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ABSTRACT
Computational argumentation has taken a predominant place in the
modeling of negotiation dialogues over the last years. A competent
agent participating in a negotiation process is expected to decide
its next move taking into account an, often incomplete, model of its
opponent. This work provides a complete computational account
of argumentation-based negotiation under incomplete opponent
profiles. After the agent identifies its best option, in any state of a
negotiation, it looks for suitable arguments that support this option
in the theory of its opponent. As the knowledge on the opponent is
uncertain, the challenge is to find arguments that, ideally, support
the selected option despite the uncertainty.We present a negotiation
framework based on these ideas, along with experimental evidence
that highlights the advantages of our approach.
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1 INTRODUCTION
During the last years computational argumentation has taken a
predominant place in the modeling of negotiation dialogues (for
a survey see [11], [24]). The goal of a negotiation dialogue is to
allow interacting agents to resolve conflicts and reach a mutually
accepted agreement, which in this work is a mutually accepted
offer (e.g. the price of a product, the mode of payment).

In an argumentation-based negotiation (ABN), agents choose
offers that are likely to be accepted by the opponent and exchange
arguments that support these offers, either based on their own theo-
ries (see e.g. [1], [3], [18],[13], [22], [14]), or based on the opponent’s
profile (e.g. [15], [23], [9]).

The modeling of the opponent profile is an important issue in
negotiation dialogues (and more generally other types of dialogue
such as persuasion). As explained in [5], although there are im-
portant differences between opponent models, there are strong
reasons justifying their use, such as the minimization of negotiation
cost, the adaptation to the opponent and the capacity to reach win-
win agreements, especially in cooperative environments. Learning
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the opponent profile means learning its acceptance and bidding
strategies, the deadlines and its preference profile [5]. In most of
the proposed works, the (online) opponent modeling is based on
learning techniques (see e.g. [4] for a survey). Apart from the fact
that learning the opponent profile with traditional learning tech-
niques is not an easy task, as pointed out in [28], those techniques
seem better suited to game-theoretic (or utility-based) negotiations,
rather than argumentation-based negotiations. Other works (al-
though they concern persuasion dialogues and legal disputes), have
proposed a probabilistic approach for dealing with the uncertainty
about the opponent profile. In these works (e.g. [16], [27], [17]),
probabilities are used in different ways for finding the arguments
that are most likely to be accepted by the opponent. Finally, some
works (e.g. [26], [21], [8]) investigate other approaches to modeling
the opponent profile in argumentation-based dialogues.

This work advances the state of the art in argumentation-based
negotiation by making original contributions to the opponent model-
ing, and the associated acceptance strategy (i.e. what offers are most
likely to be accepted) as well as bidding strategy (i.e. the strategy
that an agent applies for choosing the next offer). For opponent
modeling, it builds on the work of [10] on control argumentation
frameworks (CAFs), a formalism for modeling the uncertainty about
the opponent profile. More specifically, it borrows the concepts of
"on/off" arguments (i.e. arguments we don’t know whether they
are present or not in a theory), and the three different categories of
attacks (i.e. attacks we know their existence and direction, attacks
we know the existence but not the direction, attacks we don’t know
the existence but we know the direction). This allows generating
different profiles modeled as completions of the known part of the
opponent’s theory, and seeking offers that satisfy all possible pro-
files (or as many as possible). Regarding the bidding and acceptance
strategies, the originality of this work lies in the assumption that in
argumentation-based negotiation, a central challenge for an agent
is to lead, by means of appropriate arguments, its counter party
to change its theory, and eventually accept the offer it proposes,
hence influencing its acceptance strategy. Thus, in our approach, we
propose a bidding strategy that relies on the previous assumption.
More precisely, the idea is that a proponent agent uses first its own
theory for choosing the best offer to propose, but next, it uses the
incomplete theory of its opponent to find the arguments to support
it. Then, it seeks and puts forward a set of arguments called con-
trol configuration, that could reinstate the supporting arguments, if
these are rejected in the current state of the argumentative negoti-
ation theories of all (or most) of the generated opponent profiles.
Once the arguments of the control configuration are inserted in the
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opponent theory, they would, ideally, allow it to reach an agreement
with the proponent, thus they alter its acceptance decision.

2 BACKGROUND
2.1 Argumentation Systems
We assume that the reader is familiar with abstract argumentation
frameworks as introduced in [12], presented as a pair ⟨A,R⟩, where
A is a set of arguments, and R ⊆ A × A is an attack relation. The
relation a attacks b is denoted by a R b or (a,b) ∈ R. Different
acceptability semantics were also introduced in this work. Based
on the acceptability semantics, we can define the status of any
argument, namely skeptically accepted, credulously accepted and
rejected arguments.

2.2 Control Argumentation Frameworks
This section introduces briefly the control argumentation frame-
works (CAFs) proposed in [10], and discusses how they capture the
knowledge of an agent on its opponents. On a high level, a CAF
is an argumentation framework where arguments are divided in
three parts, fixed, uncertain and control.

The f ixed part of the theory concerns the certain knowledge that
an agent holds about its opponent. This includes arguments as well
as attacks that undoubtedly belong to the argumentation theory of
the opponent. For instance, a seller agent knows that the customer
agent prefers European cars, that safety is an important issue for it
and that it prefers electric or gasoline-powered cars than diesel cars.
The uncertain part captures the uncertainty about the presence
of arguments in a theory (expressed by the “on/off” arguments as
shown below), as well as the presence and the direction of attacks
between arguments in this theory. It reflects the uncertainty that
arises due to lack of complete information on the current state
of the world that determines the decisions of the opponent, but
also its beliefs and preferences. For example, the seller agent may
not know the income of the customer agent, whether a car is a
social status symbol for it, the highest price that it is ready to pay,
or whether it is willing to pay more if some extras are included,
and payment by installments is accepted. Finally, the control part
contains arguments that can be used against arguments of the fixed
or uncertain parts that attack arguments that are in favour of some
offer of the proponent. Therefore, the control part serves to ensure
that arguments in the fixed part that support some offer of the
seller that is not adequate with some certain (i.e. European car) or
uncertain (e.g. max price, preferred mode of payment) preferences
of the customer, can be accepted under some circumstances. For
instance, a control argument could allow a seller agent to propose a
car from abroad Europe (which is against the known preference of
the customer agent and represented in the fixed part) by proposing
some interesting options (e.g. five airbags knowing that safety is
an important issue for the customer and also represented in the
fixed part) and in a price that is probably higher than the highest
price the customer is intended to pay (this is part of the uncertain
knowledge) but which allows the seller to accept a payment by
installments, if this is the preferred payment mode for the customer
(this is also part of the uncertain knowledge).

Formally, a CAF is defined as follows:

Definition 2.1. Let L be a language from which we can build
arguments, and let Args(L) be the set which contains all those
arguments. A Control Argumentation Framework (CAF) is a triple
CAF = ⟨F ,C,U ⟩ where F is the fixed part, U is the uncertain part
and C is the control part of CAF with:
• F = ⟨AF ,→⟩ where AF is a set of arguments that we know
they belong to the system and→⊆ (AF ∪AU ) × (AF ∪AU )
is an attack relation representing a set of attacks for which
we are aware both of their existence and their direction.
• U = ⟨AU , (� ∪ d)⟩ where AU is a set of arguments for
which we are not sure that they belong to the system,�⊆
(((AU ∪ AF ) × (AU ∪ AF ))\ →) is an attack relation rep-
resenting a set of attacks for which we are aware of their
existence but not of their direction, andd⊆ (((AU ∪AF ) ×

(AU ∪AF ))\ →) is an attack relation representing a set of
attacks for which we are not aware of their existence but we
are aware of their direction, with� ∩ d= ∅.
• C = ⟨AC ,V⟩ where AC is a set of arguments, called control
arguments, that the agent can choose to use or not, and
V⊆ {(ai ,aj ) | ai ∈ AC , aj ∈ AF ∪ AC ∪ AU } is an attack
relation.

AF ,AU and AC are disjoint subsets of Args(L).

A CAF features a set of distinct attack relations that capture dif-
ferent sorts of information. Its simplest part is ⟨AF ,→ ∩(AF ×AF )⟩,
which is a classical AF that contains the indisputable knowledge of
the agent on its opponent. The idea of CAFs essentially extends this
basic argumentation framework with additional attack relations
defined on arguments from the sets AU and AC . For instance, there
is an attack (ai ,aj ) ∈�, with ai ,aj ∈ AF when it is certain that
the two arguments exist and are in conflict (e.g. because they make
mutually exclusive claims), but the direction of the attack(s) is un-
known (e.g because of lack of information on the intrinsic strength
of arguments, or on the preference relation between arguments).
An attack (ai ,aj ) ∈→, with ai ∈ AU and aj ∈ AF , represents a
situation where it is unknown whether ai is present in the system
(e.g. some of its premises could be false at the current time), but if
ai is in the system, then ai definitely attacks aj .

Central to controllability is the notion of completion of a CAF.
Intuitively, a completion is a classical AF which is built from the
CAF, by choosing one of the possible options for each uncertain
argument or attack.

Definition 2.2. [10] Given a CAF CAF = ⟨F ,C,U ⟩, a completion
of CAF is an AF AF = ⟨A,R⟩, s.t.
• A = AF ∪AC ∪Acomp where Acomp ⊆ AU ;
• if (a,b) ∈ R, then (a,b) ∈→ ∪� ∪ d ∪ V;
• if (a,b) ∈→, then (a,b) ∈ R;
• if (a,b) ∈� and a,b ∈ A, then (a,b) ∈ R or (b,a) ∈ R;
• if (a,b) ∈V and a,b ∈ A, then (a,b) ∈ R.

Note that the definition of a completion leaves the attacks from
d unspecified, as these attacks may not appear in the theory. For
some examples of completions the reader can see [10].

Controllability means that we can select a subset Aconf ⊆ AC
and the corresponding attacks {(ai ,aj ) ∈V | ai ∈ AC , aj ∈ (AF ∪

AC ∪ AU )} such that whatever the completion of CAF , a given
target is always reached.We focus on two kinds of targets: credulous
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acceptance of a set of arguments (this is reminiscent of extension
enforcement [6]), and skeptical acceptance of a set of arguments.

Definition 2.3. [10] A control configuration of a CAF CAF =
⟨F ,C,U ⟩ is a subsetAconf ⊆ AC . Given a set of argumentsT ⊆ AF
and a semantics σ , we say that T is skeptically (resp. credulously)
reached by the configurationAconf under σ ifT is included in every
(resp. at least one) σ -extension of every completion of CAF ′ =
⟨F ,C ′,U ⟩, with C′ = ⟨Aconf , {(ai ,aj ) ∈V | ai ∈ AC , aj ∈ (AF ∪

AC ∪ AU )}⟩. We say that CAF is skeptically (resp. credulously)
controllable w.r.t. T and σ .

In a nutshell, CAFs are a powerful enabler of advanced negotia-
tion techniques, that blend together a number of desirable features
such as the qualitative representation of uncertainty, simultaneous
reasoning with different profiles through completions, simultane-
ous consideration of both certain and uncertain knowledge of the
opponent, the use of control arguments (corresponding to a persua-
sion phase embedded in negotiation, allowing for the reinstatement
of rejected arguments), along with a computational model based
on QBFs.

3 THE NEGOTIATION FRAMEWORK
This section presents a new argumentation-based negotiation frame-
work that relies on CAFs [10] for representing the incomplete in-
formation that agents have about their opponents. Agents commu-
nicate through the exchange of messages (or dialogue moves, see
e.g. [11]). We assume that agents play the roles of the proponent
and opponent in a turn-taking round-based protocol (e.g. similar to
the alternating offers protocol of [14]), where a proponent initiates
a round and passes the token to its opponent when it is unable to
defend an offer rejected by the opponent. The opponent may accept
an offer when one of the supporting arguments is an acceptable
argument for it, or reject an offer if it cannot accept any of the
different supporting arguments sent by the proponent. We build
on the works of [1], [14], and in the following, L denotes a logical
language, and ≡ an equivalence relation associated with it. From L,
a set O = {o1, . . . ,on } of n offers is identified, such that �oi ,oj ∈ O
such that oi ≡ oj . This means that the offers are different. Offers
correspond to the different alternatives (e.g. prices for a product)
that can be exchanged during the negotiation dialogue. We assume
that agents share the same set of offers O but those offers can be
supported by different practical arguments (although not neces-
sarily) in the theories of the negotiating agents. By argument, we
mean a reason in believing (called epistemic arguments) or doing
something (called practical arguments). The set Arдs(L) is then
divided into two subsets: a subset Arдsp (L) of practical arguments
supporting offers, and a subset Arдse (L) of epistemic arguments
supporting beliefs. Thus, Arдs(L) = Arдsp (L) ∪ Arдse (L). A nego-
tiation theory is therefore represented as follows:

Definition 3.1 (Negotiating agent theory). Let O be a set of n
offers. A negotiating theory of an agent α is a tuple T = ⟨O,T α ,

CAF α ,β , F α ⟩withT α = ⟨Aα ,→α ⟩ andCAF α ,β = ⟨Fα ,β ,U α ,β ,

Cα ,β ⟩ and where:
• Aα ⊆ Arдs(L) is a set of arguments s.t.Aα = Aαp ∪A

α
e where

Aαp is a set of practical arguments, Aαe a set of epistemic
arguments, and Aαc ⊆ Aαe is the set of control arguments.

For the attack relation it holds→α=→p ∪ →e ∪ →m , with
→p⊆ Aαp ×A

α
p , representing an attack relation for practical

arguments,→e⊆ Aαe ×A
α
e representing an attack relation

for epistemic arguments and→m⊆ Aαe ×A
α
p representing an

attack relation between epistemic and practical arguments
i.e. (a, δ ) ∈→m , if a ∈ Aαe and δ ∈ Aαp (see [2], [14]).

• – Fα ,β=⟨Aα ,βF ,→α ,β ⟩withA
α ,β
F =Aα ,βFe

∪A
α ,β
Fp

,→α ,β=→
α ,β
e

∪ →
α ,β
p and ⟨Aα ,βFe

,→
α ,β
e ⟩ defining the epistemic argu-

ments subpart s.t.→α ,β
e ⊆ (A

α ,β
Fe
∪A

α ,β
Ue
) × (A

α ,β
Fe
∪A

α ,β
Ue
).

The above hold also for the practical arguments subpart.
It also holds Aα ,βU =Aα ,βUe

∪A
α ,β
Up

.

– U α ,β=⟨Aα ,βU ,�α ,β ∪ dα ,β )⟩ with �α ,β=�e ∪ �p ,

dα ,β=de ∪ dp and ⟨Aα ,βUe
,�e ∪ de )⟩,�e⊆ ((A

α ,β
Ue
∪

A
α ,β
Fe
) × (A

α ,β
Ue
∪A

α ,β
Fe
))\ →

α ,β
e ),de⊆ ((A

α ,β
Ue
∪A

α ,β
Fe
) ×

(A
α ,β
Ue
∪A

α ,β
Fe
))\ →

α ,β
e , defining the epistemic arguments

subpart. The same hold for the practical arguments sub-
part.�e ∩ de= ∅.

– Cα ,β=⟨Aαc ,V⟩ where V⊆ {(ai ,aj ) | ai ∈ Aαc and aj ∈

Aαc ∪A
α ,β
Fe
∪A

α ,β
Ue
} \ (→

α ,β
e ∪�e ∪ de )).

• F α : O → 2Ap
α
s.t ∀i, j with i , j , F α (oi ) ∩ F

α (oj ) = ∅. Let
Ap

α
O
= ∪F α (oi ) with i = 1, . . . ,n. This function returns the

practical arguments supporting offers in O.

In the following we present the different procedures that imple-
ment the new negotiation framework of this paper.

3.1 Best Offers Selection
Algorithm 1 is the procedure invoked by the proponent agent α
in order to compute, first, its best offer, based on its own theory,
and it is implemented through function comp_next_o f f er . This
function looks for the best offer supported by an acceptable practical
argument by using a ranking on the supporting arguments based on
a partial preorder (other methods can be also applied here). Then,
based on its CAF α ,β , it computes the practical arguments that
support this offer in its opponent theory and calls a procedure,
implemented by algorithm 2, that selects the supporting argument
to be sent. If the proponent agent has no (other) offer to propose,
the opponent of the agent is informed by a suitable message (i.e.
nothing).

Algorithm 1: choose-best-offer(O,T α , CAF α ,β , F α ,β (o))

o ← comp_next_offer(O, Tα );1

if o , ∅ then2

Fα ,β (o) ← compute_sup_arg(o, Aα ,β
Fp
∪ Aα ,β

Up
);3

call choose-support-arg(o, Fα ,β (o), CAFα ,β );4

else5

message(α , β )=nothing; send(message(α , β ));6

3.2 Supporting Argument Selection
The algorithm described below, selects (through function choose −
arд, where the choice can be random, as herein, or based on other
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methods) the argument that the proponent agent α sends to its
opponent agent to support its offer. Moreover, another procedure
finds the arguments that defend this supporting argumentwhenever
this argument is currently rejected by the opponent. This task is
carried out by the procedure implemented by algorithm 3. If there
is no other available argument that supports the current offer, the
agent abandons this offer and passes the negotiation token to the
opponent agent.

Algorithm 2: choose-support-arg(o, F α ,β (o), CAF α ,β )
if Fα ,β (o) , ∅ then1

θ ← choose-arg(Fα ,β (o));2

call defend-offer(o, θ , Fα ,β (o), CAFα ,β )3

else4

O=O − {o }; Aαp = A
α
p − F

α (o);5

message(α , β )=дive_token; send(message(α , β ));6

3.3 The Bidding Strategy
The bidding strategy of the proponent agent is implemented by al-
gorithm 3. The main task here is to defend the proposed offer by an
argument that (as said before) supports the offer in the opponent’s
theory. Consider for instance a car seller agent who proposes an
expensive luxury SUV of a prestigious brand to a customer who, as
the agent understands, seems to afford it. The reason (argument)
that the seller agent has chosen this particular car is probably the
high sales commission that it brings. However, this is not an argu-
ment it can use to convince its customer. The pool of appropriate
arguments could include the smooth ride, fast acceleration, high
top speed, off-road capabilities, safety features, or even the high
social status associated with the brand. In fact, the discovery of
those arguments takes place inside algorithms 1 and 2. The role
of the bidding strategy algorithm is to determine whether such a
supporting argument is already acceptable in the opponent’s theory,
or to search for a control configuration that can defend the selected
supporting argument under all possible opponent profiles.

Algorithm 3: defend-offer(o, θ , F α ,β (o), CAF α ,β )
if θ is credulously accepted in all completions of the theory1

Aα ,β
F ∪ Aα ,β

U
then2

offer(α , β ) = ⟨o, θ , ⟨∅, ∅⟩⟩;3

Fα ,β (o) = Fα ,β (o) − {θ };4

message(α , β )=offer(α , β ); send(message(α , β ))5

else6

S ← comp_contr_conf(CAFα ,β , θ );7

if S , ∅ then8

R = {(ai , aj ) |ai ∈ S , aj ∈ A
α ,β
F ∪ Aα ,β

U };9

offer(α , β ) = ⟨o, ⟨θ , ⟨S , R⟩⟩⟩;
message(α , β )=offer(α , β ); send(message(α , β ))10

else11

Fα ,β (o) = Fα ,β (o) − {θ };12

call choose-support-arg(o, Fα ,β (o), CAFα ,β );13

More precisely, acceptance in the context of incomplete theories
is based on the notion of completion which represents a possible
profile (see definition 2.2). The computation in line 1 of the algo-
rithm relies on reasoning with Quantified Boolean Formulas (QBFs),
as described in [10], that is carried out by the quantom solver [25].
The credulous controllability wrt the theory Aα ,βF ∪A

α ,β
U (i.e. argu-

ments in Aαc are not considered in this case) is computed by using
the following Formula 1:

∀{onxi | xi ∈ A
α ,β
U }∀{attxi ,x j | (xi , x j ) ∈dα ,β ∪�α ,β }

∃{accxi | xi ∈ A}[Φ
cr
st (CAF , θ )

∨(
∨
(xi ,x j )∈�α ,β

(¬attai ,aj ∧ ¬attaj ,ai ))]

where A = A
α ,β
F ∪Acomp with Acomp ⊆ A

α ,β
U .

The onxi variable means that the argument xi currently belongs
to the system; it is used for making the differentiation between
the completions where xi is included and those where it is not.
Similarly, attxi ,x j is true when there is an attack from xi to x j .
This variable has to be true if (xi , x j ) is a fixed attack of CAF .
Otherwise the truth value of this variable allows to make the dis-
tinction between the completions where (xi , x j ) is included and
those where it is not. Finally accxi is a propositional variable repre-
senting the acceptance status of the argument xi . The propositional
matrix Φcrst (CAF , θ ) of the formula is satisfiable when θ belongs
to at least one extension of a completion of CAF (more details
about this part are given later). Straightforwardly, the prefix of the
formula corresponds to an enumeration of every completion (by
the ∀ quantifiers); for every such completion, we have to search for
at least one extension (represented by the existentially quantified
part) such that θ belongs to it.
Now, in case this computation succeeds, θ is acceptable in all possi-
ble opponent profiles (completions), and agent α sends to agent β
the offer o, along with θ .

In case θ is not acceptable wrt the above theory, agent α reacts
as depicted in lines 7-13 of algorithm 3. First, it uses itsCAF to seek
a control configuration S , that defends θ . This is again a problem
on QBFs that is solved by a call to quantom solver (line 7 of the
algorithm). However, this time arguments in Aαc are considered
and credulous controllability is computed by using the following
Formula 2:

∃{onxi | xi ∈ A
α
c }∀{onxi | xi ∈ A

α ,β
U }∀{attxi ,x j |

(xi , x j ) ∈dα ,β ∪�α ,β }∃{accxi | xi ∈ A}[Φ
cr
st (CAF , θ )

∨(
∨
(xi ,x j )∈�α ,β

(¬attai ,aj ∧ ¬attaj ,ai ))]

where A = A
α ,β
F ∪Aαc ∪Acomp with Acomp ⊆ A

α ,β
U .

Note that this formula is very similar to the previous one. This
time, the existential quantifier over the onxi variables, for xi ∈ Aαc ,
corresponds to the search for one control configuration. So the
whole formula corresponds to the definition of credulous controlla-
bility: the formula is true if there is a control configuration such
that, for every completion, θ belongs to at least one extension.
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In both above caseswe use the formulaΦcrst (CAF , θ ) = Φst (CAF )∧
accθ which is based on

Φst (CAF ) =
∧
xi ∈A

α ,β
F
[accxi ⇔∧

x j ∈A(attx j ,xi ⇒ ¬accx j )] ∧
∧
xi ∈A

α ,β
C ∪Aα ,β

U
[accxi ⇔ (onxi∧∧

x j ∈A(attx j ,xi ⇒ ¬accx j ))] ∧
∧
(xi ,x j )∈→α ,β∪Vα ,β

attxi ,x j∧
(xi ,x j )∈�α ,β

attxi ,x j ∨ attx j ,xi
∧
(xi ,x j )<R ¬attxi ,x j

where R =→α ,β ∪ Vα ,β ∪ dα ,β ∪�α ,β .
Moreover, in the first case, where the control arguments are not

used (in Formula 1),
∧
xi ∈A

α ,β
C ∪Aα ,β

U
becomes

∧
xi ∈A

α ,β
U

.

This formula is a generalization of the encoding of stable seman-
tics defined in [7]. When every att-variable and every on-variable
is assigned a truth value, this assignment corresponds to a comple-
tion. Then, the consistent truth assignments of the acc-variables
correspond to the set of stable extensions of the completion. This
means that if Φst (CAF ) ∧ accθ is satisfiable, then θ belongs to at
least one stable extension of the completion which is represented
by the att and on-variables.

Now if in this second case the call succeeds, agent α sends offer
o to agent β , along with the supporting argument θ , the set of
arguments S , and the associated attacks R. Otherwise, the agent
abandons this argument and picks another from F α ,β (o) in order
to continue defending o. This is done by function choose-support-
arg. Recall that our approach looks for sets of arguments that are
control configurations, i.e. work for all possible profiles of agent
β . However, if there is no such solution, the QBF based techniques
of quantom [25], can find sets of arguments that work for most of
these profiles.

In the following we define an operator ⊕ that is used in algo-
rithms 4 and 5.

Definition 3.2. Let A1,A2,A3 be sets. We define (A1,A2) ⊕ A3 as
the pair (A′1,A

′
2) such thatA′1 = A1 \ (A1∩A3) andA′2 = A2∪(A1∩

A3).

At the beginning of the negotiation each agent has in its theory
(i.e. Aα and Aβ respectively) only a part of the possible epistemic
arguments (wrt a specific application). That means that some argu-
ments are in Aα and not in Aβ (and vice-versa). However, when an
agent will use arguments (and the associated attacks) that do not
belong to the opponent’s theory, the opponent agent will add them
(as well as the associated attacks) in its own theory, and it will be
able to use them from that point onwards in the negotiation. This
situation may take place in the algorithms 4 and 5.

3.4 The Acceptance Strategy
This section discusses Algorithm 4, that implements the acceptance
strategy of an agent. Upon receiving an offer and its supporting
arguments (and the associated attacks) sent by a proponent agent,
the algorithm updates the theory as well as the CAF of the receiv-
ing agent by integrating the supporting arguments, the defending
arguments (i.e. the control configuration), and the associated at-
tacks into both theories (i.e. the receiving agent own theory and its
CAF ). Then, the receiver agent either accepts the offer (i.e. if the
supporting arguments are acceptable) and informs the proponent

accordingly, or sends to the proponent the reasons for rejecting its
offer.

Algorithm 4: decide-upon-offer(T α , CAF α ,β , offer(β,α ))
⟨o, θ , ⟨S , R⟩⟩=offer(β , α );1

if S , ∅ then2

Tα =(Aα ∪ S ,→α ∪ R);3

(Aα ,β
U , Aα ,β

F ) = (Aα ,β
U , Aα ,β

F ) ⊕ S ;4

(dα ,β ,→α ,β ) = (dα ,β ,→α ,β ) ⊕ R;5

(�α ,β ,→α ,β ) = (�α ,β ,→α ,β ) ⊕ R6

if θ is a credulous conclusion of theory Tα then7

message(α , β )=Accept(o);8

send(message(α , β ))9

else10

Compute Q ⊆ E where E is an extension of Tα and Q is the set11

of arguments from which θ is reachable in the attack graph;
Reasons={(p, θ ) |(p, θ ) ∈→α and p ∈ Q };12

message(α , β )=Reject(o, θ , ⟨Q , Reasons ⟩);13

send(message(α , β ));14

3.5 The Negotiation Protocol
The algorithm 5 described below implements the core procedure
that drives the overall negotiation between the two negotiating
agents through the necessary updates of their negotiation theories
and calls to appropriate functions. The first part of algorithm (lines
1-2) implements the behavior of an agent when it is the proposer
of the first offer, whereas the second part (lines 3-24) is concerned
with its reaction when it receives an answer from another agent (i.e.
the opponent). While the first part is straightforward as it concerns
the selection of the best offer to propose, the second part is more
involved and breaks down to several subcases. Those cases concern
different situations that may arise during a negotiation, such as the
rejection of an offer by the opponent, the acceptance of an offer
(that terminates the negotiation with an agreement), the situation
where the opponent informs that it has no other offer to propose,
the situation where the opponent responds that it has no offer
to propose too in a received similar message by the (proponent)
agent (this ends the negotiation without agreement), the situation
where an agent informs that it gives the token, and the situation
where an offer is received and the receiver agent has to decide upon
its acceptance or rejection. The example below explains how the
protocol works.

3.6 A Negotiation Example
In the following we run an example of negotiation for illustrating
our framework. Figure 1 presents the agentsα and β theories (before
(a) and after the negotiation (b)) and their associated CAF respec-
tively. Green arguments (resp. attacks) represent certain arguments
(resp. attacks), red arguments (resp. attacks) represent uncertain ar-
guments (resp. attacks) and blue arguments (resp. attacks) represent
control arguments (resp. attacks). Thus in the current example we
have Aαp = {X } and Aαe = {B, E,K} for agent α and Aβ

p = {Y } and

A
β
e = {B, E,D, F } for agent β . The arguments {D, F } are ignored

by agent α . We have also the common set of offers Oα = Oβ = {o}.
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Algorithm 5: Procedure negotiate(⟨O,T α , CAF α ,β , F α ⟩)
if agent α proposes first then1

call choose-best-offer(O,T α , CAF α ,β , F α ,β (o));2

while true do3

get message(β,α );4

switch message(β,α ) do5

case Reject(o, θ , ⟨Q,Reasons⟩)6

(A
α ,β
U ,A

α ,β
F ) = (A

α ,β
U ,A

α ,β
F ) ⊕ Q ;7

(dα ,β ,→α ,β ) = (dα ,β ,→α ,β ) ⊕ Reasons;8

(�α ,β ,→α ,β ) = (�α ,β ,→α ,β ) ⊕ Reasons;9

call defend-offer(o, θ , F α ,β (o), CAF α ,β );10

case Accept(o)11

End of negotiation with agreement on offer o12

case nothing13

if O , ∅ then14

call15

choose-best-offer(O,T α , CAF α ,β , F α ,β (o));
else16

answer(α, β)=nothinд_too;17

send(answer(α, β))18

case nothinд_too19

End of negotiation without agreement20

case дive_token21

call choose-best-offer(O,T α , CAF α ,β , F α ,β (o));22

case offer(β,α )=⟨o, ⟨θ, ⟨S,R⟩⟩⟩23

call decide-upon-offer(T α , CAF α ,β , offer(β,α ));24

25

F α (o) = {X } and F β (o) = {Y } represent the practical argu-
ments supporting offer o in the agents α and β theories respec-
tively. For their CAF we have F (o)α ,β = {Y } and F (o)β ,α = {X }
respectively. Regarding the uncertainty, for CAF α ,β we have
A
α ,β
Ue

={B}, dα ,β={(E,Y )} and for CAF β ,α we have Aβ ,α
Ue

={E},
dβ ,α={(B,X )},�β ,α={(K, E), (E,K)},Vβ ,α={(F , E), (D,B)} and

control arguments Aβ
c = {D, F }.

The negotiation starts with agent α as proponent (see Fig. 1 (a))
by invoking algorithm 5. Following line 2 there is a call of algorithm
1. This algorithm computes the next (best) offer (line 1) to propose
that is supported by an acceptable argument. In our example there
is offer o but the supporting argument X is rejected as it is attacked
by arguments B and E that belong into the two stable extensions
namely {B,K} and {B, E}. Agent α has no offer to propose to agent
β and following line 6 it prepares amessaдe(α, β) = nothinд and
sends it to agent β . Agent β acts now as proponent (see Fig. 1, (a)).
By using algorithm 5 (line 13) it checks whether Oβ , ∅ (line 14)
which is the case and calls algorithm 1. This algorithm computes
(as previously) the next (best) offer (line 1) that is supported by an
acceptable argument. In the current situation we have the offer o
which is now supported by the acceptable argument Y as it belongs
to the (only) stable extension {Y ,D, F }. Then (line 3) it computes
the supporting practical arguments in the uncertain theory of agent

α namely F (o)β ,α = {X } by using its CAF. Then (line 4) there is a
call of algorithm 2. This algorithm allows to choose a supporting
argument (line 2). In our case there is only one the argument X .
Then there is a call (line 3) of algorithm 3. This algorithm allows
to check firstly (line 1) whether X is credulously accepted in the
uncertain theory of agent α without the use of a control configu-
ration (see Formula 1). Argument X is attacked by the uncertain
argument E (i.e. see attack (E,X )). That means that there is a com-
pletion (or profile) where this argument is present in the theory.
Moreover the type of uncertain attack between arguments K and
E informs us that an attack is indeed present but the direction is
unknown. That means that there are two completions (profiles)
(among the three possible ones) where we have {(K, E), (E,K)} and
{(E,K)} as possible attacks. In one of these completions argument
E defends itself against the attack from K and in the other it at-
tacks K . Therefore in both cases E will be an acceptable argument
and X will be rejected (as there is no defence against this attack).
Argument X is also attacked by argument B through the uncer-
tain attack (B,X ). That means that there is a completion (profile)
where this attack is present in the theory and in that case X will
also be rejected as B is an acceptable argument and there is no
defence for X against the attack (B,X ). Therefore X cannot be
accepted without the use of a control configuration. By looking
at the real theory (green arguments) of agent α we may observe
that the profile with the attacks {(K, E), (E,K)} is the right one
but agent β ignores this information. Then the algorithm tries to
check whether it can find (see Formula 2) a control configuration
S (line 7). As we may observe such a set exists (see line 9) that can
defend X no matter the real profile (i.e. for all the completions) of
agent α . More precisely we have S = {D, F } and R={(F , E), (D,B)}
and an offer(β,α )=⟨o, ⟨X , ⟨{D, F }, {(F , E), (D,B)}⟩⟩⟩ is built. Then,
following line 10, a message(β,α )=offer(β,α ) is prepared and sent
to agent α . Agent α acts as receiver now. By using algorithm 5 (see
line 23) it calls algorithm 4 (see line 24). By using algorithm 4 agent
α updates its theory and CAF (see lines 3-6), by using S = {D, F }
and R={(F , E), (D,B)} (see Fig. 1 (b)). Then it checks whether it
can accept X (see line 7). As shown in Figure 1 (b), the integration
of agent’s β control (blue) arguments {D, F } (and the associated
attacks) in agent’s α theory (see green arguments and attacks in
Fig. 1 (b)), allows this agent to accept argument X as {X ,D, F ,K} is
a stable extension and therefore to accept offer o. Thus, following
lines 8-9 it prepares a message(α, β)=accept(o) and sends it to agent
β . Agent β acts as receiver by using algorithm 5 (see line 11) and
the negotiation ends successfully (line 12) with an agreement on
offer o.

4 EXPERIMENTAL EVALUATION
The proposed framework has been implemented by using the JADE
(http://jade.tilab.com/) platform and evaluated on negotiations with
random argumentation theories.

4.1 Random Theory Generation
The experimental evaluation of the proposed framework is based on
a system, implemented in Java, that generates pairs of random nego-
tiation theories and associated CAFs, with different user specified
characteristics.
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Figure 1: The theories of agents α and β before (a) and after (b) the negotiation and their respective CAFs.

Each negotiation experiment involves a pair of random theories
T α = ⟨Aα ,→α ⟩ and T β = ⟨Aβ ,→β ⟩ that share a common part,
i.e. there exists Nα ,β = ⟨A

Nα ,β ,→Nα ,β ⟩, such that ANα ,β = Aα ∩

Aβ and (a,b) ∈→Nα ,β iff (a,b) ∈→α ∩ →β . Moreover, control
arguments are only attacked by other control arguments, i.e. ((Aα \
Aαc ) ×A

α
c )∩ →α= ∅.

The structure of the generated theories depends on a number of
user supplied parameter values that are explained briefly below.

The user inputs the number of epistemic, practical and control
arguments of theoriesT α andT β , as well as their density, defined
as the ratio of attacks present in the theory to the number of all
possible attacks between the arguments of the theory. Moreover,
the instance generation system receives as input the number of
epistemic, practical and control arguments of the shared part Nα ,β .

https://v2.overleaf.com/project/5bead5875ffa7d7401349ec6 From
theory T β , the CAF CAF α ,β = ⟨⟨A

α ,β
F ,→α ,β ⟩, ⟨A

α ,β
U ,

�α ,β ∪ dα ,β ⟩, ⟨A
α
c ,V⟩⟩ is built (similarly for T α and CAF β ,α ),

which is the theory that agent α holds about agent β . CAF α ,β

satisfies the following conditions (a) Aα ,βF ∪A
α ,β
U = Aβ ∪Aαp , (b)

A
β
p ⊆ A

α ,β
F .

The attack relation →α ,β ∪ �α ,β ∪ dα ,β of CAF α ,β , is
generated so that it satisfies the following conditions:
a)→α ,β⊆→β ,

b)→β ∩(A
α ,β
F ×A

α ,β
F ) ⊆→α ,β ,

c) (�α ,β ∪ dα ,β ) ⊆ (→β \ →α ,β ), and
d)�α ,β ∩ dα ,β= ∅.

The main consequence of the above requirements is that the
attack relation of CAF α ,β is a subset of the attack relation of
T β . The rationale for this restriction, in this initial experimental
evaluation, is to focus on negotiation experiments where agents
possess an "accurate" model of their opponent. Oneway to formalize
the model accuracy is via the above relation between individual
theories and CAFs. Moreover, it is interesting to study how the
framework behaves when this restriction is removed. Indeed, the
next section provides initial evidence that the method of this paper
can cope with the relaxation of this restriction.

As with the individual agent theories T α and T β , the random
instance generation software accepts as input a number of param-
eter values that determine various features of the CAFs of the
agents. Most of them concern the uncertainty of an agent profile
on its opponent, as captured by the corresponding CAF. The first
is parameter rateUncertArgs that defines the ratio of uncertain
arguments to all (fixed and uncertain) arguments of the theory.

That is, rateUncertArgs= |Aα ,βU |/|A
α ,β
F ∪A

α ,β
U | for agent α , and

similarly for agent β .
Other parameters of the system include rateUncertAtt, that

defines the ratio of uncertain attacks over all attacks, as well as
rateUndirAtt that defines the ratio of undirected attacks to all at-
tacks. That is, rateUncertAtt=| dα ,β |/| →α ,β ∪�α ,β ∪ dα ,β
|, and rateUndirAtt=| �α ,β |/| →α ,β ∪�α ,β ∪ dα ,β |.
Moreover, parameter densContrAtt defines the ratio of attacks
from the control arguments of the agent to the arguments of its op-
ponent that are included in its CAF to all possible such attacks from
control arguments. For instance, densContrAtt=0.1 for CAF α ,β ,
means that 10% of all possible attacks from arguments of Aαc to
arguments inAα ,βF ∪A

α ,β
U are included in the particular CAF α ,β .

Finally, the instance generation system receives as input the num-
ber of offers, i.e. |Oα | and |Oβ |, as well as the number of practical
arguments that support each offer.

4.2 Experimental Results
This section reports on selected results of the experimental evalua-
tion of the framework. As the negotiation theory generation system
accepts several parameter values, it is outside the scope of this work
to provide exhaustive experimental results for all possible value
combinations. Instead, we present results for selected runs that re-
veal important factors that influence the working of the negotiation
algorithm, and highlight its merits and limitations. In all experi-
ments we fix |Aα | = |Aβ | = 40, |Aαp | = |A

β
p | = 6, |Oα | = |Oβ | = 4

and Aαc ∩ANα ,β = A
β
c ∩A

Nα ,β = ∅.
The experimental evaluation is centered around 12 sets of agent

theories, and associated CAFs, that differ in the uncertainty of these
CAFs and the size of the shared part of agent theories. More specif-
ically, four (4) combinations of parameter values concerning the
CAFs are considered, same for both agents. The first combination,
abbreviated as comb1, is determined by the values rateUncertArgs=
0, rateUndirAtt= 0, rateUncertAtt= 0 which correspond to the
case where both agents have complete knowledge of their oppo-
nent. Then, comb2 is defined by the values rateUncertArgs= 0.10,
rateUndirAtt= 0.5, rateUncertAtt= 0.5. Moreover, the third
combination comb3 is rateUncertArgs= 0.25, rateUndirAtt=
0.125, rateUncertAtt= 0.125. Finally, the last combination comb4
is rateUncertArgs= 0.50, rateUndirAtt= 0.25, rateUncertAtt=
0.25 and is the case where the agents have the highest uncertainty
about their opponents among all the experiments.
Each of the above set of values for the 3 CAF parameters is com-
bined with one of the three possible values {0.25, 0.5, 0.75} for
the ratio |ANα ,β |/|Aα | that capture different degrees of similarity
between agent theories.
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Each row of Tables 1 and 2 presents the agreement rate, (i.e. ratio
of the number of negotiations terminated with agreement over
the total number of negotiations) of 600 negotiations consisting of
50 randomly generated experiments for each of the 12 parameter
values combinations described above. Therefore, each experiment
is an amalgamation of negotiation theories of various types as far
as the values of the 12 value parameters is concerned. Each row
of Table 1 corresponds to an experiment (600 negotiations) where
the number of control arguments is shown in the numContrArg
column, whereas the value of parameter dens ContrAtt in the
corresponding column. The last two columns refer to the agreement
rates achieved when the density of the individual theories of the
agents participating in the negotiations is fixed to 0.15 (column
"Agree 0.15") and 0.2 (column "Agree 0.2") respectively. The first row
corresponds to the case where none of the agents has any control
arguments.

The first conclusion that can be readily drawn from Table 1 is
that the presence of control arguments increases significantly the
number of negotiations that terminate with agreement. Indeed, for
theories with density 0.15 (column "Agree 0.15"), the agreement
rate almost doubles from 0.23 to 0.44 for cases where there are
relatively few control arguments and attacks from those arguments,
and triples to 0.65 in the experiments with the highest number of
control arguments and attacks.

Similar are the results when the density of the individual theories
of the participating agents is set to 0.2 (column "Agree 0.2"). Observe
that the slight increase of the density leads to a decrease in the rate
of agreements in all cases. However, again the presence of control
arguments increases the agreement rate from 0.16 to as high as
0.56.

numContrArg densContrAtt Agree 0.15 Agree 0.2
0 0 0.23 0.16
3 0.03 0.44 0.39
3 0.05 0.46 0.44
3 0.1 0.57 0.49
3 0.2 0.60 0.52
6 0.03 0.58 0.52
6 0.05 0.59 0.50
6 0.1 0.65 0.56
6 0.2 0.58 0.54

Table 1: Agreement rate for negotiations with individual
theories of density 0.15 and 0.20

Recall that the negotiation experiments are generated so that
A
α ,β
F ∪ A

α ,β
U = Aβ ∪ Aαp i.e. agent α CAF about β contains all

the arguments of its opponents. In the experiments of Table 2 this
assumption is removed by allowing agent β to possess arguments
that are not part of the CAF of agent α . The number of these ar-
guments is determined by the value of parameter unknown defined
as |(Aβ − (A

α ,β
F ∪A

α ,β
U ))|/|(A

α ,β
F ∪A

α ,β
U )|. In the experiments of

Table 2 this value is set to 0.25 with the effect of a decrease in the
agreement rate when compared to the case with no unknown ar-
guments. This decrease was less significant for theories with more
control attacks.

numContrArg densContrAtt Agreement
3 0.03 0.32
3 0.05 0.37
3 0.1 0.42
3 0.2 0.43
6 0.03 0.45
6 0.05 0.43
6 0.1 0.55
6 0.2 0.57

Table 2: Agreement rate for negotiations with individual
theories of density 0.15 and unknown= 0.25

The experimental evaluation leads to a number of general con-
clusions. The first is that, not surprisingly, the effectiveness of
the approach wrt the rate of agreements depends on a number of
parameters including the density of the individual theories, the
number of attacks from control arguments, etc. Moreover, other
experiments not reported here, have shown that the agreement
rate also depends on the size of the shared part Nα ,β . In all cases it
seems that, for "reasonably good" opponent profiles, the method
leads to a significant increase in the number of negotiations that
terminate with agreement.

5 RELATEDWORK AND CONCLUSIONS
In this paper we presented an original argumentation-based nego-
tiation framework that exploits a recent work proposed in [10] on
control argumentation frameworks for modeling the uncertainty
about the opponent profile and also the acceptance and bidding
strategies of the negotiating agents. Compared to previous works
proposed in the literature on argumentation-based negotiation (see
e.g. [1],[3], [18],[13], [22],[14], [19],[20]) this new framework in-
troduces and combines together a number of original ideas, with
most notable a qualitative representation of uncertainty that en-
ables simultaneous consideration of several different profiles, the
bidding strategy that allows an agent to use arguments that do not
belong to its theory, along with the notion of control arguments that
facilitates persuasion and utilizes arguments that defend against
all the possible attacks at once, hence minimizing the number of
exchanged messages. We consider that our work generalizes the
works proposed in [15],[9]. Our work is also different from the work
proposed in [23] where the agents have an incomplete theory on
the opponent which evolves based on the information contained in
the exchanged offers during the negotiation through classical belief
revision. The bidding strategy also used in this work is different
to ours. Our experimental results have shown that the outcome of
an argumentation-based negotiation dialogue depends on different
parameters of the argumentation theories of the agents but in all
cases the use of control arguments seems to have a positive impact
on the number of agreements.
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