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ABSTRACT
We introduce “transfer by correction": a method for transferring a
robot’s tool-based task models to use unfamiliar tools. By having
the robot receive corrections from a human teacher when repeating
a known task with a new tool, it can learn the relationship be-
tween the two tools, allowing it to transfer additional tasks learned
with the original tool to the new tool. The goal is to enable the
robot to generalize its task knowledge to accommodate tool re-
placements and thus be more robust to changes in its environment.
We demonstrate how the tool transform models learned from one
episode of task corrections can be used to perform that task with
≥ 85% of maximum performance in 83% of tool/task combinations.
Furthermore, these transformations generalize to unseen tool/task
combinations in 27.8% of our transfer evaluations, and up to 41%
of transfer problems when the source and replacement tool share
tooltip similarities. Overall, these results indicate that successful
task adaptation for a new tool is dependent on the the tool’s us-
age within that task, and that the transform model learned from
interactive corrections can be generalized to other tasks providing
a similar context for the new tool.
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1 INTRODUCTION
Tools are common in human life, and thus a robot that operates in
human environments is likely to encounter situations in which it
needs to use tools as well. While a robot can easily learn to complete
a new task with a new tool via demonstrations by a human teacher,
the demonstration(s) provided for that tool cannot prepare the
robot for all variations of that tool it is likely to encounter. These
variations can range from different tool dimensions (e.g. different
sized spoons, hammers, and screwdrivers) to tool replacements
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Figure 1: The robot receiving a task demonstration

when a typical tool is not available (e.g. using a measuring cup
instead of a ladle, or a rock instead of a hammer).

Although some tools are flexible, many have a rigid structure
that results in the tool having two properties that can be used
to improve transfer: (1) that a task is performed with respect to
a particular acting surface of that tool (which we refer to as the
tooltip), and (2) that there is a fixed relationship between the robot’s
gripper and the tooltip. By learning the relationship between the
robot’s gripper trajectories when performing the same task with
two different tools, our approach aims to learn the relationship
between the tools themselves and how they are used in the context
of that task. Once this relationship is learned, the robot can apply
it to reuse previously-learned task models with the new tool.

While the relationship between the robot’s gripper and the
tooltip is static, modeling the relationship between the tooltip and
the robot’s motion is challenging. In general, one would expect to
be able to solve this problem by modifying the trajectory so that
the tooltip of the new tool followed the same path as the tooltip of
the original tool. However, there are several key challenges to this
approach. First, the problem of identifying the tooltip is non-trivial
due to ambiguities, such as how any point of a cup’s rim may be the
tooltip for a pouring action. Second, a different tooltip may be used
depending on the task, such as how the rim of a ladle is used for
scooping, while the back of the scoop can be used to push or pull
another object away. As a result, the transfer function learned for
one class of tasks (e.g. pushing or scooping) may not be reusable
for all other tasks completed with the same tool. Additionally, some
parts of a task are under-constrained (such as the robot moving a
measuring cup toward a bowl), whereas other parts of the same
task are constrained with respect to the tooltip (such as the edge of
the measuring cup when pouring it).
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Figure 2: The robot receives demonstrations of sweeping (a)
and hooking (b) tasks using the first tool (a paintbrush). Af-
ter receiving corrections of the sweeping task (c) using a new
tool (a short scrub-brush), the robot uses these corrections to
complete an undemonstrated tool-task combination: hook-
ing the box with the scrub-brush (d).

In this paper, we introduce an algorithm for transfer by correction:
an interactive approach to learning the relationship between tools
such that tasks learned using one tool (such as in Fig. 2a) can quickly
be transferred to utilize a new tool (Fig. 2c). The robot interacts
with a human teacher to receive corrections when repeating a
known task with a new tool, pausing to enable the teacher to correct
the position and orientation of its gripper throughout the task
(e.g. to correct a collision, or correct its location with respect to
a target object). The algorithm then represents these corrections
according to two tool transform models in order to identify the pose
transformation that is most consistent across corrections.

Our results indicate that the tool transform models learned from
one episode of task corrections can be used effectively to model the
relationship between the source and replacement tool, enabling it to
achieve ≥ 85% of maximum performance in 83% of tool/task
combinations. Furthermore, we test the generalizability of the
learned transformation to additional tasks (such as in Fig. 2d), and
find that the tool transformmodel improves transfer performance in
27.8% of across-task evaluations, and 41% of across-task evaluations
in which the source and replacement tool share similarities in their
tooltips. Overall, our work demonstrates that (i) we can effectively
model the transforms between tools using interactive corrections,
and (ii) the transform can be generalized to other tasks providing a
similar context for the new tool,without additional corrections,
nor any training on those tool-task combinations.

2 BACKGROUND
Tool Manipulation: A robot situated in human environments will
encounter environments and tasks suited for human capabilities,
and thus it is important for a robot to be able to use human tools [17].

The shape of a tool alters its effect on its environment [23], and thus
a tool replacement may necessitate a change in the manipulation
of that tool in order to achieve the same task goal [6]. For tasks
involving the use of a rigid tool, the static relationship between the
robot’s hand and the tooltip is sufficient for controlling the tool
to complete a task [15, 16]. These methods assume a single tooltip
for each tool, and that this tooltip is detected via visual or tactile
means. For tasks involving multiple surfaces of the tool, the task
model can be explicitly defined with respect to those segments of
the tool and repeated with tools consisting of similar segments [14].
However, this assumes a hand-defined model that represents the
task with respect to pre-defined object segments, and that these
object segments are shared across tools. Given enough training
examples of a task, a robot can learn a success classifier that can
later be used to self-supervise learning task-oriented tool grasps
and manipulation policies for unseen tools [9]. We similarly aim to
situate a new tool in the context of a known task, but eliminate the
assumptions that (i) the new tool is within the scope of the training
examples (which would exclude atypical tool replacements) and
(ii) that the tool features relevant to the task are observable and
recorded by the robot.

Task Learning and Corrections: An advantage of Learning from
Demonstration is that the robot can quickly receive new demon-
strations [2, 7] for a new tool variation by having the teacher phys-
ically guide it to repeat the task with the new tool. A more efficient
approach, however, would be for the robot to learn about the rela-
tionships between tools, such that this relationship can be extended
to transfer multiple task models to be reused with the new tool.
Due to the unstructured nature of task demonstrations, the origi-
nal and new demonstrations may vary in ways that do not reflect
accommodations necessary to repeat the task using the new tool.
Interactive corrections have been shown to be an effective interface
for adapting a previously-learned task model [3, 4, 21]. We leverage
this form of interaction for tool transfer. In doing so, we minimize
the distance between the original and corrected goal poses through-
out the task, thus increasing the likelihood that these corrections
reflect only the trajectory changes necessary for the new tool.

Transfer and One-shot Learning: The aim of transfer learning
for reinforcement learning domains is typically to use feedback
obtained during exploration of a new environment in order to en-
able reuse of a previously learned model [25]. In previous work,
we have shown how interaction can be used to transfer the high-
level ordering of task steps to a series of new objects in a target
domain [12]. Similarly, the aim of one-shot learning is to quickly
learn a new task, often improving learning from a single demonstra-
tion by adapting previous task knowledge. Prior work in this space
focuses on learning a latent space for the task in order to account
for new robot dynamics [24] or new task dynamics [13, 18]. "Meta-
learning" approaches have succeeded at reusing visuomotor task
policies learned from one demonstration [10] and using a new goal
state to condition a learned task network such that it can be reused
with additional task objects [8]. We address the problem of a robot
that has not yet been able to explore these relationships, aiming to
enable rapid adaptation of a task model for unseen task/parameter
relationships. The tool transform models learned by our approach
are not specific to any task learning algorithm or representation,
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and thus can compliment or bootstrap methods for reinforcement,
one-shot, and meta learning.

3 PROBLEM DEFINITION
Suppose that for a particular task, there exists a transfer function
ϕba that transforms pose Pa using tool a into a pose Pb for tool b:

Pb = ϕba (Pa) (1)

We assume that each demonstration consists of several keyframes
[1]. The robot receives corrections by executing a trajectory planned
using the original task model, pausing after a time interval defined
by the keyframe timings set during the original demonstration.
The teacher then moves the robot’s gripper to the correct position,
after which the robot resumes task execution for the next time
interval, repeating the correction process until the entire task is
complete. Each resulting correction at interval i consists of the
original pose Ci

a (using tool a) and the corrected pose Ci
b (using

new tool b) at keyframe i . A collection of K corrections (one for
each of K keyframes) results in a K x 2 correction matrix:

C =



C0
a C0

b
C1
a C1

b
. . .

CK
a CK

b



(2)

Each corrected poseCi
b provides a sample of the transfer function

value with the original pose Ci
a at keyframe i as input, plus some

amount of error from the optimal correction pose:

Ci
b = ϕba (C

i
a) + ϵ ϵn ∼ N (0, σ 2

n ) (3)

We assume ϵ is sampled from a Gaussian noise model for each
axis n ∈ [1 . . . 6] of the 6D end-effector pose. Our aim is to learn
a transfer function ϕ that optimally reflects the task constraints,
using a correction matrix C. Our research questions are as follows:

(1) How can we learn ϕ for a particular task from C containing
sparse, noisy corrections?

(2) Under what conditions can the ϕ learned from corrections
on one task be used to transfer other known tasks to the
same replacement tool? What characteristics of the tool and
task predict whether a previously-learned ϕ can be applied?

4 APPROACH: TRANSFER BY CORRECTION
Given a task trajectory T for tool a consisting of a series of t poses
in task space such that T = [p0, p1, . . . , pt], we transform each pose
individually for tool b. Representing an original pose for tool a in
terms of its 3 x 1 translational vector ta and 4 x 1 rotational vector
ra, we transform it into a pose pb for tool b as follows:

pb = ϕba (pa) =
〈
ta + t̂, ra · r̂

〉
(4)

Here, ra · r̂ refers to the Hamilton product between the two
quaternions. The goal is now to estimate the optimal rotational r̂
and translational t̂ transformation components from the corrections
matrix C, and then apply these transformations to the trajectory T.
Our approach addresses this goal by (1) modelingC, particularly the
relationship between each correction’s translational and rotational
components, (2) sampling a typical translational transformation
t̂ and rotational transformation r̂ from this transform model, and

(a) Orientation constraint (b) Tooltip constraint

Figure 3: Poses meeting the same orientation constraint
share similar orientations but vary more in their position,
whereas poses meeting the same tooltip constraint rotate
around the tooltip.

(3) applying t̂ and r̂ to transform each pose in the task trajectory
according to Eq. 4.

4.1 Task Constraints
We observe that corrections indicate constraints of the tooltip’s
position and/or orientation, and that these constraints are reflected
in the relationship between the translation and rotation components
of each correction. Broadly, each correction may primarily indicate:
• An unconstrained point in the trajectory, and thus should be
omitted from the tool transform model.
• An orientation constraint, where the rotation of the tooltip
(and thus the end effector) is constrained more than its posi-
tion (e.g. hooking a box is constrained more by the orienta-
tion of the hook than its position, as in Fig 3a).
• A tooltip constraint, where the position of the tooltip is con-
strained more than its rotation (e.g. sweeping a surface with
a brush). Note that the tooltip position is the center of this
constraint rather than the end-effector itself, and thus the
range of valid end-effector positions forms an arc around
the tooltip, and its orientation remains angled toward the
tooltip (e.g. Fig 3b).

We define two tool transform models, each reflecting either ori-
entation or tooltip constraints. We fit the corrections matrix to
each tool transform model, using RANSAC [11] to iteratively es-
timate the parameters of each model while discarding outlier and
unconstrained correction data points. Each iteration involves (i)
fitting parameter values to a sample of n datapoints, (ii) identifying
a set of inlier points that also fit those model parameters within an
error bound of ϵ , and (iii) storing the parameter values if the inlier
set represents a ratio of the dataset > d . The RANSAC algorithm
relies on a method for fitting parameters to the sample data, and
a distance metric for a datapoint based on the model parameters.
These are not defined by the RANSAC algorithm, and so we spec-
ify the parameterization and distance metric according to the tool
transform model used, which we describe more in the following
sections. We define an additional method to convert the best-fitting
parameters following RANSAC completion into a typical transform
that can be applied to poses.

4.2 Linear Tool Transform Model
Based on the orientation constraint type, we first consider a linear
model for correction data, where corrections fitting this model
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Figure 4: Each plot represents one set of corrections for a
task. The position of each arrow represents the change in
< x ,y > position, and points in the direction of the change in
orientation introduced by that correction. Orientation con-
straints can be seen in (a), where the majority of correc-
tions on this tool have low variance in their orientation, but
higher variance in their x-y position. Tooltip constraints can
be seen in (b), where the majority of corrections arc around
a singular center of rotation, and orientation is dependent
on the x-y position. Unconstrained keyframes (colored grey)
are located near (0,0).

share a linear relationship between the translational components of
the corrections, while maintaining a constant relationship between
the rotational components of corrections (visualized in Fig. 4a). We
model this linear relationship as a series of coefficients obtained by
applying PCA to reduce the 3D position corrections to a 1D space.

4.2.1 RANSAC Algorithm Parameters. The RANSAC algorithm
is performed for k iterations, where we use the estimation

k =
loд(1.0 − p)

loд(1.0 −wn ))
(5)

with desired confidence p = 0.99 and estimated inlier ratiow = 0.5.
Additional parameters are as follows: n = 2 is the number of data
points sampled at each RANSAC iteration, ϵ = 0.01 is the error
threshold used to determine whether a data point fits the model,
and d = 0.5 is the minimum ratio between inlier and outlier data
points in order for the model to be retained.

4.2.2 Model Parameter Fitting. Model fitting during each itera-
tion of RANSAC consists of reducing the datapoints to a 1D model
using PCA, returning the mean translational correction and the
coefficients for the first principal component of the sample S:

Θlinear (S) =
〈
θµ ,θu

〉
θµ =

1
|S|

∑
p∈S

pt (6)

where pt is the 3 x 1 translational difference indicated by the correc-
tion p, S is the subset of the corrections matrix C sampled during
one iteration of RANSAC such that S ⊂ C, and θu is the eigenvector
corresponding to the largest eigenvalue of the covariance matrix
Σ = 1

|S | St
T St.

4.2.3 Error Function. Each iteration of RANSAC calculates the
total error over all data points fitting that iteration’s model param-
eters. We define the error of a single correction datapoint p as the

sum of its reconstruction error and difference from the average
orientation correction, given the current model parameters θ :

δlinear (p,θ ) =∥pt − (θµ + (pt − θµ )T θuθuT
+
)∥

+ γ
(
(1 − qnpn

T )2
) (7)

where x+ indicates the Moore-Penrose pseudo-inverse of a vector,
pn is the unit vector representing the orientation difference indi-
cated by the correction p, qn is a unit vector in the direction of
the average rotation sampled from the model (defined in the next
section), and γ is the weight assigned to rotational error (γ = 1 in
our evaluations).

4.2.4 Sampling Function. After RANSAC returns the optimal
model parameters and corresponding set of inlier points Î ⊂ C,
the rotation and translation components of the transformation are
sampled from themodel.We define the sampling function according
to the estimated “average" rotation q:

Ψ(Î, θ̂ )linear =
〈
q, t

〉
(8)

q = argmax
q∈S3

qTMq M =
1
|Î|

∑
p∈Î

pqipqi
T (9)

The solution to q for this maximization problem is the eigenvec-
tor corresponding to the largest eigenvalue of M [19]. The sample
translation t is the 3D offset corresponding to the mean value z
from the 1D projection space:

t = θ̂µ + zθ̂u
T+

z =
1
|Î|

∑
p∈Î

(pt − θ̂µ )T θ̂u (10)

4.3 Rotational Tool Transform Model
We now consider a model for corrections reflecting a tooltip con-
straint, in which we make the assumption that corrections indicate
a constraint over the tool tip’s position. Since the tool tip is offset
from the end-effector, the position and rotation of the end-effector
are constrained by each other such that the end-effector revolves
around the tool tip (visualized in Fig. 4b). Wemodel this relationship
by identifying a center-of-rotation (and corresponding rotation ra-
dius) for the tool tip, from which we can sample a valid end-effector
position and rotation.

4.3.1 RANSAC Algorithm Parameters. We use the same param-
eters for k,w,d as in the linear model. We sample n = 3 points
at each iteration, and use the error threshold ϵ = 0.25. We define
functions for model parameterization, error metrics, sampling, and
variance in the following sections.

4.3.2 Model Parameter Fitting. We define the optimal model
parameters for each iteration of RANSAC as the center-of-rotation
(and corresponding rotation radius) of that iteration’s samples S:

Θrotation (S) = ⟨θc,θr ⟩ (11)

where θc is the position of the center-of-rotation that minimizes its
distance from the intersection of lines produced from the position
and orientation of each correction sample:

θc = argmin
c

|S |∑
i=1

D (c; ai,ni)2 (12)
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where ai and ni are the position and unit direction vectors, respec-
tively, for sample i in S:

ai = [xi ,yi , zi ]T ni =
(
qi · [0, 1, 0, 0]T )

)
· q′ (13)

Here, q1 · q2 refers to the Hamilton product between two quater-
nions, and q′ is the inverse of the quaternion q:

q′ = [w,x ,y, z]′T = [w,−x ,−y,−z]T (14)

We solve for the center-of-rotation by adapting a method for
identifying the least-squares intersection of lines [26]. We consider
each sample i to be a ray originating at the point ai and pointing in
the direction of ni. The center-of-rotation of a set of these rays is
thus the point that minimizes the distance between itself and each
ray. We define this distance as the piecewise function:

D (c; a,n) =
{
∥ (c − a) − d · n∥2 if d > 0
∥c − a∥2 otherwise (15)

where d is the distance between a and the projection of the candi-
date centerpoint c on the ray:

d = (c − a)T n (16)

We solve for θc using the SciPy implementation of the Levenberg-
Marquardt method for non-linear least-squares optimization, sup-
plying Eq. 15 as the cost function. We then solve for the radius
corresponding to θc:

θr =
1
|S|

|S |∑
i=0
∥ai − θc∥ (17)

4.3.3 Error Function. We define the error of a single data point
p as its distance from the current iteration’s center-of-rotation
estimate:

δrotation (p,θ ) =
(
D (c; ap,np)

dp

)2
(18)

where dp is defined in Eq. 16.

4.3.4 Sampling Function. After RANSAC returns the optimal
model parameters and corresponding set of inlier points Î ⊂ C, the
rotation component of the transformation is first sampled using
the "average" rotation qc from θ̂c to all inlier points:

qc = argmax
q∈S3

qTMq M =
1
|Î|

∑
p∈Î

rprpT (19)

where rp is the quaternion rotation between θ̂c and the position of
p, defined by normalizing the quaternion consisting of the scalar
and vector parts:

rp =
〈
∥a∥2 + baT , bT × a

〉
(20)

a = pt − θ̂c b = [∥a∥, 0, 0] (21)

The optimal qc is the eigenvector corresponding to the largest
eigenvalue ofM ; this represents the sampled rotation from θ̂c.

We then sample t by projecting the point at distance θ̂r from θ̂c
in the direction of qc:

t = θ̂c +
[
(qc · [0, θ̂r , 0, 0]

T ) · qc
′
]
1..3 (22)

where x1..3 indicates the 3 x 1 vector obtained by ommitting the first
element of a 4 x 1 vector x. Finally, we return the sample consisting
of the translation t and the normalized rotation q between t and θ̂c:

Ψ(Î, θ̂ )rotation =
〈

q
∥q∥
, t
〉

(23)

q =
〈
θ̂r ∥a∥ + baT , bT × a

〉
(24)

a = θ̂c − t b = [θ̂r , 0, 0] (25)

4.4 Best-Fit Model Selection
The linear and rotational tool transform models represent two
different relationships between the translational and rotational
components of corrections. We now define a metric for selecting
between these two models based on how well they fit the correction
data:

Ψ(C)best-fit =
{
Ψ(Îl , θ̂l )l inear if ∆l inear < ∆rotation
Ψ(Îr , θ̂r )rotation otherwise

(26)

where Îl , θ̂l , Îr , θ̂r represent the optimal inlier points and parameter
values from the linear and rotational models, respectively. The fit
of the linear model is calculated as its range of values z projected
in the model’s 1D space:

∆l inear = range(z) z = {(pt − θ̂µ )T θ̂u |∀p ∈ Î} (27)

The fit of the rotational model is calculated as the range of unit
vectors in the direction of each inlier point as measured from the
center-of-rotation:

∆rotation = 1 −
1
|Î|











∑
p∈Î

[
(rp · [0, 1, 0, 0]T ) · rp ′

]
1..3









2
(28)

where rp is defined in Eq. 20.

5 EVALUATION
We evaluated the transfer by correction algorithm results on a 7-
DOF Jaco2 arm equipped with a Robotiq 85 gripper and mounted
vertically on a table-top surface (pictured in Fig. 1). Each evaluation
configuration consisted of: (i) one task demonstration provided
using the source tool, (ii) the new, replacement tool, and (iii) one
correction task (demonstrated with the source tool, and used to
obtain corrections with the replacement tool). We describe data
collection for each of these steps in the following sections.

5.1 Demonstrations
Three tasks (Fig. 6) were demonstrated using three prototypical,
"source" tools (Fig. 5a-c), resulting in a total of 9 demonstrations.
Demonstrations began with the arm positioned in an initial con-
figuration and with the gripper already grasping the tool. Objects
on the robot’s workspace were reset to the same initial position
before every demonstration. We provided demonstrations by in-
dicating keyframes [1] along the trajectory, each of which was
reached by moving the robot’s arm to the intermediate pose. At
each keyframe, the 7D end effector pose was recorded; note that
this is the pose of the joint holding the tool, and not the pose of the
tool-tip itself (since the tool-tip is unknown to the robot). We pro-
vided one keyframe demonstration for each combination of tasks
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(a) (b) (c) (d) (e)

Figure 5: Tools a-c were used to demonstrate the three tasks shown in Fig. 6, later transferred to use tools d-e. These tools
exhibit a wide range of grasps, orientations, dimensions, and tooltip surfaces.

(a) (b) (c)

Figure 6: (a) Hooking task, (b) sweeping task, and (c) ham-
mering task

and source tools in this manner, each demonstration consisting of
7-12 keyframes (depending on the source tool used) for the sweep-
ing task, 10-11 keyframes (depending on the source tool used) for
the hooking task, and 7 keyframes for the hammering task. Follow-
ing each demonstration, a Dynamic Movement Primitive (DMP)
model [20, 22] was trained on the recorded keyframe trajectory.
DMPs represent a demonstration as a stable dynamical system and
are generalizable to variations in start and end pose constraints. We
re-recorded the demonstration if the trained DMP failed to repeat
the demonstration task with the source tool.

5.2 Corrections
Following training, the arm was reset to its initial configuration,
with the gripper already grasping a new tool (Fig. 6d-e). Objects
on the robot’s workspace were reset to the same initial position as
in the demonstrations. The learned model was then used to plan
a trajectory in task-space, which was then converted into a joint-
space trajectory using TracIK [5] and executed, pausing at intervals
defined by the keyframe timing used in the original demonstration.
When execution was paused, it remained paused until the arm
pose was confirmed. If no correction was necessary, the pose was
confirmed immediately; otherwise, the arm pose was first corrected
by moving the arm to the correct position.

Two poses were recorded for each correction: (i) the original end-
effector pose the arm attempted to reach (regardless of whether the
goal pose was reachable with the new tool), and (ii) the end-effector
pose following confirmation (regardless of whether a correction
was given). Trajectory execution then resumed from the arm’s
current pose, following the original task-space trajectory so that
pose corrections were not propagated to the rest of the trajectory.
This process continued until all keyframes were corrected and
executed, resulting in the correction matrix C (Eq. 2).

5.3 MEASURES
For each transfer execution, we measured performance according
to a metric specific to the task:

• Sweeping: The number of pom-poms swept off the surface
of the yellow box.
• Hooking: The final distance between the box’s target position
and the closest edge of the box (measured in centimeters).
• Hammering: A binary metric of whether the peg was pressed
any lower from its initial position.

5.4 RESULTS
We highlight two categories of results: within-task and across-task
performance.

5.4.1 Within-task Transfer. Within-task performance measures
the algorithm’s ability to model the corrections and perform the
corrected task successfully. Transfer was performed using the trans-
form model learned from corrections on that same task/tool com-
bination. For example, for the sweeping task model learned using
the hammer, corrections were provided on the replacement tool
(e.g. a mug) and then used to perform the sweeping task using that
same mug. For each source tool, we evaluated performance on all 3
tasks using each of the 2 replacement objects, resulting in 18 sets
of corrections (one for each combination of task, source tool, and
replacement tool) per tool transform model (linear and rotational).

We scaled the result of each transfer execution between 0 and 1,
with 0 representing the initial state of the task and 1 representing
maximum performance according to the metrics in Sec. 5.3. Using
the better-performing model resulted in ≥ 85% of maximum task
performance in 83% of cases. The better-performing model was
selected using the best-fit metric in 72% of cases. Fig. 8 lists the
percentage of transfer executions (using the best-fit model) that
achieve multiple performance thresholds, where best-fit results
were recorded as the performance of the model returned by Eq. 26.

Figure 7 reports the performance distribution aggregated over
all tasks, transferred from each of the 3 source tools to either the
scrub-brush (pictured in Fig. 5e, results in Fig. 7a) or mug (pictured
in Fig. 5d, results in Fig. 7b) as the replacement tool. The mean
performance results are reported in Fig. 10a, with darker cells indi-
cating better performance. Overall, the transform returned using
the best-fit metric resulted in average performance of 6.9x and 5.9x
that of the untransformed trajectory when using the scrub-brush
and mug, respectively, as replacement tools.
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Figure 7: Results for within-task transfer using the scrub-
brush or mug as the replacement tool. Performance was
measured according to themetrics in Sec. 5.3, scaled between
0-1.

Figure 8: Percentage of within-task transfer executions (se-
lected by best-fit model) and untransformed trajectories
achieving various performance thresholds (defined as the %
of maximum performance metric for that task, described in
Sec. 5.3)

(a) Brush (b) Mug

Figure 9: Results for across-task transfer using the scrub-
brush or mug as the replacement tool. Performance was
measured according to themetrics in Sec. 5.3, scaled between
0-1.

5.4.2 Across-task Transfer. Across-task transfer performance
measures the generalizability of corrections learned on one task
when applied to a different task using the same tool, without hav-
ing received any corrections on that tool/task combination. For
example, the hooking task was learned using the hammer, and
transferred to the mug using corrections obtained on the sweeping
task.We evaluated 36 total transfer executions (one per combination
of demonstration task, source tool, correction task (distinct from
the demonstration task), and replacement tool) per tool transform
model (linear and rotational).

Figure 9 reports the performance distribution aggregated over
all tasks, transferred from each of the 3 source tools to either the

(a) Mean performance of within-task transfer to the brush andmug
replacement tools over all 18 transfer executions for each tool.

(b) Mean performance of across-task transfer to the brush and mug
replacement tools over all 18 transfer executions for each tool.

(c) Mean performance of across-task transfer to the brush and mug
replacement tools over the subset of transfer executions in which
the transformation between source and correction tasks is similar
for the source and replacement tool (10 executions for the brush, 12
for the mug).

Figure 10: Mean performance for within-task, across-task,
and a subset of across-task transfer executions. Darker cells
indicate higher average performance.

scrub-brush (Fig. 9a) or mug (Fig. 9b) as the replacement tool. The
mean performance results are reported in Fig. 10b, with darker
cells indicating better performance. Overall, the transform returned
using the best-fit metric resulted in average performance of 1.6x and
0.94x that of the untransformed trajectory when using the scrub-
brush andmug, respectively, as replacement tools. The performance
distribution is improved when using the transform learned from
corrections, resulting in 2.25x as many task executions achieving
≥ 25% of maximum task performance.

In order to understand the conditions under which a transform
can be reused successfully in the context of another task, we also
report the mean performance results for a subset of the across-
task executions (Fig. 10c). This subset consists of only the task
executions where the relative orientation is the same between (i)
the source tool’s tooltips used for the source and target tasks and
(ii) the replacement tool’s tooltips used for the same two tasks.
This subset consisted of 10 executions for the scrub-brush, and 12
for the mug. Overall, for this subset of executions, the transform
returned using the best-fit metric resulted in average performance
of 12.6x and 1.7x that of the untransformed trajectory when using
the scrub-brush and mug, respectively, as replacement tools.

6 DISCUSSION
Our within-task transfer evaluation tested whether we can model
the transform between two tools in the context of the same task
(represented by the solid blue arrow in Figure 11) using corrections.
Our results indicate that one round of corrections is sufficient to
indicate this relationship between tools; collectively, the linear and
rotational models achieved ≥ 85% of maximum task performance in
83% of cases. Individually, the models selected by the best-fit metric
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Figure 11: Corrections indicate the transform from tool 1 to
tool 2 for the same task (indicated by the solid blue arrow).
Our within-task transfer evaluation tested whether we can
use corrections to sufficiently model this relationship. Dif-
ferent tasks may use different tooltips from the same tool
(such as the different tooltips used to complete tasks 1 and
2). Our across-task evaluation tests whether the transform
learned from corrections (solid blue arrow) can be reused as
the transform between the two tools for another task (indi-
cated by the dashed blue arrow).

achieved this performance threshold in 72% of cases. This indicates
that, in general, the fit of the model itself can be used to indicate
the relationship between end-effector position and orientation for
a given tool/task combination.

The primary benefit of modeling corrections (as opposed to re-
learning the task for the new tool) is two-fold: First, the robot
learns a transformation that reflects how the task has changed
in response to the new tool, which is potentially generalizable to
other tasks (as we discuss next). We hypothesize that in future work,
this learned transform could be parameterized by features of the
tool (after corrections on multiple tools). Second, since we do not
change the underlying task model, but instead apply the learned
transform to the resulting trajectory, the underlying task model is
left unchanged. We expect that this efficiency benefit would be most
evident when transferring a more complex task model trained over
many demonstrations; rather than require more demonstrations
with the new tool in order to re-train the task model, the transform
would be applied to the result of the already-trained model.

We have also explored how well this transform generalizes to
other tasks. Different tooltips on the same tool may be used to
achieve different tasks, such as how the end and base of the paint-
brush are used to perform sweeping and hammering tasks, respec-
tively, in Fig. 11. While we do not explicitly model the relationship
between tooltips on the same tool (represented by the top grey
arrow in Fig. 11), they are inherent to the learned task models. A
similar relationship exists for the replacement tool (represented
by the bottom grey arrow in Fig. 11). Our across-task evaluation
seeks to answer whether the relationship between tools in the con-
text of the first task (solid blue arrow) can be reused for a second
task (represented by the dashed blue arrow) without having re-
ceived any corrections on that tool/task combination (tool 2 and

task 2). While we see lower performance in across-task evaluations
compared to the within-task evaluations, it does improve transfer
in 27.8% of across-task transfer executions (in comparison to the
untransformed trajectory).

In the general case, our results also indicate that we cannot nec-
essarily reuse the learned transformation on additional tasks, as
average performance in across-task transfer is slightly worse than
that of the untransformed trajectory when the mug is used as a
replacement tool. This presents the question: given a transform
between two tools in the context of one task, under what conditions
can that transform be reused in the context of another task with-
out additional corrections or training? We do see that across-task
performance is greatest when considering only the subset of cases
where the relationship between the tooltips used in either task is
similar for the source and replacement tools (in our evaluation,
this is 10 of 18 executions using the brush, and 12 of 18 executions
using the mug). Within this subset, across-task transfer improves
performance in 41% of transfer executions. From this we draw two
conclusions: (i) the transform applied to a tool is contextually de-
pendent on the source task, target task, and tooltips of the source
and replacement tool, and (ii) a transform can be reused when the
relationship between tooltips used in either task is similar for the
source and replacement tools.

7 CONCLUSION
We have presented a method for transfer by correction: repeating
a known task with an unknown tool in order to record a human
teacher’s corrections of the robot’s motion. We have contributed
two models for representing corrections, a linear and rotation
model, that each represent a different relationship between the
end-effector’s position and orientation when using a tool. We have
also presented a metric for choosing the better-fitting model for a
set of corrections.

In our within-task evaluation, we have demonstrated that either
the linear or rotational model is sufficient to represent corrections
for successful task completion with the new tool in 83% of task exe-
cutions. Furthermore, using a metric to select the best-fitting model
resulted in improved performance in 89% of tasks (in comparison
to the original, untransformed trajectory).

Our across-task evaluation tests the generalizability of the trans-
forms learned from corrections to additional tasks,without any addi-
tional training or corrections. We observed that across-task transfer
improved performance in 27.8% of task executions, and that further
improvement is seen in transfer scenarios where the relationship
between the tooltips used on the source tool is similar to that of
the replacement tool. Overall, these results indicate that successful
task adaptation for a new tool is dependent on the the tool’s us-
age within that task, and that the transform model learned from
interactive corrections can be generalized to other tasks providing
a similar context for the new tool.
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