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ABSTRACT
We consider a generalization of zero-sum patrolling security game

that allows the attacker choosing when, where, and how long to

launch an attack, under three different attacker models. The at-

tacker’s payoff is the acquired utilities of the attack minus a penalty

if the attacker is caught by the defender in patrol. The goal is to

reduce the payoff of the attacker. To find the optimal defender/

attacker strategy, the game is converted to a combinatorial min-

imax problem with a closed-form objective function. Due to the

complexity of the utility functions, we show that the minimax prob-

lem is not convex for all attacker models, even when the defender

strategy is assumed as the time-homogeneous first-order Markov

chain (i.e., the patroller’s next visit only depends on his current

location). However, for the zero penalty case, we prove that the

optimal solution is either minimizing the expected hitting time or

return time, based on different attacker models. We also observe

that increasing the randomness of the patrol schedule helps to re-

duce the attacker’s expected payoff for high penalty cases. Thus,

to find solutions for general cases, we formulated a bi-criteria op-

timization problem and proposed three algorithms that support

finding a trade-off between the expected maximum reward and the

randomness. Another characteristic is that the third algorithm is

able to find the optimal deterministic patrol schedule, although the

running time is exponential on the number of patrol spots. Experi-

ments demonstrate the effectiveness and scalability of our solutions.

It also shows that our solutions outperform the baselines from state

of the art in both artificial and real-world crime datasets.
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1 INTRODUCTION
Public safety is crucial to everyday life. When responding to events

of a criminal nature, it is necessary to consider game theoretic

models and strategic behaviors, which is the focus of security games

(see [44]). The problem is modeled as a Stackelberg game, consisting

of a defender with a limited set of resources to protect a set of targets

and an attacker who casts attacks after learning the defender’s

strategy and conducting careful planning. In this setting, the goal

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

is to compute a Stackelberg equilibrium, a mixed strategy for the

defender thatmaximizes the defender’s utilities, under the condition

that the attacker knows the defender’s strategy and chooses the

best response strategy. A subfamily of this domain is the patrolling
security games or adversarial patrolling game [2, 11, 12, 14, 16, 25, 56].
These games are modeled as a two-player multi-stage game with

infinite time horizon, where the defender moves the patroller on the

vertices of a given graph to protect the targets while the attacker

decides when and where to launch an attack on a vertex.

A standard way of analyzing/ solving patrolling security game

is to formulate it as a mixed-integer linear programming problem

and compute approximately optimal policy for the defender. How-

ever, with an infinite time horizon in the patrolling game, there

are infinitely many pure strategies. Thus additional constraints

are introduced to reduce the strategy space, for example, ignoring

the time needed for a patroller to move between different loca-

tions [14, 24, 48, 52], if the time of moving is indeed negligible

compared to the time spent for guarding. Other works assume spe-

cial attacker models – the attacker taking a fixed period of time

to complete an attack [11] or introducing an exponential discount

factor on the attacker’s utility [56]. In general, even when the num-

ber of pure strategies is bounded by these constraints, it is still

challenging to handle the scalability issue due to the exponential

size [44].

Our ContributionWe consider a generalization of zero-sum pa-

trolling security game in which the attacker is given not only the

freedom to decide when and where to launch the attack but also

the duration of the attack in order to maximize the expected payoff.

The attacker’s payoff is the acquired utilities of the attack minus a

penalty if the attacker is caught by the defender in patrol. To the

best of our knowledge, this is the first work considering varying

attack duration in the patrolling game. We consider three different

attacker models which affects how much information that the at-

tacker can possibly gain by observing the patrol routes. The game

is converted to a combinatorial minimax problem and one main

challenge is the exponentially increased size in the solution space

due to varying attack durations. Furthermore, for general utility

functions, the problem of finding optimal defender strategy is not

convex in general.

Despite the complexity of the problem, we show that when re-

stricting the defender strategy as a time-homogeneous first-order

Markov chain, finding the optimal defender strategy can be formu-

lated as a closed-form minimax problem. In special cases with the

zero penalties, the optimal solutions can be linked to minimizing the

expected pairwise/ average hitting time or return time, depending

on the visibility model of the attacker. In a scenario of high penal-

ties, increasing the entropy of visiting time for each spot helps to

reduce the attacker’s expected payoff, since the attacker would pay
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a high price if he is getting caught, even with a small chance. Thus,

a randomness patrol schedule with high entropy of visiting time is

beneficial to decrease the attacker’s payoff. By the aforementioned

observations, we formulate a bi-criteria problem of balancing the

attacker’s expected maximum reward and randomness of the patrol

schedule and use the solution as the defender strategies for the

original game. To the best of our knowledge, this is the first work

to consider the randomized strategies in vehicle routing problems.

We propose three algorithms: TSP-based solution (TSP-b), Biased

random walk (Bwalk), and Walk on state graph (SG) where the first

two are related to TSP and random walk solutions and the third is

from the state machine mechanism. All proposed algorithms can

balance the two criteria by a parameter α . In addition, SG can be

used to find an optimal deterministic patrol schedule for the origi-

nal game with any utility functions. Experiments show that three

algorithms are adaptive to various utility functions/ penalties and

both TSP-b and Bwalk are scalable with the increase to the number

of spots. Our solutions also outperform (achieving lower expected

payoff for the attacker) other baselines such as Markov chains of

minimum hitting time [46], and Maxentropic Markov chains [26].

2 RELATEDWORK
2.1 Surveillance and Security Game
Patrolling and surveillance problems have been widely studied

in the robotics and operations research communities. In the non-

strategic setting, algorithms are designed for traversing a given

region with centralized optimization with specific objectives [23,

30, 40, 49, 53]. S. Alamdari et al. [3] focus on the problems of mini-

mizing the maximum time duration between any two consecutive

visits in a spot and provide a logn−approximation algorithm for

general graphs. A rigorous result was developed deeper on special

graphs such as a chain, tree, and cyclic graphs [45]. In the strategic

setting, the patrol strategies are designed to defend against intel-

ligent intruders who would avoid getting detected. Thus, many

works model the movement of the patrollers as Markov chains

or random walks which embed the unpredictability of the patrol

routes [8, 18, 22, 28, 46]. Patel et. al [46] study the minimization of

the first passage time to quickly detect the intruder. Duan et. al [22]

study Markov chains with maximum return time entropy, which

provides an adapt solution to detect the intruder if he only lasts for

a short period.

In amore complicated strategic setting, the behavior of the attack-

ers is also included in the model, i.e., security game, which is first

introduced by Kiekintveld et al [36] and has been widely applied in

security domains to generate defender strategies [1, 13, 55]. Repre-

sentative examples include deploying randomized checkpoints and

canine patrol routes in LAX airport [48], game-theoretic scheduler

for US Federal Air Marshals [54], scheduling patrolling routes of

ports for US coast guards [24, 51], and aiding rangers for protecting

wildlife in Uganda [57]. In addition, based on the various designs

of the utility function and attacker-defender interactions, many

different forms of security games have been developed to fit the

application scenarios. Yevgeniy et al. [56] added discounted time

factor in the attacker payoff function since delayed attack for a long

time highly increases the likelihood of being caught. Bošanskỳ et

al. [16] considered the case that targets are moving through areas

according to deterministic movement schedules.

For handling scalability, current solutions are mainly application

specific. For example, in ASPEN [31], there are more than one pa-

troller in the setting. Thus, each patroller is solved independently

to avoid a combinatorial explosion of schedule allocations. This

idea is extended to both attacker’s and defender’s strategies for

road network security in RUGGED [32]. Shieh et al. [52] combined

previous ideas and used the TSP as a heuristic tool to order the

search space that can efficiently provide a heuristic solution for

each patroller. Basilico et al. [14] assumed that the adversary takes

a period of times to attack a target and used some reduction tech-

niques to handle the scalability issue. However, the formulation

of their problem is only suitable for unweighted graphs and the

attacker cannot control the attack duration.

2.2 TSP
The problem of planning patrol routes is related to the general

family of vehicle routing problems (VRPs) and traveling salesman

problems (TSPs) with constraints [9, 39, 47, 58]. This is a huge

literature thus we only introduce the most relevant papers.

TSP is a well-known NP-complete problem in combinatorial op-

timization and has been discussed in operation research [5, 19, 27,

29, 37]. Christofides algorithm [20] provides a tour whose length

is less or equal to 1.5 times of the minimum possible. Additionally,

there are two independent papers that provide polynomial-time

approximation scheme (PTAS) for Euclidean TSP by Mitchell and

Arora [6, 42]. There are many variations of TSP that consider mul-

tiple objectives [10, 15]. However, in this work, one objective is

to increase the randomness between generated tours, which, to

the best of our knowledge, had not been studied in the literature.

The other objective is related to minimize the maximal weighted

latency among spots of the tour, which has been discussed in some

works [3, 41]. One difference is that this work generalizes the

“weight latency” as functions rather than constant weights.

3 MODEL OF PATROLLER AND ATTACKER
The patrol game is structured as a Stackelberg zero-sum game.

That is, the defender executes a strategy first and the attacker

chooses the best strategy based on the defender’s executed strategy.

The attacker’s objective is to choose a strategy that maximizes

his (expected) payoff and the defender’s objective is to choose a

strategy that minimizes the attacker’s maximum expected payoff.

Mathematically, given a tuple (G,H ,M), whereG = (V , E,W ) is a

weighted graph with verticesV = {1, 2, · · ·n}, edge set E, and edge-
weight matrixW representing the traveling costs. M is the penalty

cost (M ≥ 0) and each vertex j has a utility function hj ∈ H . Time is

discretized into time slots. The attacker can launch one attack and

can decide where (j), when (τ ) and how long (T ) the attack lasts.

During the attack, at the (τ + t)-th time slot the attacker collects a

utility hj (t), where 1 ≤ t ≤ T . Note that the utility function can be

node dependent. We assume that hj (t) ≥ 0 always.

If the attacker is caught by the defender at the (τ +t ′)-th time slot,

the attacker would pay a penaltyM and be forced to stop the attack.

Thus, the total collected utilities of the attacker is

∑t ′
t=1 hj (t) −M .

Otherwise, the total collected utilities is

∑T
t=1 hj (t) if the attacker

is not caught.
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Notice that in the adversarial patrolling games, it is possible

that the attacker waits for a long time and acquires additional

information such as when the patroller passes by. In the literature,

there are different models which specify how much information

the attacker can collect.

• Full visibility: The attacker has a probe in each spot such that

it would notify the position of the patroller when he arrives

any spot during the game. This model is used in Patrolling
Security Games [14, 56].

• Local visibility: The attacker would have to choose a spot

j first and would launch an attack right after the patroller

leaves spot j [8].
• No visibility: The attacker cannot know the patroller’s posi-

tions during the whole game. This is a common assumption

in [4, 48].

In general assumption, the attacker knows the strategy used by

the defender before the game starts in any attacker models.

4 STRATEGYWITH FIRST-ORDER MARKOV
CHAIN

To tackle the problem, the defender’s strategy is restricted as a

time-homogeneous first-order Markov chain (only in this section).

That is, the patroller movement is modeled as a Markov process

over graph G with a transition matrix P , which is known by the

attacker. Notice that any high-order Markov chain can be “flatten”

into the first order one by some standard methods (which takes

time exponential on the order of the Markov chain) [14].

To calculate the attacker’s payoff we use the notation of first visit
matrix F [8], where each element represents the visit probability

distribution from a spot i to another spot j. In detail, given graph

G and transition matrix P , the probability of taking k slots for the

patroller, starting at i to reach j for the first time is given by

Fk (i, j) =

{
pi j1wi j=k , k = 1∑
h,j pihFk−wih (h, j) + pi j1wi j=k , k ≥ 2,

where wi j is the travel cost from spot i to j and 1wi j=k is the

indicator function which returns 1 if wi j = k , and 0 otherwise.

Fk (i, j) = 0 when k is non-positive. Extensively, we define expected
hitting time matrix A, where each entry ai , j =

∑∞
k=1 k · Fk (i, j).

4.1 Attacker has full visibility
In the model of full visibility, the attacker knows the exact position

of the patroller among all spots. Denote Zi , j ,T as the expected

payoff if the attacker launches an attack at j with the attack period

T when the patroller is at i . In any time slot t during the attack,

where 1 ≤ t ≤ T , there are only 3 possible events: the patroller

comes to spot j (after visiting i) in the period of time 1 to t − 1,

the patroller comes exactly at time t , or the patroller comes after

time t . In the first case, the attacker cannot collect utility at time t
since the attack is enforced to stop at t ′, where t ′ < t (the penalty
is also paid at time t ′ too). In the second case, the attack is caught

at time t thus there is a penaltyM substrated from the attacker’s

payoff. In the third case, the attacker collects utility hj (t). Thus, the
expected payoff at time t, 1 ≤ t ≤ T , can be expressed as a closed

form associated with F .

zi , j (t) = (hj (t) −M) · Ft (i, j) + hj (t)(
∞∑

k=t+1

Fk (i, j)). (1)

The total (expected) payoff during thewhole attack period isZi , j ,T =∑T
t=1 zi , j (t), which is called as the payoff matrix. The attacker

chooses an element of Z with the highest payoff, which describes

his strategy of when, where, and how long the attack lasts.

For the defender, the problem of choosing a best strategy can be

formulated as a minimax problem:

min

P
f (P), where f (P) = max

i , j ,T
Zi , j ,T .

For general utility function hj and penaltyM , the Hessian matrix

of f is not guaranteed to be semi-definite thus f (P) is not convex
in general. However, in special cases f (P) has strong connection
with the expected hitting time matrix A.

Observation 1. IfM = 0 and the utility functions are all constant
functions, then f (P) is either∞ or the maximum weighted expected
hitting time of all pairs (i, j), with the weight for (i, j) as the constant
of the utility function hj .

Proof. If the transition matrix P is reducible, i.e, there exists a

pair of vertices i, j such that the patroller starting at i would never

visit spot j, then the attacker can choose to attack j for infinitely
long. In this case Zi , j ,∞ = ∞.

Now, assume that the transition matrix is irreducible. Denote

by hj the constant of the utility function at spot j. Given an attack

period T ,M = 0, from Equation 1, Zi , j ,T can be simplified as

Zi , j ,T = hj ·

T∑
k=1

k · Fk (i, j) + hj · T ·

∞∑
k=T+1

Fk (i, j). (2)

Since zi , j (t) ≥ 0 for any t . Thus, taking T = ∞ period maximizes

his payoff. That is,

f (P) = max

i , j
Zi , j ,∞ = max

i , j
hj ·

∞∑
k=1

Fk (i, j) · k = max

i , j
hj · ai , j ,

where ai , j is the expected first hitting time from i to j. �

At the defender’s side, minimizing the maximum of all pairwise

expected hitting times is still an open question to the best of our

knowledge. One can find a relevant work which provides a lower

bound and discusses the complication for this question [17].

4.2 Attacker has local visibility
In this model, assume the attacker’s strategy is to attack spot j with
the attack period T . Denote z′j (t) as the utility he collects for every

time t where 1 ≤ t ≤ T ,

z′j (t) = zj , j (t) (3)

By a similar discussion in Observation 1, one can infer that the

best strategy for the attacker is to attack the spot with the longest

expected (weighted) return time if the utility functions are all con-

stants and the penalty is zero. If all edges have weight one, the op-

timal defender strategy can be derived by constructing an ergodic

Markov chain with stationary distribution π∗
, where π∗

j =
hj∑n
i=1 hi

,

since the expected return time of a spot j is 1/π∗
j [50].

4.3 Attacker has no visibility
In this case, the attacker has no information of the patroller’s trace

thus it is meaningless for the attacker to choose when to launch

an attack; instead, the payoff of attacking spot j is the expected
payoff when the patroller is either at a random spot i or travels on
a random edge (i, j). For the following analysis, we only consider
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the attacks that starting at the time when the patroller is at exactly

one of the spots. For general cases, it would underestimate the

attacker’s expected payoff at most maxi , j
∑wi j
t=1 hj (t) utilities.

Denote Z ′′
j ,T as the cumulative expected payoff for attacking j

with period T and z′′j (t) is the expected payoff at time t . Assume

the attack is launched at a random time slot, z′′j (t) is

z′′j (t) =
n∑
i=1

πi · zi , j (t),

where π is the stationary distribution with transition matrix P .
Thus, the cumulative expected payoff is

Z ′′
j ,T =

T∑
t=1

z′′j (t) =
T∑
t=1

n∑
i=1

πi · zi , j (t) =
n∑
i=1

πiZi , j ,T . (4)

Denote κi as the Kemeny constant [34], the expected hitting time

when the walk starts at i , κi =
∑n
j=1 ai , jπj . It is known that the

Kemeny constant is independent of the start node [35]. Thus, the

Kemeny constant can be written as another formation

κ =
n∑
i=1

πi

n∑
j=1

ai , jπj . (5)

Equation 5 can be written as an expression with matrix A.

κ = πTAπ . (6)

Now, suppose f ′′(P) = maxj ,T Z ′′
j ,T is the function maximizing the

expected payoff, the following observation is shown.

Observation 2. IfM = 0 and the utility functions are all constant
functions, f ′′(P) is either∞ or the Kemeny constant multiplying with
the maximum constant among all utility functions.

Proof. From the same argument in Observation 1, f ′′(P) goes to
∞when theMarkov chain is reducible. Now, consider an irreducible

Markov chain, from Equation 4, we have

f ′′(P) = max

j

n∑
i=1

πiZi , j ,∞ = max

j
hj

n∑
i=1

ai , jπi .

On the other hand, take transpose on both side in Equation 6, we

have

κ = (πTAπ )T = πTAT π .

Thus, A and AT has the same Kemeny constant. The Kemeny con-

stant of AT is actually κj =
∑n
i=1 ai , jπi for spot j, which means

f ′′(P) = κmax

j
hj .

�

Observation 2 shows that when the penalty is zero with constant

utility functions, the attacker’s best strategy is to attack the spot

with highest utility. From the defender side, it has to determine

P such that the Kemeny constant is minimized. When all edges

have weight 1, a simple solution is to construct P same as the

adjacent matrix of a directed n-cycle in G [38]. In other cases, it

has to minimize the Kemeny constant subject to a given stationary

distribution [46].

4.4 High penalty scenarios
When M ≫ hj (t) for all spots j and all time t , Equation 1 can be

simplified as

zi , j (t) = hj (t)(
∞∑

k=t+1

Fk (i, j)) −M · Ft (i, j).

Assume that the attacker has full visibility and all utility functions

are constants.

f (P) = max

i , j ,T
(hj ·T − (M + 1) ·

T∑
t=1

Ft (i, j)). (7)

At the defender side, it is beneficial to increase

∑T
t=1 Ft (i, j) for all

(i, j) pairs. Thus, having a schedule which is more random could

help in this case. This observation also works in other two attacker

models.

5 STRATEGY FOR GENERAL CASES
In the previous section, we show that in special cases (e.g. When

the attacker has no visibility, the penalty is zero, and utility func-

tions are all constants) the minimax problem of the zero-sum game

is possibly solvable. In general, the optimization problem is not

convex. Our solution for general cases is motivated by two obser-

vations. First, when the penalty is zero, the optimal schedule is to

minimize the expected (pairwise/ average) hitting time or return

time. Secondly, if the penalty is significant, it would be better to in-

crease the randomness of the patrol schedule to “scare” the attacker

away. In fact, there are prior works emphasizing each one as the

objective for the patrol mission [22, 26, 46]. However, to the best of

our knowledge, this is the first work to consider both objectives at

the same time.

Specifically, we consider two optimization criteria: expected max-
imum reward (EMR) and entropy rate (H∇). Given a patrol schedule

X = (X1,X2, · · · ) as a random variable sequence and (ω1,ω2, · · · )

is one of its possible realizations. Denote Uj = (u1,u2, · · · ) is the
sequence of times that the patroller visits j, i.e., ∀ur ∈ Uj ,ωur = j.
Then, the maximum return time is

ϕ j = max

ur ∈Uj
{

ur+1∑
k=ur

wωkωk+1 }

and the maximum cumulative rewards of j is
∑ϕj
t=1 hj (t).

Since {ω} comes from a randomized process, we can define EMR

as the expectation of the maximum (cumulative) rewards among

all spots.

EMR = max

j ∈{1,2, · · ·n }
E[

ϕj∑
t=1

hj (t)].

In the following paragraphs, EMR(X ) is used for emphasizing the

value of EMR of schedule X . As a reminder, minimizing the maxi-

mum reward can be NP-hard since this problem has TSP as a special

case.

On the other hand, the entropy rate is to quantify the randomness

of a schedule X . It is defined as the following.

H∇(X ) = lim

m→∞

∑m
k=1H(Xk )

m
,

where H is the entropy function in information theory [33].

In the rest of this section, three algorithms are proposed: TSP-

based (TSP-b), Biased Random Walk (Bwalk), and Walk on State

Graph (SG) that balance the two criteria with an input parameter
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α . One characteristic of SG is that it can generate the optimal

deterministic solution and heuristic non-deterministic one.

5.1 TSP-based solution
The Algorithm TSP-based solution (TSP-b) is perturbing the opti-

mal (or approximately optimal) deterministic EMR solutions by a

parameter α . Adjusting this skipping parameter α will balance the

two criteria. Roughly speaking, the main idea is to traverse on a

deterministic tour but each vertex is only visited with probability

α (i.e., with probability 1 − α it is skipped). Obviously, Algorithm

TSP-b generates a randomized schedule. Also, since the algorithm

works with a metric (with triangular inequality), the total travel

distance after one round along the tour is bounded by the original

tour length. Hence, the expected reward can be bounded.

The following is the analysis of EMR and entropy rate for TSP-

b when the utility functions are polynomial functions with the

maximum degree d .

5.1.1 Analysis of TSP-b with same utility functions. When the

utility functions among all spots are the same, Algorithm TSP-b

firstly generates a approximated-TSP tourQ = {q1,q2, · · ·qn },qi ∈
{1, 2, · · ·n} by, for example, a PTAS algorithm [7, 42]. Denote Y as

the randomized schedule perturbed by α . Now, assume the spot

of an arbitrary index k in the schedule is i , i.e., Yk = i , without
loss of generality, the tour Q is shifted such that q1 = i . Thus, the
probability of the next spot to visit being qj is

Prob(Yt+1 = qj |Yt = q1) ={∑∞
x=1(1 − α)xn−1α if j = 1∑∞
x=0(1 − α)xn+j−2α if j = {2, 3, · · ·n}.

(8)

Denote Prob(Yk+1 = qj |Yk = q1) as γj , then the entropy rate of Y
would be

H∇(Y ) =
n∑
j=1

γj log
1

γj
(9)

On the other hand, to bound E[ϕi ] we mainly need to determine

how many rounds does the patroller tour around Q before spot i
is visited again (a round is defined as the number of time slots for

touringQ). Suppose the time taken forQ isT (Q). Each such tour by

triangle inequality has length at mostT (Q). Define βi as the number

of the rounds traveled until i is visited again. The probability of βi
is calculated as follows,

Prob(βi = k) = (1 − α)k−1α .

Denote β = maxi βi . the probability distribution for β is bounded,

Prob([β ≤ k]) =
∏
i

Prob(βi ≤ k) = (1 − (1 − α)k−1)n .

The expected value of β is,

E[β] =
∑∞
k=1 Prob(β ≥ k) =

∑∞
k=1 1 − Prob(β ≤ k − 1)

=
∑∞
k=1(1 − (1 − (1 − α)k−1)n ).

By tuning the probability α , TSP-b has different bounds on EMR

and entropy rateH . For a small α , lots of sites are skipped creating
a schedule with high randomness, but EMR is also higher. On the

other hand, for a large α , the sites are visited more frequently with

lower reduced entropy rate. With some calculations, the analysis

of α is summarized in Table 1. Remark that when α is sufficiently

small (α < 1

n ), TSP-b achieves maximum entropy and when α is

sufficiently large (α > n−1
n ), it provides (1+ n

n−1 )
d+1

-approximation

for EMR compared to the TSP tour Q , with the maximum degree d
among all the utility functions. Despite that, when α is a constant

between 0 to 1, A constant entropy and about log
d+1 n extra factor

of EMR are derived.

α α < 1

n α = Θ(1) α > n−1
n

EMR O (nd+1 logd+1 n) O (logd+1 n) O ((1 + n
n−1 )

d+1)

H∇ Θ(logn) Θ(1)
logn
n

Table 1: The summary of the analysis for TSP-b when all the
utility functions are the same with the maximum degree d
(0 < α ≤ 1 ).

5.1.2 Analysis of TSP-b with different utility functions. When

the utility functions are different, TSP-b firstly generates the deter-

ministic schedule by Bamboo garden trimming (BGT) algorithm [41]

and then perturb it into a randomized schedule with α .
One can describe BGT as a vertex-weighted version of TSP. The

objective is to output schedule such that the maximal weighted

visited time among all spots is minimized. For the input, the graph is

set up asG and each vertex j has a weight lj , which is the coefficient

of degree d in hj , where d is the maximum degree among all spots.

BGT divides spots into groups such that the weight of each group

is less than 2. Then, the patroller visits one group with constant

distance and switches to another until all spots are visited. In this

way, it can not be hard to identify that the schedule generated by

BGT gives O(logd+1 n) approximation of EMR.

For analyzing EMR in TSP-b, notice that when a certain spot i

is skipped, the attacker can collect O(logd+1 n) additional utility if

he attacks i . Thus, the expected reward of the attacker would be

E[βi ] ·O(log
d+1 n), where βi − 1 is the number of times skipping

i between two consecutive visits of i in this randomized schedule.

Follow the similar analysis of βi in the case of same utility functions,

the bounds of EMR are the values of the second row in Table 1

multiplying with O(logd+1 n).

5.2 Biased RandomWalk
Algorithm Biased Random Walk (Bwalk) uses a biased random walk

to decide the patrol schedule. Define matrixW ′ = (w ′(i, j)) ∈ Zn×n
≥0

.

For each pair (i, j),
w ′(i, j) = 1/αw (i , j),α > 1,

where α is an input parameter. Define stochastic matrix P ′ as

P ′(i, j) =
w ′(i , j)∑

(i , j′)∈E w ′(i , j′) if (i, j) is an edge

= 0 otherwise.

5.2.1 Analysis of Bwalk with same utility functions. In this case,

Bwalk repeatedly generates a set of randomized tours {S1, S2, · · · }.
Each tour Sl is an Euler-tour traversing on a randomized spanning

tree Γl , where Γl is generated by the biased random walk with

transition probability P ′.
Let (Bk ;k ≥ 0) be the biased walk on G with B0 arbitrary. For

each spot i , let νi be the first hitting time:

νi = min{k ≥ 0 : Bk = i}.
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From (Bk ;k ≥ 0), a randomized spanning tree Γ can be constructed,

which consists of these n − 1 edges,

(Bνi−1,Bνi ); i , B0.

Notice that the probability of generating a specific tree Γ is

proportional to the product of w ′(i, j), for all edge (i, j) ∈ Γ [43].

Thus, by controlling the input parameter α , the two criteria can be

balanced.

Denote the schedule generated by Bwalk as YB . If α = 1 and

assume that graph G is a complete graph, Sl is actually a random

permutation of n spots, which has the entropy logn + log(n − 1) +

· · · 1 = log(n!) = O(n logn). Thus, the entropy rate of YB is

H∇(YB ) = lim

m→∞

m∑
l=1

H(Sl )

m
= lim

m→∞

m∑
l=1

n logn
n
m

= O(logn).

On the other hand, the expected reward is bounded by the expected

time of traversal on the uniform random spanning tree. Since each

edge is traversed atmost twice, the length of the tour is less than 2nη,
where η is the maximum distance among all edges. Thus, the maxi-

mum payoff of the attacker is actually maxj
∑2nη
t=1 hj (t) = O(n

d+1),

if the utility function is polynomial with maximum degree d .
In other cases that α > 1, the generated spanning tree is more

likely a low-weight tree. Thus, the traversing distance is lower

which makes EMR lower. However, the entropy would also be-

come lower due to the probability distribution among all generated

spanning tree is more “biased”.

5.2.2 Analysis of Bwalk with different utility functions. When

the utility functions are not the same, Bwalk would use BGT (which

is introduced in Analysis on TSP-b with different utility functions)
as a backbone. That is, when the patroller visits spots in each group

with a constant distance, the tour which he has followed is not a

deterministic tour but an Euler tour traversing on a randomized

spanning tree of the vertices in the group. Similar to the case of

the same utility functions, the randomized tour in each group is

regenerated every time when the patroller visits all spots in the

group.

5.3 Walk on State Graph
Algorithm Walk on the State Graph (SG) with a parameter α gener-

ates the schedule by a state machine with the transition process as

another random walk.

5.3.1 Deterministic SG. One characteristic of deterministic SG

is that it generates the optimal deterministic schedule for any utility

functions and has the running time exponential in the number of

sites.

DefineD is a state machine and each state x is a (n+1)-dimension

vector x = (x1, x2, · · · , xn,kx ), where x j ∈ R, x j ≥ 0 and kx ∈

{1, · · · ,n}. xi represents the maximum utility the attacker could

have collected since the last time the defender leaves spot i . The
last variable represents the defender’s current position.

Statex,y is said to have an arc fromx toy ify = (y1,y2, · · · ,yn,ky ),
where

yi =

{
hi (xi + d(kx ,ky )), if i , ky

0, otherwise.

d(kx ,ky ) represents the time needed to travel from kx to ky . An
arc represents the change of state from x to y when the defender

moves from kx to ky .
Clearly, any periodic R schedule of the defender can be repre-

sented as a cycle on the state machine defined above. Further, the

state diagram captures all the information needed to decide on the

next stop. Although there could be infinitely many states as defined

above, only a finite number of them is needed. Basically, let’s take

a periodic schedule S with the kernel as some traveling salesman

tour C . Suppose the maximum utility of this schedule is Z . Z is

finite and is an upper bound of the optimal value. Thus, all states x
that have any current utility of x j greater than Z can be removed.

This will reduce the size of the state machine to be at most O(Zn ).

Now we attach with each edge (x,y) a weight as the maximum

payoff among all variables within state x,y. That is,

w(x,y) = max{x1, · · · xn,y1, · · ·yn }.

For any cycle/path in this state machine, define bottleneck weight

as the highest weight on edges of the cycle/path. The optimal de-

terministic schedule is actually the cycle of this state machine with

the minimum bottleneck weight. To find this cycle, the first step

is to find the minimum bottleneck path from any state u to any

state v by Floyd-Marshall algorithm. The total running time takes

time O(|V |3), where |V | is the number of vertices (states) in the

state machine. The optimal tour is obtained by taking the cycle

u  v  u with the minimum bottleneck value for all possible

u,v . The total running time is still bounded by O(|V |3).

5.3.2 Non-deterministic SG. Since the state graph records the

utility that would be collected at each site from the historical trace

at each state, we run a random walk on the state graph with a

probability dependent on the utility of the state.

Each state is defined as the aforementioned state machine D.
From each state, the random walker can possibly move to deg(kx )
different states where deg(kx ) is the degree of spot kx in G. The
probability of moving from state x to y is

cx ,y = min

i ∈{1,2, · · · ,n }

1

yαi
,

where α is the given input parameter. Let the transition probability

from state x to all possibley to be proportional to their edge weights.

That is,

Prob(x,y) =
cx ,y∑

(x ,w )∈E(D)

cx ,w
,

where E(D) is the edge set of D.
Although there are (in the worst case) exponential states re-

spect to the number of sites in the state graph, the probability of

walking on each possible state is determined by local information

{y1,y2, · · ·yn }. Thus, the running time of the randomwalk depends

only on the desired length of the output schedule.

5.4 Solving Patrolling Game with proposed
algorithms

For anyone of our algorithms, once we have a family of schedules,

parameterized by a parameter α , we can solve for the best choice

of α when the penalty and the attacker model are introduced, to

achieve the best balance of randomness and EMR. Given the tuple

(G,H ,M), we look for the optimal value for the parameter α to

minimize the maximum payoff of the attacker.
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Figure 1: The values of expected maximum reward (EMR)
and Entropy rate when the input parameter α = (1, 4, 7, 9).
TSP-b has the most efficient tradeoff since it achieves the

lowest EMR with the highest entropy rate.

6 EXPERIMENTS
We evaluate the proposed algorithms, TSP-based (TSP-b), Biased
random walk (Bwalk), and State graph walk (SG), with two baselines
Markov chains with minimal Kemeny constant (minKC) [46] and

Markov chains with maximum entropy (maxEn) [26]. The experi-

ments are based on artificial datasets and Denver crime dataset [21]

with three different attacker models, Full visibility (Full vis.), Local

visibility (Local vis.), and No visibility (No vis.). There are three

major observations.

(1) Our algorithms realize the tradeoff between expected maxi-

mum reward (EMR) and entropy rate. For comparison, TSP-b

and Bwalk have more freedom to control EMR and entropy

rate with parameter α (Figure 1).

(2) For all algorithms, when the penalty increased, the attacker’s

(expected) payoff decreased. For the same evaluation setup,

the attacker’s payoff is the minimum when the attacker

adopts the model of no visibility, and the highest, when

the attacker adopts full visibility. Roughly speaking, MaxEn

performs worse than our algorithms among all setups. TSP-b,

Bwalk, and SG performs well when the utility function is

not constant (Figure 3, 4). MinKC has comparable perfor-

mance when the utility function is constant. In addition, our

algorithms have low standard errors in all settings (Table 2).

(3) TSP-b and Bwalk are more scalable with the increase in the

number of spots. One reason is that these algorithms are

perturbed the tours from TSP/BGT, which are more delicate

designed routes (Figure 8).

We define a unit length as the distance that the patroller takes

a one-time slot to travel. For simulations, all spots are randomly

generated from a 20000 × 20000 grid. Without specification, the

number of spots in a setup is 30. For Denver dataset, the geographic

range is in Denver City only, which has 78 neighborhoods. We set

up the utility functions as polynomial ones with maximum degrees

0 (constant) or 1 (linear) for demonstration. Each one represents

a different type of crimes. The coefficients of utility functions are

generated uniform randomly between .001 to 1. In the real-world

setting, we use the Denver Crime Dataset to learn the coefficient

based on the number of crimes among different types in each neigh-

borhood. For the baselines, minKC, and maxEn subject to stationary

distribution constraints. To fit the setup of utility functions, we set

up the stationary distribution for each spot j propositional to bj ,
where bj is the coefficient of the maximum degree in its utility

function hj .
In the game, each solution generates a patrol schedule as the

defender’s strategy. The attacker’s payoff Z is realized by attacking

spot i from time ts to te . In this setting, we empirically calculated

the expected payoff to all possible spot i according to all possible
attack period ts , te under specific attacker models. We then derived

the attacker’s maximum (expected) payoff. Due to the raw values

are high, all payoff values are divided by ζ d+1, where ζ is the di-

ameter of all spots. In each experiment, each bi-criteria algorithm

generates around 8 to 10 schedules based on different values of

parameter α . The values of α are uniformly generated in the follow-

ing domains. TSP-b: [0.1, 1], Bwalk: [0, 4.5], SG: [0, 80]. Generally

speaking, increasing the number of α values would increase the

performance of the algorithm but takes more computation time,

which is a performance-complexity trade-off.

6.1 EMR v.s. entropy rate
Figure 1 reports the performance of algorithms under expected max-
imum reward and entropy rate, which are mentioned in Section 5. In

y-axis, we scale the EMR as 1 if the maximum reward is generated

by BGT. Each point represents the schedule which is generated

by different algorithms and the digit aside each point denotes the

value of the input parameter α . α is unified from 1 to 10 among

three proposed algorithms, where the real-value may from different

domains. For example, in TSP-b, the skip probability is 0 as α = 1

and the skip probability is 90% as α = 10. For TSP-b and Bwalk,

the higher the value of α indicates the higher randomness of the

schedule. For SG, the lower the value of α indicates the higher

randomness of the schedule. In fact, one can see that the entropy

rate and EMR increased with higher α value in TSP-b and Bwalk.

However, this tradeoff is not that clear in SG for a high α value.

6.2 Attacker’s payoff in artificial and
real-world scenario

The experiments are examined with the following variables; penalty

values, the maximum degree of utility functions (1, 2, 3), and the

attacker models (Full vis., Local vis., No vis.). The last figure reports

the simulation result of Denver crime dataset.

Each figure shows the attacker’s (expected) payoff under different

penalties. Each realization has been run 10 times and the y-axis is

the average attacker’s payoff with standard errors. We interpret an

algorithm has better performance if and only if the attacker has the

lower payoff in the schedule generated by this algorithm.

In the experiments of constant utility functions (Figure 2, 5, 6),

one can see that the payoff drop down when the penalty increased.

In addition, attackers with lower visibility (E.g., Full visibility v.s.

No visibility) also has a lower payoff. Although TSP-b performs the

best in Full vis., minKC is comparable in Local and No vis.. This

reflects our observation in Section 4.2 and 4.3, that the optimal

solution has a strong correlation with the minimum hitting time.

In the experiments of non-constant utility functions (Figure 3, 4, 7),

our algorithms clearly outperform the baselines in most cases. For

example, the attacker’s payoff is 344 for minKC but only 0.46 for

SG in the case of linear utility functions, 600 penalty value. One

possible reason is that minKC and maxEn are designed only for
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Table 2: Comparing attacker’s expected payoff (the lower the value, the better the performance of the patrol route) of our
algorithms (TSP-b, Bwalk, SG) and baselines (minKC, maxEN) with different settings and attacker models. Figure 2, 5, 6 are
constant utility functions under Full visibility, Local visibility, and No visibility. Figure 3, 4 are linear and quadratic utility

functions under Full visibility. Figure 7 is the simulation on Denver Crime Dataset with full visibility.
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Figure 8: The attacker relative payoff when the number of
spots increased. TSP-b and Bwalk show better and stable

performance in high scale scenario.

linear vertex weight and they are not suitable for non-constant

utility functions. On the other hand, our algorithms focus on the

two objectives: EMR and entropy rate, which are not limited to the

degree of utility functions.

6.3 Scalability
Figure 8 reports the scalability of the solutions. The settings are full

visibility attacker model, constant utility functions, and 0 penalty

value for demonstration. To compare the performance under differ-

ent setups, all attacker’s expected payoff is divided by the payoff of

BGT patrol route. When the number of spots is more than 100, the

solution of minKC is incalculable in our machine due to memory

constraint (the solution minKC is calculated by CXYOPT in a laptop

of Intel i7-4700 MQ 240GHz CPU with 32 GB ram).

For other solutions, the 3 proposed algorithms have better per-

formance than maxEn. Comparing within the proposed algorithms,

SG has the worst performance. One reason is that schedules gen-

erated by SG have higher randomness. When the number of spots

increasing which make the topology becomes complicated, it re-

quires a schedule with more delicate designed routes. Thus, TSP-b

and Bwalk perform better since their schedules are perturbed from

TSP/BGT tours.

7 CONCLUSION
We look into a general patrolling game that the attacker can also

choose the attack period. Instead of formulating it as a mixed-

integer linear programming problem and searching for combinato-

rial defend strategies which are exponential growth, we focus on

two objectives, minimizing the maximum reward and the entropy

rate. Based on that, we formulate the Randomized TSP problem

and propose three algorithms to achieve the tradeoff between the

two criteria. We also design a framework that uses the proposed

algorithms to solve patrol security games efficiently. Experiments

show that our work is scalable and adaptable to various utility

functions and penalties.
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