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ABSTRACT

In real-world decentralized systems, agents’ actions are often cou-

pled with changes in the environment which are out of the agents’

control. Yet, in many important domains, the existing analyses pre-

sume static environments. The theme of our work is to bridge such

a gap between existing work and reality, with a focus on markets.

Competitive (market) equilibrium is a central concept in eco-

nomics with numerous applications beyond markets, such as sched-

uling, fair allocation of goods, or bandwidth distribution in net-

works. Natural and decentralized processes like tatonnement and

proportional response dynamics (PRD) are known to converge

quickly towards equilibrium in large classes of static Fisher markets.

In contrast, many large real-world markets are subject to frequent

and dynamic changes. We provide the first provable performance

guarantees of discrete-time tatonnement and PRD in dynamic mar-
kets. We analyze the prominent class of CES (Constant Elasticity of

Substitution) Fisher markets and quantify the impact of changes in

supplies of goods, budgets of agents, and utility functions of agents

on the convergences of the processes to equilibrium. Since the equi-

librium becomes a dynamic object and will rarely be reached, we

provide bounds expressing the distance to equilibrium that will be

maintained. Our results indicate that in many cases, the processes

trace the equilibrium rather closely and quickly recover conditions

of approximate market clearing.

Our analyses proceed by quantifying the impact of variation in

market parameters on several potential functions which guarantee

convergences in static settings. This approach is captured in two

general yet handy frameworks for Lyapunov dynamical systems.

They are of independent interest, which we demonstrate with the

analysis of load balancing in dynamic environment setting.
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1 INTRODUCTION

A central concept to understand large economic systems is the

notion of competitive or market equilibrium. The computational

aspects of competitive equilibria have been a central theme at the

intersection of game theory and computer science over the last

decade, mainly for the prominent class of Fisher markets. In a Fisher

market, there are a set of agents or buyers and a set of divisible

goods. Each agent brings a budget of money to the market and

wants to buy goods, for which she has an increasing and concave

utility function. An equilibrium consists of a vector of prices and an

allocation of goods and money such that (1) every agent purchases

the most preferred bundle of goods that she can afford, and (2)

market clears (supply equals demand).

There are successful approaches based on distributed adapta-

tion processes for converging to competitive equilibria. For exam-

ple, tatonnement is governed by the natural intuition that prices

of over-demanded goods increase, while under-demanded goods

become cheaper. It provides an explanation how decentralized price

adjustment can lead a market into an equilibrium state, thereby

providing additional justification for the concept. Recently, several

works derived detailed analyses and proved fast convergence of

discrete-time tatonnement in markets [6, 8, 9, 12, 13].

It is well-known that network rate control is closely related to

Fisher competitive equilibria [20–22]. Towards this end, distributed

market dynamics called proportional response dynamics (PRD) were
proposed and analyzed in the context of peer-to-peer network [23,

28]. These dynamics avoid the usage of prices and work directly on

the exchange and allocation of goods. PRD and its generalizations

converge toward competitive equilibria in the full range of CES

Fisher markets (see Section 2 for its definition) [5, 10, 30].

While tatonnement and PRD rely on dynamic changes of prices

and allocations, the existing literature assumes that the market and

its properties (agents, budgets, utilities, supplies of goods) remain

static and unchanged over time. In fact, to the best of our knowledge,

all of the existing work on computation of competitive equilibrium

in algorithmic game theory assumes that the market is essentially
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a static environment. In contrast, in many (if not all) applications

of markets, the market itself is subject to dynamic change, in the

sense that supplies of goods changes over time, agents have different

budgets at their disposal that they can spend, or the preferences of

agents expressed via utility functions evolve over time. Analyzing

and quantifying the impact of dynamic change in markets is critical

to understand the robustness of competitive equilibrium in general,

and of price adaptation dynamics like tatonnement in particular.

In this paper, we initiate the algorithmic study of dynamic mar-
kets in the form of dynamically evolving environments. Our interest

lies in the performance of dynamic adaptation processes like taton-

nement. We analyze a discrete-time process: in each round, the

excess demands in the previous round are used to perform taton-

nement updates. Simultaneously, the market is subject to (possibly

adversarial) variations. This dynamic nature of markets gives rise

to a number of interesting issues. Notably, even when in each round

the market has a unique equilibrium, over time this equilibrium

becomes a dynamic object. As such, exact competitive equilibria

can rarely or never be reached. Instead, we consider how taton-

nement can trace the equilibrium by maintaining a small distance

(in terms of suitably defined notions of distance), which results

in approximate clearing conditions. For PRD, we apply a similar

approach based on adaptation of the allocation of goods.

More formally, we study the prominent class of Fisher markets,

in which agent utilities exhibit constant elasticity of substitution

(CES). We analyze the impact of changes in supply of goods, bud-

gets of agents, and their utility parameters. The agent interaction

approaches equilibrium conditions. Since equilibrium is moving,

prices and allocations chase the equilibrium point over time. Our

analyses provides distance bounds, which can be seen as a quantifi-

cation of the extent of out-of-equilibrium trade due to the interplay

of market variation and adaptation of agents.

Technically, the majority of our analyses is concerned with

quantifying the impact of variation in market parameters on several

potential functions that guarantee convergence of the dynamics.

The results then follow by a combination with the convergence

guarantees for static markets. In fact, this approach constitutes

two powerful yet handy frameworks to analyze a large variety of

protocols and dynamics that are well-understood in static systems,

when these systems become subject to dynamic variation.

Contribution and Outline. After presenting necessary prelim-

inaries in Section 2, we describe in Section 3 the general model

for dynamic CES Fisher markets and a general convergence result.

In the subsequent sections, we discuss the insightful case of CES

markets with gross-substitute condition. In these markets, the total

misspending (absolute excess demand times price) over all goods

is a natural parameter to quantify the violation of market clear-

ing conditions. Moreover, one round of tatonnement updates in

static markets is known to decrease misspending by a multiplicative

factor [9]. In Sections 3.1 and 3.2, we consider markets where the

supply of goods, the budgets of agents, and the utility function

of the agents are subject to dynamic variation, respectively. We

quantify the impact of variation on the misspending in the market.

These bounds reveal that the change is often a rather mild additive

change in misspending. Together with the fact that tatonnement

decreases the misspending multiplicatively, we see that the price

adaptation is indeed able to incorporate and adapt to the changes

quickly. Overall, the dynamics can trace the equilibrium point up

to a distance that evolves from the changes in a small number of

recent rounds.

We provide similar results for Fisher markets with any CES

utilities (including those not satisfying gross-substitute condition)

based on a convex potential function [8] in the full version [11]. A

slight disadvantage is that this potential function does not have an

equally intuitive interpretation as the misspending function.

The technique we apply for markets can be executed much

more generally for a class of dynamical systems, which we formu-

late as a framework in Section 4. These systems have a set of control

parameters (e.g., prices in markets, or strategic decisions in games)

and system parameters (e.g., supplies or utilities in markets, or pay-

off values in games). Moreover, these systems admit a Lyapunov

function, and a round-based adaptation process for the control pa-

rameters (e.g., tatonnement in markets, or best-response dynamics

in classes of games) that multiplicatively decreases the Lyapunov

function in a single round. Our results provide a bound on the value

of the Lyapunov function when the system parameters are subject

to dynamic changes. It seems likely that a similar analysis based

on our techniques can be conducted for many more sophisticated

systems with significantly more complex dynamics. To demonstrate

this, we discuss an example of such system, network load balanc-

ing, in Section 7. Another example about minimization of strongly

convex functions is deferred to the full version [11].

In Section 5, we use another generalization of the technique,

which is based on Bregman divergence, to show that PRD can suc-

cessfully trace equilibrium in gross-substitute CES Fisher markets.

Again, we can extend this to a general framework of dynamical

systems governed by progress in Bregman divergence; see Section 6.

All missing proofs can be found in the full version [11].

Related Work. Competitive equilibrium and tatonnement date

back to Walras [27] in 1874. The existence of equilibrium was estab-

lished in a non-constructive way for a general setting by Arrow and

Debreu [2] in 1954. Computation of equilibrium has been a central

subject in general equilibrium theory. In the past 15 years, there

has been impressive progress on devising efficent algorithms for

computing equilibria, e.g., using network-flow algorithms [3, 4, 15–

17, 25], the ellipsoid method [19] or the interior point method [29].

Decentralized adaptation processes such as tatonnement are

important due to their simple nature and plausible applicability

in real markets. Tatonnement is broadly defined as a process that

increases (resp. decreases) the price of a good if the demand for

the good is more (resp. less) than the supply. The price updates are

distributed, since the price adjustment for each good is based on its

own excess demand, independent of the demands for other goods.

Arrow, Block and Hurwitz [1] showed that a continuous version

of tatonnement converges to an equilibrium for markets satisfying

the weak gross substitutes (WGS) property. The recent algorithmic

advances provide new insights in analyzing tatonnement [8, 12].

Cole and Fleischer [13] proposed the ongoing market model, in
which warehouses are introduced to allow out-of-equilibrium trade,
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and prices are updated in tatonnement-style asynchronously, to
provide an in-market process whichmight capture how real markets

work. There has been significant recent interest in further aspects

of ongoing markets or asynchronous tatonnement [6, 7, 9, 14].

In contrast, proportional response dynamics are a class of dis-

tributed algorithms that originated in the literature on network

bandwidth sharing. These dynamics work without prices and come

with convergence guarantees in classes of static network exchange,

where goods have a uniform value [28, 30]. For CES Fisher markets,

these dynamics can be cast as a form of mirror descent [5, 10].

Notions of games and markets with perturbation and dynamic

changes are receiving increased interest in algorithmic game the-

ory. For example, recent work has started to quantify the average

performance of simple auctions and regret-learning agents in com-

binatorial auctions with dynamic buyer population [18, 24]. In these

scenarios, however, equilibria are probabilistic objects and conver-

gence in the static case can only be shown in terms of regret on

average in hindsight. Moreover, the main goal is to bound the price

of anarchy.

2 PRELIMINARIES

Fisher Markets. In a Fisher market, there are n goods and m
agents (buyers). Each agent i has an amount bi of budget, and she

has a utility function ui representing her preference. For bundles

x1i = (x1i j )j=1, ...,n and x2i = (x2i j )j=1, ...,n , if ui (x
1

i1, · · · ,x
1

in ) >

ui (x
2

i1, · · · ,x
2

in ), then she prefers x1i to x
2

i . We denote the vector of

budgets by b = (bi )i=1, ...,m and the vector of utility functions by

u = (ui )i=1, ...,m . Let B =
∑
i bi be the total budget in the market.

Given a vector p = (pj )j=1, ...,n of (per-unit) prices for each
good, agent i requests a demand bundle of goods that maximizes her

utility function subject to the budget constraint: x̂i = argmax{ui (xi ) :∑n
j=1 xi j · pj ≤ bi }. In general, the argmax is a set of bundles. In

this paper, we concern strictly concave utility function only, for

which there is a unique demand bundle.

The sum of amount of good j purchased by all agents is the

demand for good j , denoted by x j =
∑m
i=1 x̂i j . The supply of good j is

w j , and we set w = (w j )j=1, ...,n . Let z = (zj )j=1, ...,n be the vector

of excess demand, i.e., demand minus supply: zj = x j −w j .

A pair (x∗, p∗) is a competitive or market equilibrium if (1) each

vector x∗i is a demand bundle of agent i at prices p∗, (2) for each
good j with p∗j > 0, demand is equal to supply (i.e., zj = 0), and (3)

for each good j with p∗j = 0, demand is at most supply (i.e., zj ≤ 0).

p∗ is often called a market clearing price vector.

CES Utility Functions. A prominent class of utility functions is

the Constant Elasticity of Substitution (CES) utility functions. They

have the form ui (xi ) =
(∑n

j=1 ai j · (xi j )
ρ
)
1/ρ

, where 1 ≥ ρ > −∞

and all ai j ≥ 0.

For ρ < 1 and ρ , 0, agent i’s demand for good j is

x̂i j = bi ·
(ai j )

1−c (pj )
c−1∑n

k=1 (aik )
1−c (pk )

c , where c =
ρ

ρ − 1
.

To avoid algebraic clutter, we assume the parameter ρ of each agent

is the same, but we note that all our analyses can be easily extended

to cover distinct ρi scenarios.

DynamicMarkets. For CES Fishermarkets, tatonnement is known

to converge quickly to equilibrium under static market conditions.

We here consider a dynamic market where in the beginning of

each round t the tatonnement dynamic proposes a price vector pt .
Dynamic market parameters like budgets bt , supplies wt

and util-

ity functions ut are manifested, which can be different from their

values in previous rounds. Each agent requests a demand bundle

based on the price vector pt and marketMt = (ut , bt ,wt ), which
yields a vector of excess demands zt . Then the system proceeds to

the next round t + 1.

We first provide a basic insight that lies at the core of the

analysis and manages to lift convergence results for a class of static

markets to a bound for dynamic markets from that class. Formally,

assume that the following properties hold:

Potential: There is a non-negative potential function Φ(M, p), for
every marketM = (u, b,w) and every price vector p. It
holds Φ(M, p) = 0 if and only if p is a market clearing price

vector for marketM.

Price-Improvement: The price dynamics satisfyΦ(M, pt ) ≤ (1−
δ ) · Φ(M, pt−1), for some 1 ≥ δ > 0 and every marketM.

Market-Perturbation: The market dynamics satisfy Φ(Mt , p) ≤
Φ(Mt−1, p) + ∆t , for some values ∆t ≥ 0 and every p.

Proposition 2.1. Suppose the price and market dynamics satisfy
the Potential, Price-Improvement, and Market-Perturbation properties.

Then Φ(MT , pT ) ≤ (1 − δ )T · Φ(M0, p0) +
T∑
t=1

(1 − δ )T−t∆t .

Let ∆ = maxt=1, ...,T ∆t , then it follows for any t ≤ T ,

Φ(MT , pT ) ≤
T∑

τ=t+1
(1−δ )T−τ ∆τ +

(1 − δ )T−t

δ
·∆ + (1−δ )T ·Φ(M0, p0) .

The proof follows by a direct application of the three properties.

We prove the proposition for a much more general class of dynamic

systems with Lyapunov functions in Section 4.

Consider the three terms in the latter bound forΦ. The first term
captures the impact of recent changes to the market. The second

term bounds the effect of all older changes. The third term decays

exponentially over time. Hence, when the process runs long enough,

the potential is only affected by recent changes of the market, while

all older changes can be accumulated into a constant term based on

∆ and δ . Intuitively, the price dynamics follows the evolution of the

equilibrium up to a “distance” of ∆/δ in the potential function value.

Hence, if market perturbation ∆ is small and price improvement δ is

large, the process succeeds to maintain market clearing conditions

almost exactly.

3 DYNAMIC MARKETS VIA MISSPENDING

We here describe our techniques for CES marketsM with gross-

substitutes property, i.e., when all buyers have CES utilities with

1 > ρ > 0.
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The tatonnement process we analyze here updates prices in

each round based on the excess demand in the last round, i.e.,

ptj ← pt−1j ·


1 + λ ·min

*.
,

xt−1j −w j

w j
, 1

+/
-


, (1)

where λ < 1 is a parameter depending on ρ. The misspending
potential function [9, 14] is

ΦMS (M, p) =
n∑
j=1

pj ·
���zj

��� .

The tatonnement process is known to have the Price-Improvement

property based on the misspending potential function ΦMS in CES

markets with 1 > ρ > 0. More formally, if λ ≤ Θ(1 − ρmax),
then there exists 1 ≥ δ = δ (λ) > 0 such that ΦMS (M, pt ) ≤
(1 − δ ) · ΦMS (M, pt−1). [14]

In the subsequent subsections, we will present upper bounds

on the misspending. We discuss how to interpret them. For a static

marketM and a given starting point p0, there exists a positive

lower bound on all prices appeared throughout the tatonnement

process. To see why, intuitively, when the price of a good is very

low, its demand has to be very large
1
and hence its price must

subsequently increase. See [13, 14] for how to explicitly derive

such a lower bound. When the market becomes dynamic but all

parameters stay within an appropriate range, a similar lower bound

can be derived; we denote it by Pmin. Then ΦMS (M, p) ≤ c implies

for each good j, |zj | ≤ c/pj ≤ c/Pmin.

Thus, an upper bound on the misspending can be converted to an

upper bound on absolute excess demands via the above inequality.

3.1 Dynamic Supply and Budgets

Dynamic Supply. Let us first analyze the impact of changing sup-

ply on tatonnement dynamics and market clearing conditions. We

normalize the initial supplyw1

j = 1 for each good j. Suppose that

the supplies are then changed additively
2
by εt = (εt

1
, εt
2
, · · · , εtn )

at time t . We parametrize our bounds using the maximum supply

change κ = maxt ∥εt ∥1.

Assumption 1. Every price is universally bounded by some time-

independent constant P , i.e., for any j and any time t , we have

ptj ≤ P .

Assumption 1 is made for technical reasons, but it is simple to

satisfy by constant parameters of the market. For example, if all

initial prices are at most B, then since λ < 1 Assumption 1 holds

with P = 2B. The main result in this section is as follows.

Proposition 3.1. For any t ≤ T ,

ΦMS (M
T , pT ) ≤ P · *.

,

T∑
τ=t+1

(1 − δ )T−τ ∥ετ ∥1 +
(1 − δ )T−t

δ
· κ+/

-
+ (1 − δ )T · ΦMS (M

0, p0) .

1
This is not true in general, but it holds for the markets we concern.

2
We here study additive change for mathematical convenience. The bounds can be

adjusted to hold accordingly for multiplicative change.

Proof. Consider the misspending potential ΦMS. Tatonnement

satisfies the Price-Improvement property. Hence, to show the result,

we establish the Market-Perturbation property.

Note that the misspending potential can be written as

ΦMS (M
t , pt ) =

n∑
j=1

ptj ·
������
xtj − 1 −

t∑
τ=1

ετj

������
.

Hence, by the triangle inequality and Assumption 1,

ΦMS (M
t , pt ) = ΦMS (M

t−1, pt ) +
n∑
j=1

ptj ·
���ε
t
j
���

≤ ΦMS (M
t−1, pt ) + P · ∥εt ∥1 .

We are done by Proposition 2.1, with ∆t = P · ∥εt ∥1 and ∆ = Pκ. □

A Remark. If the supplies of all goods shrink multiplicatively by

the same factor of (1 − β ), then in CES markets, the equilibrium

price of every good increases by a factor of (1− β )−1. However, the
tatonnement update rule allows the current price to be raised by a

factor of at most (1 + λ) per time step. Thus, for plausible tracing
of equilibrium, λ must satisfy (1 + λ) > (1 − β )−1.

Dynamic Budgets.We now analyze the impact of changing buyer

budgets on tatonnement dynamics and market clearing conditions.

Starting from the initial budgets, the budgets are then changed

additively by εt = (εt
1
, εt
2
, · · · , εtm ) at time t . We parametrize our

bounds using the maximum budget change η = maxt ∥εt ∥1.

Proposition 3.2. For any t ≤ T ,

ΦMS (M
T , pT ) ≤

T∑
τ=t+1

(1 − δ )T−τ ∥ετ ∥1

+
(1 − δ )T−t

δ
· η + (1 − δ )T · ΦMS (M

0, p0) .

3.2 Dynamic Buyer Utility

We analyze the impact of changing the parameters ai j in the CES

utility functions on tatonnement dynamics and market clearing

conditions. Starting from the initial utility values, each ai j can in

each round t be changed by some multiplicative factor γ ti j . Let

γ t = maxi, j ((γ
t
i j )

1

1−ρ , (1/γ ti j )
1

1−ρ ) and γ = maxt γ
t
.

Proposition 3.3. For any t ≤ T ,

ΦMS (M
T , pT ) ≤ (1 − δ )T · ΦMS (M

0, p0)

+ B · *.
,

T∑
τ=t+1

(1 − δ )T−τ ·
2(γ τ − 1)

γ τ + 1
+

(1 − δ )T−t

δ
·
2(γ − 1)

γ + 1
+/
-
.

Proof. To show the result, we establish theMarket-Perturbation

property. Note that the misspending potential can be given by

ΦMS (M
t , pt ) =

n∑
j=1

ptj ·
���x
t
j −w j

���

=

n∑
j=1

ptj ·
������

m∑
i=1

bi ·
(ai j

∏t
τ=1 γ

τ
i j )

1−c (pj )
c−1∑n

k=1 (aik
∏t

τ=1 γ
τ
ik )

1−c (pk )
c −w j

������
.
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Using at−1i j = ai j
∏t−1

τ=1 γ
τ
i j we derive

∆t = ΦMS (M
t , p) − ΦMS (M

t−1, p)

=

n∑
j=1

pj ·
*.
,

������

m∑
i=1

bi ·
(at−1i j γ ti j )

1−c (pj )
c−1∑n

k=1 (a
t−1
ik γ tik )

1−c (pk )
c
−w j

������

−

������

m∑
i=1

bi ·
(at−1i j )1−c (pj )

c−1∑n
k=1 (a

t−1
ik )1−c (pk )

c
−w j

������
+/
-

≤

n∑
j=1

pj ·
m∑
i=1

bi ·
������

(at−1i j γ ti j )
1−c (pj )

c−1∑n
k=1 (a

t−1
ik γ tik )

1−c (pk )
c
−

(at−1i j )1−c (pj )
c−1∑n

k=1 (a
t−1
ik )1−c (pk )

c

������

=

m∑
i=1

bi ·
n∑
j=1

������

(at−1i j γ ti j )
1−c pcj∑n

k=1 (a
t−1
ik γ tik )

1−c pck
−

(at−1i j )1−c pcj∑n
k=1 (a

t−1
ik )1−c pck

������
.

For the rest of the proof, we construct an upper bound on the

difference of two fractions. Fix a buyer i , set α j =
(at−1i j )1−c pcj∑n
k=1 (a

t−1
ik )1−c pck

,

βj = (γ ti j )
1−c

, µ = γ t and observe µ ≥ βj ≥ 1/µ. We define

∆sj =
�����

α jβj∑
k αk βk

− α j
�����
.

Lemma 3.4. There exists a vector (β ′
1
, . . . , β ′n ) with

β ′j =



µ if
α j β ′j∑
k αk β ′k

≥ α j

1/µ otherwise.

such that
∑
j
∆sj ≤

∑
j

������

α jβ
′
j∑

k αk β
′
k
− α j

������
.

Now let β ′ be the vector defined in the above lemma, let S =
{j : β ′j = µ} and R = G \ S . Using αS =

∑
j ∈S α j , we obtain∑

j
∆sj ≤

*.
,

∑
j ∈S

α j µ∑
k ∈S αk µ +

∑
i ∈R αi/µ

−
∑
j ∈S

α j
+/
-

+
*.
,

∑
j ∈R

α j −
∑
j ∈R

α j/µ∑
k ∈S αk µ +

∑
i ∈R αi/µ

+/
-

=

(
µαS

µαS + (1 − αS )/µ
− αS

)
+

(
1 − αS −

(1 − αS )/µ

µαS + (1 − αS )/µ

)

= 1 − 2αS +

(
µ + 1

µ

)
αS −

1

µ(
µ − 1

µ

)
αS +

1

µ

.

The RHS is maximized at αS =
1

µ+1 , attaining value of
2(µ−1)
µ+1 .

We are done by Proposition 2.1, with ∆t ≤ B ·
2(γ t−1)
γ t+1 and ∆ ≤

B ·
2(γ−1)
γ+1 . □

4 PARAMETRIZED LYAPUNOV DYNAMICAL
SYSTEMS

In this section, we prove a general theorem, which includes as

special case the bound shown for markets in Proposition 2.1. Our

focus here are dynamical systems, in which time is discrete and

represented by non-negative integers.

We assume that the dynamical system can be described by

two sets of parameters. There is a set of control variables that can
be adjusted by an algorithm or a protocol. In addition, there is

a set of system parameters that can change in each round in an

adversarial way. For example, in our analyses of markets, the control

variables are prices, whereas system parameters are supplies of

goods, budgets of agents, or utility parameters. As another example,

in games the control variables could be the strategy choices of

agents, whereas system parameters are payoff values of states. A

further example: control variables could also be bird headings in a

bird flock, while system parameters are wind direction and velocity.

The classical theory of dynamical systems often studies the

behaviour of systems with static system parameters. However, dy-

namical systems with varying system parameters often arise in

practice (see Section 7). Here, we propose a simple framework to

analyze Lyapunov dynamical systems with varying system parame-

ters. More formally, the dynamical system L is described by an initial
control variable vector p0 ∈ Rn and an evolution rule F : Rn → Rn ,
which specifies how the control variables are adjusted. For each

time t ≥ 1, we have pt = F (pt−1).

The system L is called a Lyapunov dynamical system (LDS) if it

admits a Lyapunov function G : Rn → R+ such that

(a) for every fixed point (equilibrium) p of F , i.e., F (p) = p, it
holds G (p) = 0;

(b) for every p ∈ Rn , it holds G (F (p)) ≤ G (p), while the

equality holds if and only if p is a fixed point.

An LDS L is called linearly converging (LCLDS) if it further satisfies

(c) there exists a decay parameter δ = δ (L) > 0 such that for

any p ∈ Rn , G (F (p)) ≤ (1 − δ ) ·G (p).

Let L be a family of dynamical systems, while each dynamical

system Ls ∈ L is specified by a system parameter vector s ∈ Rd . The
family L is called a family of parametrized, linearly converging LDS
(PLCLDS) if each Ls ∈ L is an LCLDS and δ (L) = infLs∈L δ (Ls) >
0. For each Ls, we denote its evolution rule by Fs and its Lyapunov

function by Gs.

In many scenarios, particularly in agent-based dynamical sys-

tems, the control variables p change by the evolution rule that

expresses, e.g., the sequential decisions of the agents, but the sys-

tem parameters s can change in an exogenous (or even adversarial)

way. However, in many cases the impact of changes in a single time

step is rather mild. The following theorem states our recovery result
by relating the Lyapunov value to the magnitude of changes in each

step. Intuitively, it characterizes the “distance” that the evolution

rule maintains to a fixed point over the course of the dynamics.

Theorem 4.1. Let L be a PLCLDS with δ ≡ δ (L) > 0, let
s0, s1, . . . , sT denote the system parameter vectors at times 0, 1, · · · ,T ,
respectively, and let Φ(st , pt ) = Gst (pt ). Suppose that for every
t = 1, . . . ,T the system parameters st−1, st ∈ Rd invoke a change
such that for every p ∈ Rn , we have Φ(st , p) ≤ Φ(st−1, p) + ∆t .
The initial control variable vector is denoted by p0, and the system
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evolves such that for every t ≥ 1 we have pt = Fst−1 (p
t−1). Then

Φ(sT , pT ) ≤ (1 − δ )T · Φ(s0, p0) +
T∑
t=1

(1 − δ )T−t · ∆t .

Let ∆ = maxt=1, ...,T ∆t , then for any t ≤ T ,

Φ(sT , pT ) ≤
T∑

τ=t+1
(1−δ )T−τ ∆τ +

(1 − δ )T−t

δ
·∆ + (1−δ )T ·Φ(s0, p0) .

Proof. For any time t ≥ 1,

Φ(st ,pt ) = Gst (p
t ) ≤ Gst−1 (p

t ) + ∆t

= Gst−1 (Fst−1 (p
t−1)) + ∆t

≤ (1 − δ ) ·Gst−1 (p
t−1) + ∆t = (1 − δ ) · Φ(st−1, pt−1) + ∆t .

Iterating the above recurrence yields the first result. The second

result follows from the calculation below:

t∑
τ=1

(1 − δ )T−τ ∆τ ≤ ∆(1 − δ )T ·
t∑

τ=1

(
1

1 − δ

)τ
< ∆ ·

(1 − δ )T

δ
·

(
1

1 − δ

)t
. □

In the scenarios where

∑T
t=1 ∆

t = O (T α ) for small constant α ,
we have the following corollary.

Corollary 4.2. In the setting of Theorem 4.1, if
∑T
t=1 ∆

t = O (T α )
for some constant α > 0, then for any constant β > 0,

Φ(sT , pT ) ≤
T∑

τ=T−
⌈ α+β

δ logT
⌉
+1

∆τ + O (T−β ) + (1−δ )T ·Φ(s0, p0).

As T → ∞, the last two terms of the above inequality diminish.

The bound is dominated by the first term, which describes the

impact of the changes in the recent O
(
logT
δ

)
steps.

5 PROPORTIONAL RESPONSE DYNAMICS

In the Fisher market setting, the general protocol of proportional

response dynamics (PRD) is as follows. In each round, each buyer

i splits her budget bi among the n goods according to some rule,

and sends the bids to the sellers of the corresponding goods. Based

on the bids gathered from all buyers, the seller of each good j send
back (simple) signals to buyers, which are then used by buyers for

updating their bids in the next round. We summarize the notation

and results we need from [10] below.When buyer i splits her budget
bi among the n goods, let bi j denote the spending by her on good j .
Let B denote {bi j }i ∈[m], j ∈[n]. Let pj :=

∑
i bi j .

Consider the substitute domain, i.e., when the ρi parameters of

all buyers are strictly between 0 and 1. In each round, the seller of

good j distributes the good among buyers in proportion to the bids

received, and then after receiving the goods, each buyer splits her

budget in proportion to the utility generated from the quantity of

each good received. More formally, let ptj =
∑
i b

t
i j , then the update

rule is

bt+1i j = bi · ai j *
,

bti j

ptj

+
-

ρi /
*.
,

∑
k

aik *
,

btik
ptk

+
-

ρi
+/
-
. (2)

The Kullback-Leibler (KL) divergence is similar to a distance

measure. For vectors x and y such that

∑
j x j =

∑
j yj , the explicit

formula is KL(x| |y) :=
∑
j x j · ln

x j
yj . The above update rule is

equivalent to mirror descent w.r.t. the KL divergence (but with

different step sizes for different buyers) of the function:

д(B) = −
∑
i j

bi j

ρi
log

ai j (bi j )
ρi−1(

pj
)ρi , (3)

defined on the domainC =


B
������
∀i,

∑
j bi j = bi and ∀i, j, bi j ≥ 0



.

For our purpose, it suffices to know that any equilibrium B∗ ∈ C of

PRD corresponds to a minimum point of д. The market potential

with proportional response dynamics will be defined as:

G (B) = д(B) − д(B∗) (4)

Cheung, Cole and Tao [10] show that for positive constants q1 < q2
(which depend on the maximum and minimum values of ρi ) the
market potential in a static market is bounded by

G (Bt+1) ≤ q1 · KL(B∗,Bt ) − q2 · KL(B∗,Bt+1),

and hence the following holds due to telescoping on the RHS:(
q2
q1

)T−1
G (BT ) ≤

T−1∑
t=0

(
q2
q1

)t
G (Bt+1) ≤ q1 · KL(B∗,B◦).

Dividing both sides by (q2/q1)
T−1

shows that G (BT ) converges
linearly with T .

In the rest of the section, we analyze the impact of changing

utility functions and supplies on the convergence properties of

proportional response dynamics. For the varying budgets case, the

domain C varies too, prohibiting a similar analysis.

Dynamic Buyer Utilities. Starting with the initial utility param-

eters, suppose that each aik changes by a factor within [e−ε , eε ].
For a given budget allocation B, let G (Mt ,B) denote the market

potential for the utility of the buyers in round t , and Bt,∗ ∈ C the

allocation that minimizes G (Mt ,B).

Proposition 5.1. After T rounds, it holds that

G (MT ,BT ) ≤ q1

(
q1
q2

)T−1
· KL(B◦,∗,B◦) +

q2
q2 − q1

· ∆ ,

where

∆ =
∑
i

*
,

bi (e
κi − 1)

1 − ρi
·

������
ρi log

(
B

bi

)
− log *

,
min

t, j

ati j∑
k a

t
ik

+
-

������
+
2biε

ρi
+
-
,

and κi = 2ε (1 − ci (3 − 2mini ci )), where ci = ρi/(ρi − 1).

Claim 5.2. For any round t ≤ T it holds

G (Mt+1,Bt+1) ≤ q1 · KL(Bt,∗,Bt ) − q2 · KL(Bt+1,∗,Bt+1)

+ 2

∑
i

biε

ρi
+

∑
i
bi (e

κi − 1) · ��logCi − logΠi �� ,
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where Ci =
(
B
bi

) ρi
1−ρi is a constant and Πi =

(
min

t, j

ati j∑
k atik

) 1

1−ρi
.

Proof of Proposition 5.1. Now suppose ∆ is given as in the

proposition, then with the Claim 5.2 it follows that:

q2 · KL(Bt+1,∗,Bt+1) ≤ q1 · KL(Bt,∗,Bt ) + ∆. (5)

The potential of the market at round T can be bounded by

G (MT ,BT ) ≤ q1 · KL(BT−1,∗,BT−1) + ∆

≤ q1

(
q1
q2
· KL(BT−2,∗,BT−2) +

∆

q2

)
+ ∆

≤ q1 ·

(
q1
q2

)T−1
· KL(B0,∗,B0) +

q2
q2 − q1

· ∆,

where the inequalities follow by recursive application of (5). □

Dynamic Supplies. It turns out that the case with varying supplies
can be reduced to the case with varying utility functions. To see

why, note that the function д defined in (3) assumes that the supply

of each good is normalized to be one unit. When the supply of good

j is changed from 1 to eϵ , by performing a re-normalization of the

supply, it is equivalent to changing ai j to ai j · e
ϵρi

.

6 GENERALIZATION TO PLCLDS USING
BREGMAN DIVERGENCE

In the last section, we analyse PRD using KL divergence by adapting

the analyses by Cheung, Cole and Tao [10]. Indeed, they proposed a

far more general framework for demonstrating linear convergence

when the underlying function is strongly Bregman convex, a new
generalization of the standard notion of strong convexity, in the

context of mirror descent. We propose a variant of PLCLDS in

dynamic environment setting based on their framework.

LetC be a compact and convex set. Given a differentiable convex

function h(x) with domain of C , the Bregman divergence generated
by the kernel h is denoted by dh , defined as

dh (x, y) = h(x) − [ h(y) +
〈
∇h(y) , x − y

〉
] ,

for all x ∈ C and y ∈ rint(C ), where rint(C ) is the relative inte-
rior of C . A convex function f is (σ ,L)-strongly Bregman convex

w.r.t. Bregman divergence dh if, 0 < σ ≤ L, and for any y ∈ rint(C )
and x ∈ C ,

f (y) +
〈
∇f (y) , x − y

〉
+ σ · dh (x, y)

≤ f (x) ≤ f (y) +
〈
∇f (y) , x − y

〉
+ L · dh (x, y).

Note that the KL divergence used in the analysis of propor-

tional response dynamics in Section 5 is an instance of Bregman

divergence where the kernel function is h(x) =
∑
j (x j · lnx j − x j ).

If the system is static, the variant of PLCLDS satisfies properties (a)

and (b), with property (c) replaced by the following new property:

there exists positive numbers q1 < q2 such that for any p, p∗ ∈ C ,

G (F (p)) ≤ q1 · dh (p
∗, p) − q2 · dh (p

∗, F (p)). (6)

The above property holds when, for instance,G is a (σ ,L)-strongly
Bregman convex function with minimum value zero, and F is a

mirror descent update:

F (p) = argmin

p′

{ 〈
∇G (p) , p′ − p

〉
+ L · dh (p

′, p)
}
,

for which q1 = L − σ and q2 = L. [10]

By a suitable telescoping with (6), it is easy to show that

G (pT ) ≤ q1 · (q1/q2)
T−1 · dh (p

∗, p0),

where p∗ is any fixed point (equilibrium) of the Lyapunov system.

However, for system which is dynamic, we will need a modification

of the above property, presented in the theorem below. The style of

its proof is similar to those appear in Section 5.

Theorem 6.1. Let L be a PLCLDS with δ ≡ δ (L) > 0. Let
s0, s1, . . . , sT and p∗,0, p∗,1, . . . , p∗,T denote the sequence of system
parameters and fixed points at times 0, 1, · · · ,T , respectively and let
Φ(st , pt ) = Gst (pt ). Suppose that for every t = 1, . . . ,T the system
parameters st−1, st ∈ Rd invoke a change such that the fixed points
change from p∗,t−1 to p∗,t , and:

Φ(st , pt ) ≤ q1 · dh (p
∗,t−1, pt−1) − q2 · dh (p

∗,t , pt ) + ∆t ,

If the initial control variable vector is denoted by p0, and the system
evolves such that for every t ≥ 1 we have pt = Fst−1 (p

t−1), then

Φ(sT , pT ) ≤ q1 ·

(
q1
q2

)T−1
dh (p

∗,0, p0) +
T−1∑
i=0

(
q1
q2

)i
∆T−i .

7 APPLICATION: LOAD BALANCINGWITH
DYNAMIC MACHINE SPEED

Consider a setting with n distinct machines all connected to each

other to form an arbitrary network. For ease of notation, we label

the machines asmi for i = 1 to n. Each machinemi can process jobs

at speed si . Jobs/tasks, assumed to be infinitely divisible, of total

weightM are arbitrarily distributed over the network. Our goal is to

design a decentralized load balancing algorithm with the objective

that the total processing time over all machines is minimized.

Algorithm 1: Diffusion

for t = 1 to T do
for each machinemi do

f
(t )
i ← total processing time onmi ;

broadcast f
(t )
i to all j ∈ nbd (mi ) ;

forall j ∈ nbd (mi ) do
if f

(t )
i > f

(t )
j then

send Pi j ( f
(t )
i − f

(t )
j )si load to j.;

Before proceeding, we set up some notation. s denotes the

vector of machine speeds. ℓ(t ) = (ℓ
(t )
i )i denotes the vector of loads

and f (t ) = ( f
(t )
i )i the corresponding finishing times at round t . We

assume throughout that the total load stays constant i.e.

∑
i ℓ

(t )
i =

M . For machine speed s, f ∗,s denotes the corresponding vector of
finishing times in the balanced state, i.e. a state where the finishing

time of all machines is the same.
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Algorithm 1 is based on the diffusion principle [26], where if a

machine has more jobs than its neighbours, then some jobs diffuse

to the neighbour. In our context, since the goal is to equalize the

finishing times of all machines, the number of jobs that diffuse is

proportional to the difference in the finishing times. The propor-

tionality constant depends on the connecting edge. Specifically, in

the algorithm that follows we use a diffusivity matrix P satisfying

the following conditions: (a) Pii ≥ 1/2 (b) Pi j > 0 iff (i, j ) is an edge

in G. (c) P is symmetric and stochastic, i.e., for every machinemi ,∑
j Pi j = 1.

If eachmachinemi uses the load balancing protocol as described

above, then the finishing time of machinemi at time t + 1 is known

to satisfy f (t+1) = Pf (t ) . Further, for the balanced state f∗ (when the
finishing times of all machines are equal), Pf∗ = f∗. If we denote
the error in round t + 1 by e(t+1) := f (t+1) − f∗, then:

e(t+1) = f (t+1) − f∗ = P(f (t ) − f∗) = Pe(t ) ,

i.e., the same transformations apply to the error vector as well.

Since P is a symmetric matrix, it has n eigenvalues λ1, λ2 · · · λn
and linearly independent corresponding eigenvectors. By theory

of Markov chains, it is also known that 1 = |λ1 | ≥ |λ2 | ≥ · · · |λn |.
Since P scales the length of e(t ) by a factor of ≤ |λ2 |:

e
(t+1) =

Pe
(t ) ≤ |λ2 |

e
(t ) ⇒

e
(t+1) ≤ |λ2 |

t e
(0) .

(7)

For a given speed vector s, one can define the “potential" as the

normed distance:
f

(t ) − f∗,s1. This measures the imbalance in

the network in terms of the finishing times. From (7), since the

error vector e converges to zero linearly, the potential at balanced

state is zero. Note that this load balancing setting is identical to the

Lyapunov dynamical system introduced in Section 4. Specifically,

the speed vector s is the system parameter, the evolution function

F (ℓ(t ) ) is the diffusion process as described in Algorithm 1 and the

potential as mentioned above corresponds to the Lyapunov function

Gs (ℓ
(t ) ) = Gt

s . Note that by (7) it follows that Gt+1
s ≤ |λ2 |

t G◦s . In
the following, all norms are L1 norms.

Lemma 7.1. For a speed vector s and an arbitrary load profile
vector ℓ, let f denote the corresponding finishing time vector. For a
Lyapunov function defined as Gs = ∥f − f∗,s∥, if the speed vector
changes to s′ for the same load profile, then:

Gs′ ≤ Gs + Mn
�����

1

∥s′∥
−

1

∥s∥

�����
.

Proof. For speed vector changes s′ and the same load profile,

the Lyapunov function is given by:

Gs′ =
f − f

∗,s′ ≤
f − f∗,s+

f
∗,s′ − f∗,s = Gs+

f
∗,s′ − f∗,s .

Let ℓi denote the load on machine mi . The optimal load on

the machines in a balanced state can be characterized using the

following optimization problem:

min

∑
i

ℓi
si

s.t.

∑
i
ℓi = M .

Using the underlying symmetry, we can claim that the load on any

machinemi in the balanced state and its corresponding finishing

time are ℓ∗i =
si ·M∑
k sk

and f ∗,si =
ℓ∗i
si =

M∑
k sk

respectively. It then

follows that:

f
∗,s′ − f∗,s =

∑
i

������

ℓ
′∗
i
s ′i
−
ℓ∗i
si

������
=

∑
i

������

M∑
k s
′
k
−

M∑
k sk

������
. □

To formalize the problem, let LB (N ,M ) be a family of load

balancing environments where N denotes the network of under-

lying machines and M the total weight of jobs. Each individual

environment LBs ∈ LB (N ,M ) is parameterized by the machine-

speed vector s. The corresponding potential function is denoted by

Gs. The theorem below follows directly from the above lemma and

Theorem 4.1.

Theorem 7.2. Let LB (N ,M ) be a family of load balancing en-
vironments on n machines with the corresponding diffusivity matrix
being PN . Let s0, s1, · · · , sT denote the vector of machine speeds at
times 0, 1 · · ·T respectively. If we denote by λ2 the second largest
eigenvalue of PN and Φ(st , ℓt ) := Gst (ℓ

t ), then

Φ(sT , ℓT ) ≤ |λ2 |T ·Φ(s0, ℓ0) + Mn
T∑
t=1
|λ2 |

T−t ·
�����
1

st 
−

1

st−1

�����
.

Since Φ is a measure of load imbalance in the network in terms

of finishing times, the above theorem implies that if the change in

the speed vectors across rounds is small, then the imbalance at time

T is small and depends largely on the most recent changes.

8 DISCUSSION

A canonical approach to analysing multi-agent (dynamical) system

is by designing a Lyapunov or potential function. In this paper,

we provide two general yet handy frameworks to generalize static

analyses of dynamical systems with linearly converging Lyapunov

functions to dynamic environment settings. Given the vast liter-

ature on dynamical systems (and iterative algorithms) under this

category and the immense desire to demonstrate their robustness

against environment variations, our frameworks can serve as a text-

book technique for this important aspect of multi-agent dynamical

systems.

A major open problem is whether a similar framework is ad-

missible when the Lyapunov function convergence rate is slower

than linear, say O (1/T ). Our intuition is if this happens, a variation

near the fixed point (equilibrium) might take much longer time

to be recovered than the same level of variation when afar from

the fixed point. It is not clear to us how to design an analysis for

such systems which captures such a distinction and provides clean

performance guarantees (as we have done in the paper).
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