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ABSTRACT
Fraud sellers in e-commerce often promote themselves via fake

visits or purchases to increase sales, jeopardizing the business en-

vironment of the platform. How to regulate the exposure of these

sellers to buyers without affecting normal online business remains

a challenging problem, since blocking them entirely without dis-

crimination may kill the normal transactions and could potentially

decrease the total transactions of the platform. To address this prob-

lem, we introduce a regulating valve which blocks fraud sellers

with a certain probability. To learn the optimal blocking policy, we

model the regulating valve as a contextual bandit problem with a

constraint on the total transaction decline. Since existing bandit

algorithms are unable to incorporate the transaction constraint, we

propose a novel bandit algorithm, which decides the policy based

on a set of neural networks and iteratively updates the neural net-

works with online observations and the constraint. Experiments

on synthetic data and one of the largest e-commerce platforms in

the world both show that our algorithm effectively and efficiently

outperforms existing bandit algorithms by a large margin.
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1 INTRODUCTION
The main function of e-commerce platforms is to guide buyer im-

pressions to sellers, where a buyer impression means the exposure

to one buyer. Currently, buyer impressions in e-commerce are al-

located through a highly complex ranking system which selects

top-k sellers based on their quality scores and how good they can

match buyers’ queries and preferences [17, 20]. In reality, more

buyer impressions often give rise to more sales, and the ranking

system often prefers popular sellers as they can potentially bring

more sales for the platform. Thus, with the goal of increasing sales,

some sellers fraudulently boost their popularity by, for example,

hiring a group of human labors to visit their shops frequently or buy

items from their shops and give good feedbacks [19]. In this way,

these fraud sellers can gain unfair advantages over others, which

jeopardizes the business environment of the platform. To keep the

market fair, the platform must take away some buyer impressions

from these fraud sellers. On the other hand, these fraud sellers also

contribute a certain amount of normal transactions to the platform.

In addition, the fraud detection techniques used to identify fraud

sellers are possible to make false positive decisions. Hence, reducing

the buyer impressions of fraud sellers too much may mistakenly kill

some normal transactions, which will cause the total transactions

of the platform to decline. With all these factors considered, it is a

long-standing challenge for e-commerce platforms to find a proper

policy to regulate the buyer impressions of fraud sellers.

To regulate the buyer impression of fraud sellers, previous re-

searchers propose a few fraud-combating mechanisms which con-

sider sellers’ fraudulent behaviors when computing their ranking

scores [7, 8, 30]. However, the applicability of these mechanisms is

questionable because they may not be easily incorporated into the

highly complex ranking system used in existing e-commerce plat-

forms [17, 20]. To be more specific, these mechanisms are designed

to re-construct the ranking system on seller side. They yet are not

able to handle the queries and preferences of buyers. However, the

most fundamental function of e-commerce platforms is to satisfy

buyers’ queries and preferences in the best way, which is exactly

the objective of the existing ranking systems. It is also worth men-

tioning that current ranking systems regulate buyer impressions

received by fraud sellers via manually setting a negative bias on

their ranking scores. Nevertheless, how the bias will affect fraud

sellers is unknown because the ranking scores will change greatly
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as buyers’ queries and preferences as well as the historical transac-

tion data of the products provided by fraud sellers. In this paper,

instead of redesigning the ranking system, we propose to regulate

the buyer impressions of fraud sellers by adding a regulating valve

into the existing ranking system, which blocks fraud sellers with a

certain probability. Moreover, since how the regulating valve affects

the normal transactions is unknown, we first model the regulat-

ing valve via contextual bandits with an extra constraint on the

transaction decline. Then, we propose a novel bandit algorithm

which, based on the online observations of buyer impressions and

transactions, learns the optimal fraud regulating policy to minimize

the buyer impressions of fraud sellers and meanwhile keep the

transaction constraint unviolated.

To the best of our knowledge, our work is the first attempt to

regulate the buyer impressions of fraud sellers in e-commerce with

constrained contextual bandits. Our contribution consists of two

aspects. First, we propose a novel way of buyer impression regulat-

ing by adding a regulating valve into the existing ranking system

of e-commerce platforms. When a buyer types in a query, it stops

fraud sellers from entering the ranking system with a certain prob-

ability. Since buyers and queries come very fast on e-commerce

platforms, the high-speed switch between blocking and unblocking

can accurately cut away a certain ratio of buyer impressions from

fraud sellers. Then, considering different buyers may have different

levels of preferences about fraud sellers, we should learn a policy

to dynamically adjust the blocking probability so that the mistaken

kill of normal transactions can be avoided as many as possible.

Thus, we model our regulating valve as a constrained contextual

bandit problem, where the reward is the ratio of buyer impressions

received by non-fraud sellers and the constraint is the transaction

decline. Since the existing contextual bandit algorithms either can-

not incorporate the constraint or need strong assumptions that

are not satisfied in our problem, we propose a novel constrained

contextual bandit algorithm which uses a set of neural networks to

set up a policy pool and randomly select one for decision-making

at each step. These neural networks are independently updated by

sampling historical observations. To ensure the constraint to be

satisfied, our algorithm updates neural networks by formulating

a local optimization problem via linearizing both buyer impres-

sions and transactions. We conduct extensive experiments on both

synthetic data and one of the largest e-commerce platforms in the

world, which show that our algorithm significantly outperforms ex-

isting contextual bandit algorithms. Experiments on the real-world

e-commerce platform also show that our algorithm considerably

reduces the buyer impressions of fraud sellers, yet with only slight

transaction decline.

2 RELATEDWORK
In this section, we review existing ranking systems, fraud-combating

mechanisms, and contextual bandit algorithms.

2.1 Ranking Systems
When buyers type in a query, e-commerce platforms need to rank

the items of different sellers and display the top-k items in a page. To

satisfy buyers’ preferences and queries in the best way, e-commerce

platforms often learn the ranking function from buyers’ operations

on the page, termed as learning to rank (LTR). Early learning to

rank systems are offline [6, 16]. Later on, online learning and re-

inforcement learning techniques are introduced to improve the

ranking in an online fashion [12, 20, 32]. Notwithstanding the suc-

cess of these systems, their ability to regulate buyer impressions of

fraud sellers is poor. One commonly used method is to manually

set a negative bias on the ranking scores of fraud sellers. However,

the effects of the bias on fraud sellers are actually unknown. For

some queries, alternative sellers are few, and the fraud sellers will

remain in the top-k no matter what bias is set. For others, when

there are many alternative sellers, a small bias usually means 100%

reduction of buyer impressions. In addition, for different items of

the fraud sellers, the ranking scores often change greatly. Even for

one item, buyers’ operations (e.g. buy, click or add to the shopping

cart) might also cause the ranking score to change significantly. In

this case, selecting a proper bias is usually very difficult. Thus, in

this paper, we propose a novel way to regulate the buyer impres-

sions of fraud sellers. We add a regulating valve at the entrance of

the ranking system which blocks fraud sellers from entering the

ranking system with a certain probability. Through the high-speed

switch between blocking and unblocking, we can always precisely

cut away a certain ratio of buyer impressions from fraud sellers, no

matter how the ranking score changes in reality.

2.2 Fraud-Combating Mechanisms
Recently, to combat fraud sellers, Cai et al. [7–9] and Zhao et al. [30]
leverage emerging reinforcement mechanism design techniques

[26] to build new ranking systems, termed as fraud-combating

mechanisms. However, the applicability of these mechanisms is

questionable because they do not consider how to satisfy buyers’

queries and preferences, which is the fundamental objective of rank-

ing systems. For example, the ranking in the mechanism designed

by Zhao et al. [30] is decided only based on sellers’ six features,

including prices, the number of clicks and so on. In this case, it is

difficult to apply these fraud-combating mechanisms mechanism

in real e-commerce platforms. Thus, in this paper, instead of re-

designing new ranking systems, we add a regulating valve at the

entrance of the existing ranking systems to block fraud sellers with

a certain probability. In this way, we can equip existing ranking

systems with the ability to regulate the buyer impressions of fraud

sellers, yet without making any inside changes.

2.3 Contextual Bandits
In contextual bandits, an agent repeatedly interacts with the en-

vironment [21]. At each step, it firstly observes a context vector

x . Then, it chooses an arm a and obtains a reward from the en-

vironment. The reward function r (x ,a) maps contexts and arms

to real-valued rewards. The agent expects maximum rewards but

does not know the reward function. To balance the exploration

for the reward function and the greed for maximum rewards, two

groups of algorithms have been proposed. One group uses upper

confidence bounds of reward function estimations to decide the

optimal arm, including Lin-UCB [1, 10, 15], GLM-UCB [11] and so

on [14, 23, 29]. Another group decides the optimal arm by sampling

an estimate of the reward function from the posterior distribution of

rewards [4]. Since calculating posterior distributions is challenging,
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Figure 1: Schematic diagram of fraud regulating

Lu and Van Roy [18] propose ensemble sampling which calculates

a set of reward function estimations instead.

The aforementioned contextual bandit algorithms are all value-

based. Due to the constraint on transaction decline, they need to

learn two models when applied to our problem: one for rewards

and another for transactions. At each step, to approximate the op-

timal arm selection policy, we still need to solve a programming

problem based on context samples and the estimates of the two

models. However, the two models and the approximate program-

ming all generate certain levels of errors. The combination of these

errors will make it difficult for bandit algorithms to find the optimal

policy. In this paper, we propose, to the best of our knowledge, the

first policy-based constrained contextual bandit algorithm. It uses

neural networks to parameterize the arm selection policies and

directly learns the optimal policy based on reward and transaction

observations. In this way, we can avoid approximately solving the

optimal policy based on inaccurate estimates.

Note that, there are some existing studies on constrained con-

textual bandits [3, 25, 27]. However, these algorithms are unable

to solve our problem because they need strong assumptions that

are not satisfied in our problem. For example, Wu et al. [27] focus

on the contextual bandit problem which generates a certain cost

at each step and the total budget of costs is limited. They assume

the number of contexts is finite and the distribution of contexts

is known. Under these two assumptions, they construct an opti-

mization problem over contexts at each step and decide the optimal

policy by solving this optimization problem. Nevertheless, in our

problem, contexts are high-dimensional continuous vectors and the

distribution is unknown, making their algorithm unable to be ap-

plied. Agrawal et al. [3] and Sun et al. [25] focus on the constrained

contextual bandit problem where a set of expert policies is known

in advance. Based on the online observations, their algorithms can

learn the optimal weighted combination of expert policies. How-

ever, in our fraud regulating problem, it is not easy to find a feasible

policy, not to mention a set of expert policies.

3 REGULATING VALVE
The schematic diagram of our fraud regulating system is shown

in Figure 1. Traditional LTR systems focus on satisfying buyers by

carefully selecting the top-k sellers. A fundamental assumption of

their learning process is that the data collected to describe buyers

and sellers are truthfully provided. Developing LTR systems based

on this assumption makes them unable to defend the fraudulent

behaviors of sellers. Thus, in this paper, we add a regulating valve at

the entrance of the LTR system to block fraud sellers with a certain

probability. When the regulating valve blocks fraud sellers, only

honest sellers can enter ranking and be displayed to buyers in the

web page. When fraud sellers are unblocked, both honest and fraud

sellers can be displayed. Since there are usually thousands of buyers

and queries coming to the LTR system of e-commerce platforms in

one second, the switch between blocking and unblocking is very

fast, which offers us the ability to accurately take away a certain

ratio of buyer impressions from fraud sellers. Furthermore, to avoid

the mistaken kill of normal transactions, the blocking probability

should take buyers’ preferences and queries into consideration.

However, how the blocking probability affects the normal transac-

tions is unknown and may change greatly as time. Thus, we need to

develop an intelligent algorithm to automatically learn the optimal

fraud regulating policy based on online observations.

To this end, we formulate our fraud regulating system at first and

introduce some notations as follows. In e-commerce, buyers with

queries come to the platform sequentially. We denote the buyer and

query coming at step t = 1, 2, . . . ,T by a feature vector xt . The list
of sellers shown to the buyer is written as a vector ⟨st (1), . . . , st (k)⟩,
where st (i) denotes the seller at the i-th slot of the web page. In

addition, we denote the set of fraud sellers by Sf . Then, the buyer
impressions received by fraud sellers at step t can be calculated as

FIMt =
∑k

i=1

1

[
st (i) ∈ Sf

]
(1)

where 1[·] is an indicator function. After seeing the web page, the

buyer may conduct some operations, for example, buying an item.

Wewrite the transactions generated at step t as PTt . Besides, we use
at ∈ {0, 1} to denote the state of our regulating valve, where 1 and

0 mean blocking and unblocking, respectively. Note that the fraud

detection in e-commerce usually needs several days to update the

set of fraud sellers Sf [24, 28] while thousands of buyers come to

the platform every second. In this case, we can regard the updating

of fraud sellers happens at t = +∞, where the regulating policy

considered in this paper should have converged.

The objective of the regulating valve is to reduce the buyer im-

pressions received by fraud sellers. On the other hand, the objective

of ranking is to match buyers and sellers in the best way so that the

most transactions can be generated. Our regulating valve blocks

a part of sellers, which narrows down the choices of ranking and

thus inevitably has some negative effects on transactions. From the

perspective of e-commerce platforms, any significant decrease of

the normal transactions is intolerable. Thus, we can formulate the

regulating valve as the following problem

min(a1, ...,aT )

∑T

t=1

FIMt (2)

s.t.

∑T

t=1

PTt −V0 ≥ d ·V0 (3)

where d is the lower bound of the transaction change rate and V0

is the baseline amount of transactions when the regulating valve is

not used. When d < 0, the right-hand side of Equation 3 denotes

the transaction decline compared to the baseline.

Since T is very large, it is difficult to solve the global summa-

tion of buyer impressions FIMt and transactions PTt over T steps

and decide the exact value of V0. Thus, we divide the two sides of

Session 5C: Industrial Applications Track AAMAS 2019, May 13-17, 2019, Montréal, Canada

1379



Equations 2 and 3 by T and rewrite the two equations as

min(a1, ...,aT )
1

T

∑T

t=1

FIMt (4)

s.t.

1

T

∑T

t=1

PTt −v0

v0

≥ d (5)

where v0 = V0/T denotes the average transaction per query. In

practice, to decide the value of v0, we randomly allocate buyers

and queries into two channels—one with and one without the regu-

lating valve, which is similar to the widely-adopted A/B test [13].

In the channel without the regulating valve, we maintain a moving

window to calculate the latest value of v0. For Equations 2 and 3,

since FIMt and PTt are not known, we cannot directly solve it. In

the next section, based on contextual bandits, we will develop a

novel algorithm which can gradually learn the optimal regulating

policy from the online observations of FIMt and PTt .

4 CONSTRAINED CONTEXTUAL BANDITS
In this section, we model the regulating valve in Figure 1 as a

constrained contextual bandit problem. At each step t , we firstly
observe a context vector xt and need to choose one arm at ∈

{0, 1}. After choosing the arm, we can observe one reward signal

rt = (k − FIMt )/k and one constraint signal ct = (PTt − v0)/v0,

where the reward signal rt denotes the ratio of buyer impressions

received by honest sellers. Then, Equations 4 and 5 are equivalent

to a constrained contextual bandit problem of which the objective

is to accumulate the maximum rewards and the constraint is to

keep the average of ct not lower than d . Existing contextual bandit

algorithms are all value-based. They maintain an estimation about

rewards. At each step, they greedily select the optimal arm and

update the estimation with new observations. The charm of bandit

algorithms originates from the method to select the optimal arm,

which can optimally balance the greed for the most rewards and

the need to explore uncertain areas of the reward estimation.

When applying value-based bandit algorithms to our problem,

we need to maintain two models to estimate rt and ct , respectively.
Then, based on these estimates and Equations 2 and 3, if we want

to apply the idea of Wu et al.’s studies [27], we need to solve a

linear programming problem with T variables to get the optimal

arm selection policy. The time complexity of linear programming is

polynomial to T [5], whereas the online decision of our regulating

valve needs to be very fast. In this case, we can only approximate

the optimal policy by replacing T with a small value. This approxi-

mation will cause arm selection to deviate from the optimal policy,

even if rt and ct have been accurately estimated. Not to mention

both the estimates of rt and ct inevitably have certain levels of

errors. Thus, we can conclude that existing bandit algorithms are

unable to learn the optimal policy in our problem.

In this regard, we propose a novel policy-based bandit algorithm

to solve the constrained contextual bandit problem. Instead of rely-

ing on the estimates of r and c , we use neural networks to represent
the arm selection policy and learns the optimal policy directly from

observations. This way of design avoids the long-winded process of

value-based bandit algorithms in handling the constraint. By doing

so, our algorithm not only reduces learning errors but also boosts

computation efficiency. Another benefit of our design is that we

do not need any prior knowledge about buyers and the ranking

system because neural network is a generally applicable function

approximator that can approximate any function and has been suc-

cessfully used in many applications. In practice, we also cannot

provide any prior knowledge because both the ranking system and

buyers’ behaviors are very complex and change with time.

To design our algorithm, we first need to know the optimal arm

selection policywhen all statistics aboutx , r and c are stationary and
known. In this paper, we call this optimal policy as the oracle, and

it will serve as the objective of our algorithm. To formally describe

the oracle, we introduce π (a |x) to denote the arm selection policy

given context x . Note that π (a |x) is a mixed policy which means a

distribution over arms. Furthermore, we introduce Eπ [r ] and Eπ [c]
to denote the expectations of r and c , given the arm selection policy

π and the distribution of x . Considering T in Equations 4 and 5

is very large, we can replace the average operation T−1
∑
t with

expectation. Then, the oracle π∗
is the solution of the following

optimization problem:

π∗ = arg maxπEπ [r ] s.t. Eπ [c] ≥ d (6)

where the threshold d is a given constant. Next, we need to answer

two questions: 1) how to approach the oracle by updating neural

networks with online observations? 2) how to prevent neural net-

works from getting trapped in the local optimum? To answer the

first question, we linearize both r and c at the local level, and then

construct a constrained local optimization problem. By deriving

the analytical solution of the local optimization problem, we get

a new form of neural network updating. To answer the second

question, we use a set of neural networks to set up a policy pool

and randomly sample one for decision-making at each step. Our

idea of random sampling comes from ensemble sampling, the state-

of-the-art bandit algorithm. After answering these two questions,

we summarize our algorithm in Algorithm 1.

4.1 Policy Network
In this section, we use neural networks to approach the oracle

with online observations. The input of the neural network is the

context vector x , and the output is the arm selection policy π (a |x).
We call this neural network as policy network and denote it by

π (a |x ;θ ), where θ denotes the parameters of the neural network. To

approach the oracle, we iteratively update the policy network in the

neighborhood of θ , following the same idea as gradient descend, the

most popular method to train neural networks [31]. However, the

simple gradient cannot incorporate the constraint in our problem.

Thus, we need a new form of neural network updating. To this end,

we first study the connection of two neighboring polices and get:

Theorem 4.1. For any stochastic variable f (a), any two neighbor-
ing policies π (a |x ;θ1) and π (a |x ;θ2) satisfy

Eπ (θ2) [f (a)] − Eπ (θ1) [f (a)] ≈ дT

f (θ1) · (θ2 − θ1) (7)

дf (θ1) = Eq

[
∇θπ (a |x ;θ1)

q(a |x)
f (a)

]
(8)

where q(a |x) can be any policy.

Proof. According to importance sampling [22], we can calculate

the expectation of f (a) as

Eπ (θ1) [f (a)] = Eq
[
q−1(a |x) · π (a |x ;θ1)f (a)

]
. (9)
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Then, we can calculate the expectation difference as

Eπ (θ2) [f (a)] − Eπ (θ1) [f (a)] =

Eq

[
π (a |x ,θ2) − π (a |x ,θ1)

q(a |x)
f (a)

]
.

(10)

Considering π (θ1) and π (θ2) are two neighboring policies, we can

conduct linear approximation as

π (a |x ,θ2) − π (a |x ,θ1) ≈ [∇θπ (a |x ;θ1)]
T · (θ2 − θ1) (11)

which concludes Theorem 4.1. □

Next, let the parameter of the policy network be θi , where the
subscript i is the counter of neural network updating. Based on

Theorem 4.1, we can linearize the expectation of rewards and trans-

actions in Equation 6 as follows

Eπ (θ ) [r ] = Eπ (θi ) [r ] + д
T

r (θi ) · (θ − θi ),

Eπ (θ ) [c] = Eπ (θi ) [c] + д
T

c (θi ) · (θ − θi )
(12)

where дr and дc can be obtained by replacing f in Equation 8

with r and c , respectively. Suppose we follow policy q(a |x) and
get N observations, (ri j , ci j ), where j = 1, . . . ,N . Then, we can

approximate the expectation in Equation 12 with the average over

N observations and set up the following updating to approach the

oracle:

θi+1 = arg maxθ д̄T

r (θi ) · (θ − θi ) (13)

s.t. w̄ − д̄T

c (θi ) · (θ − θi ) ≤ 0 , | |θ − θi | |2 ≤ δ (14)

where | | · | |2 is 2-norm and δ is the step size of neural network

updating, which decides the size of the neighborhood.

д̄r (θi ) =
1

N

∑N

j=1

∇θπ (ai j |xi j ;θi )

q(ai j |xi j )
ri j ,

д̄c (θi ) =
1

N

∑N

j=1

∇θπ (ai j |xi j ;θi )

q(ai j |xi j )
ci j ,

w̄(θi ) = d −
1

N

∑N

j=1

π (ai j |xi j ;θi )

q(ai j |xi j )
ci j .

(15)

Note that, in the right hand side of Equation 13, we omit the term

Eπ (θi )[r ] because it is a constant and has no effect on the solution.

Besides, in Equations 13 and 14, the real running arm selection

policy q(a |x) can be different from π (a |x ;θi ). This feature is very
important because the ensemble sampling layer discussed in the

next subsection will make the real running arm selection policy

be the random mixture of a set of policy networks rather than the

output of any single policy network.

Equations 13 and 14 form a second-order cone programming

problem. They provide a new form of neural network updating

which can incorporate the constraint in our problem. To solve this

programming problem, we define some notations at first:

a1 = д̄
T

r д̄r , a2 = д̄
T

r д̄c , a3 = д̄
T

c д̄c , a4 = a1 − a2

2
/a3 ,

a5 = a2w̄/a3 , a6 =a2/w̄ , ∆ = δ2 − w̄2/a3 .

Then, we can get the following theorems:

Theorem 4.2. If ∆ > 0 or w̄ ≤ 0, the solution of the optimization
problem defined in Equations 13 and 14 satisfies

θi+1 = θi + λ
−1(д̄r + νд̄c ) (16)

where ν = max{0,a−1

3
(λw̄ − a2)}, λ = λ1 if J1(λ1) > J2(λ2) and

∆ > 0, and λ = λ2 otherwise.

J1(λ) = −
a4λ

−1 + ∆λ

2

− a5 , J2(λ) = −
a1λ

−1 + δλ

2

.

w̄ > 0 w̄ < 0

w̄ = 0

a2 ≥ 0 a2 < 0

λ1 = h(a6,a7) h(0, l(a6,a7)) Null a7

λ2 = h(0, l(a6,a8)) h(a6,a8) a8 Null
h(x ,y) = max(x ,y) , l(x ,y) = min(x ,y)

a7 =
√
a4/∆ , a8 =

√
a1/δ , Null= Not Exist

The proof of Theorem 4.2 relies on Slater’s condition [5] and the

strong duality of the second-order cone programming in Equa-

tions 13 and 14, which is similar to Theorem 2 in the appendix of

[2]. Due to the space limitation, we skip the detailed proof here.

Theorem 4.3. If ∆ ≤ 0 and w̄ > 0, when | |θ − θi | |2 ≤ δ ,

C(θ ) ≥ 0 , arg minC(θ ) = θi +
√
δ2/a3 · д̄c (17)

where C(θ ) = w̄ − д̄T

c · (θ − θi ) is the left hand side of the first
constraint in Equation 14, and C(θ ) ≥ 0 means the second-order cone
programming problem in Equations 13 and 14 has no or only one
feasible solution at the boundary C(θ ) = 0.

We can prove Theorem 4.3 by using θ = θi to verify Slater’s condi-

tion at first and then constructing a Lagrange function similar to

the proof of Theorem 4.2. Due to the space limitation, we skip the

details here. From Theorem 4.3, we can know that, when w̄ > 0 and

∆ ≤ 0, Equations 13 and 14 have no or only one feasible solution.

In this case, we should greedily alleviate the constraint violation

by using the following updating equation:

θi+1 = θi + ρ ·
√
δ2/a3 · д̄c (18)

where the risk aversion parameter ρ ≥ 1.0 ensures our algorithm

to put higher priority on satisfying the constraint. To summarize,

we update our policy network by Equation 16 when ∆ > 0 or w̄ ≤ 0

and Equation 18 otherwise.

4.2 Ensemble Sampling
Our policy network approaches the oracle by iteratively solving

the local optimum. A drawback of this method is that it is not good

at exploring uncertain policies and may get trapped in the local

optimum. To solve this problem, we introduce ensemble sampling

on top of the policy network. The main idea of ensemble sampling is

to use a set of estimates to replace the posterior distribution required

by the classic Thompson sampling [18]. Thus, in our algorithm, we

maintain n policy networks and randomly sample one for decision-

making at each step. In this case, the real arm selection policy in

our algorithm becomes a random mixture of the outputs of the n
policy networks. We denote the real arm selection policy by q(a |xt ),
which corresponds to the denominator of Equation 15.

To summarize, we formally present our algorithm, ensemble sam-

pling with constrained policy networks (ES-CPN), in Algorithm 1. It

firstly initializes n policy networks. Then, at each step t , it observes
the context xt , samples one out of the n policies, and observes re-

ward signal rt as well as constraint signal ct (lines 4-7). Besides,
our algorithm updates the n policy networks by sampling the reply

buffer everyN steps (lines 8-9). For the parameters in our algorithm,
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Algorithm 1: Ensemble Sampling with Constrained Policy Networks (ES-CPN)

1 Initialize n policy networks π (a |x ;θ1

0
),π (a |x ;θ2

0
), . . . ,π (a |x ;θn

0
) randomly as well as the reply buffer;

2 for i = 1, 2, 3 . . . do
3 for t = (i − 1) · N + 1 to i · N do
4 Observe the context vector xt , and compute n policies as π (a |xt ;θ1

i ),π (a |xt ;θ2

i ), . . . ,π (a |xt ;θni );
5 Uniformly sample one policy, denoted by π (a |xt ;θ∗i ), and choose the arm at ∼ q(a |xt ) = π (a |xt ;θ∗i );
6 Observe rt and ct , and store [xt ,at , rt , ct ,q(at |xt )] into the reply buffer;

7 for l = 1 to n do
8 Sample Ntr observations from the latest Nme observations in the reply buffer to calculate д̄r (θ li ), д̄c (θ

l
i ) and w̄(θ li );

9 Update policy network π (a |x ;θ li ) by Equation 16 when ∆(θ li ) > 0 or w̄(θ li ) ≤ 0 and Equation 18 otherwise;

N decides the training frequency of policy networks. It cannot be

very large; otherwise, the convergence of policy networks will be

very slow. n decides the number of policy networks. We should

keep it as large as possible so as to improve the exploration of

our algorithm. Actually, the n policy networks can be computed

in parallel, which is favorable for practical usage. Ntr and Nme
decide the size of the training batch and memory, respectively. The

larger they are, the better. However, a large Ntr may lead to low

computation efficiency, and a large Nme may cause our algorithm

to respond to environment changes very slowly. Note that, even

though our regulating valve only has two arms, our algorithm is

generally applicable for constrained contextual bandit problems

with an arbitrary number of arms.

5 EXPERIMENTS
In this section, we first use synthetic data to verify the advantages

of our algorithm, ES-CPN, over existing bandit algorithm. Then,

we show the effectiveness of our algorithm in regulating buyer

impressions by conducting experiments on real-world data. The

benchmarking algorithms include:

• Lin-UCB [15] assumes the expectation of rewards satisfies

E[r |x ,a] = xT · θr (a), where θa means the parameters cor-

responding to arm a. At each step t , Lin-UCB computes the

upper confidence bounds (UCBs) of the reward estimates as

ucb(xt ,a) = xT

t · ˜θr (a) + α
√
xT

t A
−1

a xt (19)

where
˜θr is the estimates of θr and A

−1

a is the corresponding

covariance matrix. α is a constant. Lin-UCB optimistically

selects the arm with the maximum upper confidence bound.

• GLM-UCB [11] is an extension of Lin-UCB and also selects

the arm with the maximum upper confidence bound at each

step. For Bernoulli rewards, it assumes the reward satisfies

the logistic regression model and computes the upper confi-

dence bound as

ucb(xt ,a) = µ(xT

t · ˜θr (a)) + ρ(t)
√
xT

t A
−1

a xt (20)

where µ(x) = exp(x)/[1 + exp(x)] and ρ(t) is a increasing
function of t .

• Ensemble Sampling (ES) [18] maintains a set of neural net-

works to estimate rewards and randomly samples one to

decide the optimal arm at each step.

All the above contextual bandit algorithms learn amodel to estimate

rewards at first and then decide the optimal arm based on their

estimates. When applying them to our problem, we need to build a

separate model for transactions. In our experiments, when testing

each algorithm, we use the same type of models for transactions as

for rewards. Besides, for contextual bandits with constraints, the

simple greedy policy is no longer applicable. Thus, we follow the

idea of Wu et al.’s studies ([2015]) and build the following linear

programming problem to approximate the oracle at each step t :1

π∗
t =arg maxπ

∑b

j=1

∑
a
π (a |xt j )er (a,xt j )

s.t.

∑b

j=1

∑
a
π (a |xt j )ec (a,xt j ) ≥ d

(21)

where xt j denotes the j-th context sample randomly selected from

historical observations and b denotes the total number of context

samples. Since the arm selection policy for step t is needed, we
make the convention that xt1 = xt . Besides, er and ec denote the
UCBs of rewards and transactions, respectively, when using Lin-

UCB and GLM-UCB. They denote the estimates of rewards and

transactions, respectively, when using ensemble sampling.

5.1 Synthetic Data
We test our algorithm by using the linear environment at first. More

specifically, we let rt = xT

t ·θr (at )+br (at )+εr and ct = xT

t ·θc (at )+
bc (at )+ εc , where the context vector xt is uniformly sampled from

[−1,+1]dim(x )
. εr and εc are Gaussian noise with mean 0.0 and

variance 0.1. In Figures 2(a) and (b), we assume there are only two

arms and dim(x) = 4. We set the environment parameters as

θr (1) = [−0.5, 0.5,−0.5, 0.5] , θr (0) = −θr (1) , br ≡ 0,

θc (1) = [0.5, 0.5,−0.5,−0.5] , θc (0) = −θa (1) , bc ≡ 0.

In Figures 2(c) and (d), we increase the number of arms to 5 and set

the parameters of the extra three arms similarly to θr (1) and θc (1).
In all these figures, for the convenience of display, we use one mini-

batch to represent 1500 steps. For our algorithm, we set the number

of policy networks n = 10 and N = 150, which means our policy

networks are updated every 150 steps. All these policy networks are

three-layer fully connected neural networks, where the hidden layer

utilizes the ReLU activation function. For Figures 2(a) and (b), we

set the number of neurons in the hidden layer as 8. For Figures 2(c)

and (d) with more arms, we increase the neurons to 16. Meanwhile,

1
In our problem, T → +∞, which means infinite horizon.
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(b) Linear Environ.
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(c) Linear Environ. with 5 arms
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(d) Linear Environ. with 5 arms
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Figure 2: Experiments on synthetic data. Columns 1 and 3 show the cumulative average of c. Columns 2 and 4 show the average
of r on one mini-batch (1500 steps). A good algorithm keeps the average of c higher than the threshold d and generate large r .

Table 1: Computation time of different algorithms when
testing the linear environment in Figures 2(a) and (b)

Algo. ES-CPN

Lin-UCB ES

b = 1 b = 5 b = 10 b = 1 b = 5

Time 452s 1085s 4374s 8872s 1716s 5378s

we let the risk aversion parameter ρ = 2, the step size of network

updating δ = 0.1, the number of training samples Ntr = 1024 and

the memory size Nme = 1500. For ensemble sampling, we also

set the number of neural networks as 10. The network uses two

hidden layers. The settings of these hidden layers are the same as

our policy network. We run all the algorithms for 10 times and

show the mean of r and c in Figures 2(a)-(d).

From Figures 2(a) and (c), we can know that, in the simple linear

environments, all algorithms successfully satisfy the constraint that

the expectation of c must not be smaller than d . Then, from Figures

2(b) and (d), we can find that our algorithm, ES-CPN, significantly

outperforms ensemble sampling. For Lin-UCB, in the linear envi-

ronment, it can learn the correct values of parameters very quickly,

which offers it great advantages. In fact, Lin-UCB represents the

best performance that can be achieved by value-based bandit algo-

rithms under the linear environment. However, even in this case,

Lin-UCB cannot converge to the optimal policy because it can only

use few samples of x to approximate the oracle via Equation 21.

Otherwise, the computation time will become prohibitive, which

we will discuss later. By contrast, our algorithm directly approaches

the optimal policy based on online observations. This advantage

makes our algorithm able to achieve higher rewards than Lin-UCB

after a certain number of observations. Note that the t-test also
supports the advantage of our algorithm on rewards. For example,

for the end points in Figure 2(b), the p-value of the t-test between
ES-CPN and Lin-UCB with b = 10 is only 0.00065, which means

the differences are very significant.

To further investigate the gap between our algorithm and the

oracle, we replace the estimates in Equation 21 with unnoised real

values
2
, randomly sample 200 samples of x , and solve the obtained

linear programming problem via the simplex method. We run the

above process for 1000 times and show the mean in Figures 2(b) and

(d) as the dashed lines (Approx Oracle). In these figures, the reward

curves of our algorithm are extremely close and even slightly higher

than the dashed lines. This observation verifies that our algorithm

successfully approaches the oracle. Another interesting observation

to support our conclusion is that the c curve of our algorithm is

higher than the threshold d with a tiny but very stable gap. This

observation reveals that our algorithm always tries to decrease c as
much as possible to get higher r . Moreover, we list the computation

time of different algorithms on Xeon E5-2650 v2 in Table 1, which

shows that our algorithm has significant advantages on compu-

tation efficiency. For Lin-UCB and ES, increasing the number of

samplesb can help to increase the rewards. Nevertheless, increasing
b will also significantly increase the computation time. Thus, only

small b is applicable in practice. Note that, when measuring the

computation time of our algorithm, the updating and forwarding

computation of all 10 policy networks are conducted sequentially.

In practice, we can let the computation on different policy networks

be parallel, which will further decrease the computation time.

2er = xT

t · θr (at ) + br (at ) and ec = xT

t · θc (at ) + bc (at ).
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Figure 3: Experiments on one of the largest e-commerce platforms in theworld. (a) and (b) show the experiments on the offline
data. (c) and (d) show the online experiments. The baseline cases in (b) and (d) mean when our regulating valve is not used.

In Figures 2(e) and (f), we use the Bernoulli environment to test

our algorithm, where r and c both follow the Bernoulli distribution
3
.

Bernoulli distribution is discrete, which is complementary to the

continuous Gaussian noise in Figures 2(a)-(d). The settings of the

environment parameters are the same as those in Figures 2(a). From

Figures 2(e) and (f), we can get the same conclusions as those

in Figures 2(a)-(d), which further verifies the advantages of our

algorithm. Besides, we build a non-stationary environment based

on Figures 2(a) and (b) by letting br (0) = 0.1 · sin(λt), br (1) = 0.1 ·

cos(λt) and bc (0) = bc (1) = −0.1 ·sin(λt). Here, we set λ = π/75000

to make the whole figure with 100 mini-batches correspond to one

period. The results shown in Figures 2(g) and (h) reveal that the

advantages of our algorithm in the non-stationary environment

are even larger than those in the stationary environment. This

observation and the consistently good performance in Figures 2(a)-

(f) show the good robustness of our algorithm to adapt to different

environments, which is favorable in practical usage.

5.2 Real-World E-Commerce Platform
Next, we show the experiments on one of the largest e-commerce

platforms in the world. We first build a static offline dataset by

collecting 300, 000 query operations. The dataset contains the con-

tent of the web page shown to buyers (used to compute r ), buyers’
purchasing operations on the web page (used to compute c), and 74

features about buyers and their queries, such as, buyers’ age and

purchasing power index, the click-through rate and conversion rate

of the query, etc. We directly use these raw data for experiments and

demonstrate the results in Figures 3a and 3b. It is noted that adding

the regulating valve and applying our algorithm can increase r
from 0.668 in the baseline case to around 0.88 and meanwhile keep

c around the desired lower bound d = −0.05. For the regulating

valve, r means the percentage of buyer impressions received by

honest sellers, and c denotes the rate of transaction changes. The

buyer impression increment of honest sellers means the decline

of fraud sellers. In other words, our regulating valve reduces the

percentage of the buyer impressions received by fraud sellers from

0.332 to 0.12 (around 2/3 decline) and only losses 5% in transactions.

Besides, it is also worth mentioning that our algorithm not only

is the only algorithm satisfying the constraint on c but also can

3
Pr(rt = 1) = σ [xT

t ·θr (at )+br (at )], Pr(ct = 1) = σ [xT

t ·θc (at )+bc (at )], where
σ denotes the sigmoid function.

obtain the maximal r . The inferior performance of Lin-UCB and

ES is caused by the skewed distribution of c . Buyers only purchase

items on a very small ratio of web pages, which makes c a small

value in most cases. Once buyers purchase something, there will

be a large c signal. For Lin-UCB and ES, they are unable to capture

the skewed distribution of c with only few samples when solving

Equation 21. In this case, satisfying the constraint is infeasible, even

though we have added the threshold d by the gap between the

cumulative average of c and d as a complement.

Then, with the same settings, we directly conduct online experi-

ments and show the results in Figures 3c and 3d. To keep the safety

of the e-commerce platform, we actually divide buyers and queries

into more than 30 channels. We choose one channel to test all al-

gorithms and another channel to compute the baseline transaction

per page, v0. Since accumulating 30, 000 samples is very fast in the

e-commerce platform, we can neglect the effects of time. The results

of our online experiments are similar to the offline experiments.

The only difference is that, due to the stochastic change of v0, the

convergence of the constraint becomes slower.

6 CONCLUSION
In this paper, we conduct the first study in e-commerce to regulate

the buyer impressions of fraud sellers with constrained contextual

bandits. To incorporate the constraint, we propose a novel policy-

based bandit algorithm. It uses neural networks to represent arm

selection policies, updates neural networks by solving a constrained

local optimization problem, and avoids local optimum via ensemble

sampling. We perform experiments on four synthetic environments

and the data collected from one of the largest e-commerce platforms

in the world. The results show that our algorithm achieves higher

rewards with much less computation time than existing bandit

algorithms. Besides, the experiments on real e-commerce data also

show our algorithm reduces the buyer impressions of fraud sellers

by 2/3, yet with only 5% transaction decline. Despite the extensive

experiments, a missing part of our paper is to prove the regret

upper bound of our algorithm, which is usually an essential part of

bandit studies. However, for policy-based bandit algorithms with

neural networks, there is no literature that we can refer to. It is

very challenging to quantify the convergence rate of the update in

Equations 16 and 18 as well as the effects of the ensemble sampling

layer. Thus, we leave the regret study as our future work.
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