is detected and the agent is settled.

Case 2: Suppose Ai changed directions at the end of time step t .
Then it sees two adjacent obstacles, and an obstacle at diaд(v). As
in case 1, we infer that v is either a corner or a hall. If it is a corner,

then diaд(v) is an active agent. By Corollary 3.6, it is either Ai+1
or Ai−1. It cannot be Ai+1, as then Ai ’s position two time steps

ago would have been diaд(v), so it would become settled instead

of changing directions. It cannot be Ai−1, as diaд(v) is closer to s
than v , and Ai−1 has arrived earlier than Ai , and has been taking a

shortest path to its destination. Hence, diaд(v) cannot be an active

agent, and v must be a hall as claimed. □

We have shown that the no fake-hall assumption is justified at

all times t , hence we can assume that the propositions introduced

in this section hold unconditionally.

Proposition 3.9. LetV be the number of vertices of R. At the end
of time-step 2V − 1, every cell is occupied by a robot.

Proof. Propositions 3.5 and 3.8 imply that robots take a short-

est path in R to their destination. That means that as long as the

destination of a robot is not s itself, robots will step away from s
one unit of time after they arrive. Until then, this means that robots

arrive at s at rate one per two time steps.

Every robot’s end-destination is a corner, and by the initializa-

tion phase of the algorithm, the destination is never s unless s is
completely surrounded. Since there are no collisions, there can be

at most V robots in R at any given time. By Lemma 3.3, robots that

stop at corners keep R connected. Furthermore, every R(t) is a rec-
tilinear polygon, so unless it has exactly one vertex, it necessarily

has at least two corners. This means that the destination of every

robot is different from s unless s is the only unoccupied vertex.

Hence, a robot whose destination is s will only arrive when s is the
only unoccupied vertex, and this will happen when V robots have

arrived, so after at most 2V − 1 time steps. This is exact, since it is

impossible to do better than 2V − 1. □

Propositions 3.9 and 3.5, alongside the “no fake halls” proof,

complete our analysis. They show that FCDFS has a makespan of

2V − 1, and also that the durations of activity of the individual

robots are optimal, since every robot travels a shortest path to its

destination without stopping.

As every vertex must be occupied for the dispersal to end, a

trivial lower bound on the total travel for any dispersal algorithm is

∑
v ∈R dist(s,v). Since this is achieved by our algorithm, total travel

is also minimized.

In practice, the energy savings of our algorithm are dependent on

the shape of the environment R. We take as a point of comparison

the Depth-First Leader-Follower algorithm of Hsiang et al. [19]. On

a 1-dimensional line of length n, both FCDFS and DFLF require the

same total travel,O(n2), so no improvement is attained. In contrast,

on an n-by-n square grid, DFLF requires total travel O(n4) in the

worst case, and FCDFS requires O(n3) - significantly less. This is

because the DFLF strategy starting from a corner might cause the

leader, A1, to “spiral” inwards into the grid, covering every one

of its n2 vertices in n2 − 1 moves; the subsequent robot Ai will
make n2 − i moves, for a sum total of O(n4). FCDFS, on the other

hand, distributes the path lengths more uniformly. Note that both

algorithms take the exact same amount of time to finish.

Where is it best to place s? If we want to minimize the total

travel, by the formula given above, the best place to place s is the
vertex of R that minimizes the sum of distances

∑
v ∈R dist(s,v)

(there may be several). This is the discrete analogue of the so-called

Fermat-Toricelli point, or the “geometric median” [20].

3.2 The number of persistent states
As in previous work on uniform dispersal, our robots are finite-

state automatons with O(1) persistent memory bits or states that

carry over between time steps. The requirement of finite memory

is important, as it allows for scalability: the robots’ memory need

not scale with the size or complexity of the environment.

There has been some interest in the question of just how little

memory one can get away with. It has been shown that oblivi-

ous robots - robots with just one persistent state - are incapable

of solving the dispersal problem, even with infinite visibility [3].

Consequently, any dispersal algorithm requires some number of

persistent states, and we are interested in implementing our algo-

rithm with as few as possible - i.e. bringing the robots as close as

possible to “obliviousness” of their prior history and to center their

decisions, as much as possible, on their current position and frame

of reference.

Moreover, Algorithm 1 required the robots to remember their

previous locations relative to their current location and to be able to

use them as points of comparison. The 5-bit implementation shows

how this could be done through remembering only the previous

two relative directions of motion. A robot is then required only to

know whether there are obstacles at the four cardinal directions

(up, down, left, right), and at its diagonal, which is always at a

135° degree rotation from the primary direction. This simplifies the

localization computations.

We implemented a 5-bit or 2
5
-state version of our algorithm

on a simulator (see Algorithm 2). A robot’s state is described by

bits b1b2b3b4b5. All bits are initially 0. b1b2 describe the primary

direction (one of four), and b3 tells us whether the previous step
was taken in the primary direction (if b3 = 0) or in the secondary

direction (if b3 = 1). b4b5 is a counter that is reset to 10 upon

entering a hall or one step after initialization, and thereafter is

equal to ∗1, where ∗ is a bit that tells us whether we walked in the

primary or secondary direction two steps ago (by copying b3). A
robot that detects an obstacle at its diagonal interprets its position

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

117

Algorithm 2 5-bit FCDFS

Let v be the current location of A.
if v has no unoccupied neighbours then

Settle.

b3b4b5 ← 011

else if b4b5 = 00 then
Search clockwise, starting from the "up" direction, for an

unoccupied vertex, and set primary direction to point to that

vertex.

b4b5 ← 10

end if
if A cannot move in primary or secondary directions then

if v has just one neighbour then
Settle.

b3b4b5 ← 011

else if (b5 = 1 ∧ b3 + b4 = 1) ∨ diaд(v) is unoccupied then
Settle.

b3b4b5 ← 011

else
Set primary direction to obstacle-less direction not equal

to 180° rotation of previous direction stepped in (i.e. the neigh-

bour of v we haven’t visited yet; this can be inferred from b1b2
and b3).

b4b5 ← 10

end if
end if
if b4b5 was not updated at this time step then ▷ i.e. b5 = 1 or

time to update b5
b4b5 ← b31

end if
if A can move in its primary direction then

Step in the primary direction.

b3 ← 0

else if A can step in secondary direction then
Step in the secondary direction.

b3 ← 1

else
Settle.

b3b4b5 ← 011

end if

as a fake hall (i.e. a corner) as long as b5 = 1 and b3 +b4 = 1, that is,

as long as at least one time step passed since the last hall, and our

previous position was diagonal to us. In order to conserve memory,

our robots do not strictly speaking have a “settled” state. Instead,

once a robot determines it is in a corner (and so needs to settle), it

sets b3b4b5 to 011, indicating that it visited its diagonal–this causes

it to never move again.

3.3 The impossibility of minimizing total
travel for general grid environments

We saw that there is a local rule that minimizes total travel for

simply connected grid environments. In this section we show that,

for robots with finite visibility, there is no local rule that universally

minimizes total travel for all connected grid environments.

Let r be the visibility range of the robots. Consider the grid

environment in Figure 4 (not drawn to scale). It connects a set of

10r columns of width 1 spaced 2r cells apart. The bottom row has

total length 20r2. Most of the columns are dead-ends and have a

height of 30r2. The first column and an additional column connect

to the top row, and have height 30r2+1. Label the grid environment

where this additional column is the kth column G(k). The door s is
at the bottom left.

Figure 4: The construction G(k).

It is readily seen that the total travel required by an optimal

solution for any environmentG(k) is
∑
v ∈G(k) dist(s,v), where s is

the door of G(k) (let a line of robots going up the first column fill

the top row, and let robots going to the right fill the other columns).

Proposition 3.10. Let ALG be a local rule for uniform dispersal
of robots with visibility range r . There is an environment G(k) for
which the total travel of ALG is at least

∑
v ∈R dist(s,v) + 1.

Proof. (Sketch)We consider the actions of ruleALG on the grid

environment G(k). We do not specify the value of k yet.

As before, label the robots emerging at s A1,A2, . . . in their order

of arrival. Since A1 cannot distinguish between the up and right

directions upon arrival at s (any distinct feature of the environment

is at distance at least r + 1 and hence is invisible), we can assume

without loss of generality that it steps up (if it steps right, simply

rotate and reflect G(k)).
Assume for contradiction that the total travel of ALG is T =∑
v ∈G(k) dist(s,v). This assumption implies that every robot travels

a shortest path to its settlement destination. In particular, A1 must

have precisely dist(A1,v1) travel, where v1 is the destination at

which A1 chooses to settle.

We note the following facts:

(1) Once A1 stepped up, it has committed to stepping up and

right until reachingv1, as circling in place or going in a third

direction increases its travel past dist(A1,v1), causing the

total travel of ALG to be greater than T–a contradiction.
(2) v1 cannot be a vertex in the first column or in the top row

except the top vertex of column k or one vertex to its left,

as should v1 not equal those, settling there would block off

the path to the top row going through the first column, and

force other robots to travel to the top row through column

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

118

k . This is sub-optimal, and causes the total travel to increase

beyond T–a contradiction.
(3) v1 cannot be any vertex in the kth column other than the top

of the kth column, as this would require A1 to step down-

wards.

(*) From (1)-(3) we conclude that v1 must equal precisely the top

vertex of the kth column or one vertex to its left.

Up to the time when A1 reaches the top row, none of the ends

of the other columns have been seen, so ALG will run the same

regardless of the value of k . Since total travel is assumed to be

optimal, no robot can block s for more than one time step, so by the

time A1 reaches the top row, there will have been created at least

4r robots. Each of these 4r robots must have already entered one

of the columns or settled, since they travel optimal paths to their

destination, and the total length of the bottom row is 20r2, whereas
30r2 time must have passed for A1 to reach the top.

As there are 10r columns, there must exist a column that none

of the robots A1, . . . ,A4r have entered. Set the value of k to equal

this column.

When A1 reaches v1, the above indicates that any other robot

currently present in the kth column (if there are any) arrived at

least 2 · 4r time steps after A1. Therefore it is at distance at least 8r
from A1, meaning that there is a space of 6r vertices in column k
that no robot has seen yet. This indicates that ALG must make the

same decision for A1 whether these vertices exist or not. However,

if any one of these vertices does not exist, then column k is not

connected to the top row, indicating that A1 cannot settle at the

top of the kth column or to its left, else it will block off part of the

environment. We arrived at a contradiction to (*).

We conclude that there is an environment G(k) where the total
travel of ALG is greater than the optimum, so ALG is sub-optimal.

□

By adding more columns to theG(k) construction and increasing

the height of the columns, we can force A1 to go down more and

more steps, causing the difference between the optimal total travel

and the total travel of ALG to be arbitrarily large.

Proposition 3.10 only makes the assumption of limited visibility.

It holds even assuming the agents have global communication,

infinite memory, and are aware of each others’ positions at all

times.

We note that we did not exclude the possibility of a local rule

that minimizes the maximal individual travel. Furthermore, we did

not exclude the possibility of a rule that minimizes total travel when

pauses are not counted.

4 SIMULATIONS, COMPARISONS, AND
ALTERNATIVE STRATEGIES

We verified and animated our algorithm by simulating it on our

robot simulator. Figures 5 and 6 show four stills from a run of the

algorithm on two different environments. Figure 7 shows a FCDFS

deadlock scenario in an environment that is not simply connected:

the halls constantly redirect the robots, forming a cycle. The door

vertex has mistakenly blocked itself off, due to the robots exiting

from it mistaking the robots in a cycle for obstacles.

Figure 5: A simulation of FCDFS. The blue blocks are walls.
The arrows indicate the location and primary direction of
the robots, and the diamonds are settled robots. Rather than
block active robots, the settled robots form halls to enable
the swarm to explore more of the environment.

Figure 6: A simulation on a different environment. Note how
the trail of robots always forms a shortest path to its current
front.

We experimented with two variants of FCDFS that are similarly

optimal. FCDFS assumes robots are initialized with a common no-

tion of up, down, left and right, but this assumption is unnecessary

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

119

Figure 7: A deadlock scenario in environments that are not
simply connected.

Figure 8: Multi-directional dispersal strategy.

Figure 9: “Left hand on wall” strategy.

if we let robots settle in place as soon as they reach a corner (in

FCDFS they keep moving if they can). This modified strategy is

illustrated in Figure 8, where robots randomly choose their initial

direction. This creates a more “symmetric”-looking dispersal. The

strategy shown in Figure 9 is more significantly different: in it,

rather than stick to their secondary and primary directions, robots

attempt to scale the boundary of the environment with a “left hand

on wall” clockwise orientation, until they hit a corner or a wall.

Both of these variants achieved the same makespan and total travel

as FCDFS, though they are visually distinct.

Empirically, we compared the performance of FCDFS to the per-

formance of our implementation of the DFLF and BFLF algorithms

of [19] (adapted to our slightly different model) over a number of

simply-connected environments, measuring the total travel and

maximal individual travel (Table 1). Note that though all algorithms

are deterministic, some local decisions are not fully specified in

[19], hence different implementations may result in slightly differ-

ent performance, though asymptotically every implementation will

perform the same. We let our robots decide between arbitrary local

decisions at random, averaging performance over several re-runs.

Only for the sake of this comparison, we elected to exclude

time steps where robots are active but do not change location,

as such intermediate pauses are not counted in [19]. FCDFS is

optimal regardless, and factoring these in leaves the DFLF and

FCDFS columns unchanged, since such pauses never occur during

their execution. However, including pauses causes the maximal
travel of BFLF to become extremely large. Hence, Table 1 shows

that BFLF is good at reducing the number of location changes of a

robot, but in many applications (e.g. when robots are quadcopters)

its energy consumption is very high compared to FCDFS.

DFLF

BFLF

(excl. stops)

FCDFS

30x30 Grid 237984 (460) 16323 (50) 13620 (32)

Fig. 5 Environment 16139 (126) 6742 (50) 5909 (38)

Fig. 6 Environment 100419 (296) 39576 (112) 35103 (99)

Fig. 9 Environment 50889 (190) 7283 (39) 6600 (35)

Table 1: A comparison of total travel and maximal individ-
ual travel over different environments (excluding pauses).
Entries are in the form total travel (maximal travel). See Fig-
ures 5, 6, 9 for the specific environments used.

5 DISCUSSION
A robotic swarm must take into account the energy capacity of the

individual. We discussed the problem of minimizing travel, hence

energy expenditure, in the uniform dispersal problem for simply

connected grid regions. We showed the existence of a strategy that

minimizes total and individual travel for the case of a single source

vertex. We showed also a non-existence result for such strategies

in the case of general grid environments.

Several extensions of our work can readily be considered. First, as

our algorithm deals only with the single door case, it is desirable to

find an energy-efficient dispersal algorithm for the case of multiple

doors from which robots arrive independently.

Next, synchronicity is a strong assumption, enabling every ro-

bot to proceed to its destination without ever being blocked by

another robot. To extend our work to less controlled settings, we

may assume an asynchronous time scheme–for example, allow a

probability q that an agent fails to activate at a given time step. We

cannot expect a makespan- and total travel-optimal algorithm to

exist in such settings, but we anticipate relatively effective strate-

gies might exist. As a way to proceed, though our algorithm makes

the powerful assumption of synchronicity, the strategy of finding

corners and not stopping at halls seems general, and could possibly

be adopted for the asynchronous case as well.

Finally, our algorithm requires the environments to be simply-

connected orthogonal environments: it would be interesting to see

an algorithm that works for broader scenarios, or in the opposite

direction, results regarding the non-existence of efficient algorithms

for such scenarios under the stringent computational assumptions

we made.

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

120

REFERENCES
[1] Noa Agmon, Noam Hazon, Gal A Kaminka, MAVERICK Group, et al. 2008. The

giving tree: constructing trees for efficient offline and online multi-robot coverage.

Annals of Mathematics and Artificial Intelligence 52, 2-4 (2008), 143–168.
[2] Yaniv Altshuler, Alex Pentland, and Alfred M Bruckstein. 2018. Introduction to

Swarm Search. In Swarms and Network Intelligence in Search. Springer, 1–14.
[3] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. 2008. Deployment

of asynchronous robotic sensors in unknown orthogonal environments. In Inter-
national Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics. Springer, 125–140.

[4] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. 2013. Uniform

dispersal of asynchronous finite-state mobile robots in presence of holes. In Inter-
national Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics. Springer, 228–243.

[5] Maxim A Batalin and Gaurav S Sukhatme. 2007. The design and analysis of an

efficient local algorithm for coverage and exploration based on sensor network

deployment. IEEE Transactions on Robotics 23, 4 (2007), 661–675.
[6] Joydeep Biswas and Manuela Veloso. 2012. Depth camera based indoor mobile

robot localization and navigation. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on. IEEE, 1697–1702.

[7] Ke Cheng and Prithviraj Dasgupta. 2008. Coalition game-based distributed

coverage of unknown environments by robot swarms. In Proceedings of the 7th
international joint conference on Autonomous Agents and Multiagent Systems
(AAMAS ’08). International Foundation for Autonomous Agents and Multiagent

Systems, 1191–1194.

[8] Erik D Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin S Sayedi-

Roshkhar, Shayan Oveisgharan, and Morteza Zadimoghaddam. 2009. Minimizing

movement. ACM Transactions on Algorithms (TALG) 5, 3 (2009), 30.
[9] Erik D Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx. 2009. Min-

imizing movement: Fixed-parameter tractability. In European Symposium on
Algorithms. Springer, 718–729.

[10] Reinhard Diestel. 2017. Graph Theory (Graduate Texts in Mathematics). Springer.
https://www.xarg.org/ref/a/3662536218/

[11] Zachary Friggstad and Mohammad R Salavatipour. 2011. Minimizing movement

in mobile facility location problems. ACM Transactions on Algorithms (TALG) 7,
3 (2011), 28.

[12] Enric Galceran and Marc Carreras. 2013. A survey on coverage path planning

for robotics. Robotics and Autonomous systems 61, 12 (2013), 1258–1276.
[13] Erez Hartuv, Noa Agmon, and Sarit Kraus. 2018. Scheduling Spare Drones for

Persistent Task Performance under Energy Constraints. In Proceedings of the 17th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’18). International Foundation for Autonomous Agents and Multiagent Systems,

532–540.

[14] Attila Hideg and László Blázovics. 2016. Area coverage using distributed ran-

domized methods. In Cybernetics & Informatics (K&I), 2016. IEEE, 1–5.

[15] Attila Hideg and Tamás Lukovszki. 2017. Uniform dispersal of robots with mini-

mum visibility range. In International Symposium on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Distributed Robotics. Springer, 155–167.

[16] Attila Hideg and Tamás Lukovszki. 2017. Uniform dispersal of robots with mini-

mum visibility range. In International Symposium on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Distributed Robotics. Springer, 155–167.

[17] Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. 2002. An incremental

self-deployment algorithm for mobile sensor networks. Autonomous Robots 13, 2
(2002), 113–126.

[18] Tien-Ruey Hsiang, Esther M. Arkin, Michael A. Bender, Sandor Fekete, and

Joseph S. B. Mitchell. 2003. Online dispersion algorithms for swarms of robots.

In Proceedings of the nineteenth conference on Computational geometry - SCG 03.
ACM Press. https://doi.org/10.1145/777792.777854

[19] Tien-Ruey Hsiang, Esther M Arkin, Michael A Bender, Sándor P Fekete, and

Joseph SB Mitchell. 2004. Algorithms for rapidly dispersing robot swarms in

unknown environments. In Algorithmic Foundations of Robotics V. Springer,
77–93.

[20] Jakob Krarup and Steven Vajda. 1997. On Torricelli’s geometrical solution to a

problem of Fermat. IMA Journal of Management Mathematics 8, 3 (1997), 215–224.
[21] Zhuofan Liao, Jianxin Wang, Shigeng Zhang, Jiannong Cao, and Geyong Min.

2015. Minimizing movement for target coverage and network connectivity in

mobile sensor networks. network 4 (2015), 8.

[22] Ryan Morlok and Maria Gini. 2007. Dispersing robots in an unknown environ-

ment. In Distributed Autonomous Robotic Systems 6. Springer, 253–262.
[23] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig Lee. 2001.

Pheromone robotics. Autonomous Robots 11, 3 (2001), 319–324.
[24] Martin Saska, Tomas Baca, Justin Thomas, Jan Chudoba, Libor Preucil, Tomas Kra-

jnik, Jan Faigl, Giuseppe Loianno, and Vijay Kumar. 2017. System for deployment

of groups of unmanned micro aerial vehicles in GPS-denied environments using

onboard visual relative localization. Autonomous Robots 41, 4 (2017), 919–944.
[25] Marcelo Oscar Sztainberg. 2003. Algorithms for Swarm Robotics. Ph.D. Disserta-

tion. State University of New York at Stony Brook.

[26] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. 1997. On-line

graph searching by a smell-oriented vertex process. In Proceedings of the AAAI
Workshop on On-Line Search. Citeseer.

[27] Israel A Wagner, Michael Lindenbaum, and Alfred M Bruckstein. 2000. Mac

versus pc: Determinism and randomness as complementary approaches to robotic

exploration of continuous unknown domains. the International Journal of robotics
Research 19, 1 (2000), 12–31.

[28] Roi Yehoshua, Noa Agmon, and Gal A Kaminka. 2015. Frontier-based RTDP: A

new approach to solving the robotic adversarial coverage problem. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’15). International Foundation for Autonomous Agents and Multiagent

Systems, 861–869.

Session 1C: Multi-Robot System AAMAS 2019, May 13-17, 2019, Montréal, Canada

121

https://www.xarg.org/ref/a/3662536218/
https://doi.org/10.1145/777792.777854

	Abstract
	1 Introduction and related work
	2 Model
	3 Find-Corner Depth-First Search
	3.1 Analysis
	3.2 The number of persistent states
	3.3 The impossibility of minimizing total travel for general grid environments

	4 Simulations, comparisons, and alternative strategies
	5 Discussion
	References

