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ABSTRACT
A 3D flexible bin packing problem (3D-FBPP) arises from the pro-
cess of warehouse packing in e-commerce. An online customer’s
order usually contains several items and needs to be packed as
a whole before shipping. In particular, 5% of tens of millions of
packages are using plastic wrapping as outer packaging every day,
which brings pressure on the plastic surface minimization to save
traditional logistics costs. Because of the huge practical significance,
we focus on the issue of packing cuboid-shaped items orthogonally
into a least-surface-area bin. The existing heuristic methods for
classic 3D bin packing don’t work well for this particular NP-hard
problem and designing a good problem-specific heuristic is non-
trivial. In this paper, rather than designing heuristics, we propose a
novel multi-task framework based on Selected Learning to learn a
heuristic-like policy that generates the sequence and orientations
of items to be packed simultaneously. Through comprehensive ex-
periments on a large scale real-world transaction order dataset and
online AB tests, we show: 1) our selected learning method trades
off the imbalance and correlation among the tasks and significantly
outperforms the single task Pointer Network and the multi-task
network without selected learning; 2) our method obtains an aver-
age 5.47% cost reduction than the well-designed greedy algorithm
which is previously used in our online production system.
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1 INTRODUCTION
With the vigorous development of e-commerce, related logistic 
costs have risen to about 15% of China’s GDP 1, attracting more 
and more attention. As the largest e-commerce platform in China, 
Taobao (taobao.com) serves over six hundred million active users 
and reducing costs is often the top priority of its logistics system. 
There are many methods that can help cut down logistic costs, e.g, 
reducing the packing costs. Tens of millions of packages are sent 
to customers every day, 5% of the which are prepared using plastic 
wrappers. In order to reduce the cost of plastic packing materials, 
warehouse operation prefers to pack the items as a whole in a 
way that minimize the wrapping surface area. In this paper, we 
formalize this real-world scenario into a specific variant of the 
classical three-dimensional bin packing problem (3D-BPP) named 
3D flexible bin packing problem (3D-FBPP). The 3D-FBPP is to seek 
the best way of packing a given set of cuboid-shaped items into a 
flexible rectangular bin in such a way that the surface area of the 
bin is minimized.

The 3D-FBPP, which is the focus of this work, is a new problem 
and has been barely studied. However, the 3D-BPP, a similar re-
search direction of 3D-FBPP, has been extensively studied in the 
field of operational research (OR) during last decades [30]. As a 
strongly NP-hard problem [17], the traditional approaches to tack-
ling 3D-BPP have two main flavors: exact algorithms [4, 18] and 
heuristics [6, 15]. While exact algorithm provides optimal solution,
1https://www.alizila.com/jack-ma-alibaba-bets-big-on-logistics/
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it usually needs huge amount of time to solve modern size instances.
Heuristic algorithm, which cannot guarantee optimal, is capable to
give acceptable solutions with much less computational effort.

Typically, to achieve good results and guarantee the compu-
tational performance, traditional exact algorithms and heuristics
require large amount of expertise or experience to design specific
search strategies for different types of problems. In recent years,
there has been some seminal work on using deep architectures
to learn heuristics for combinatorial problems, e.g, Travel Sales-
man Problem (TSP) [2, 12, 28], Vehicle Routing Problem (VRP) [19].
These advances justify the renewed interest in the application of
machine learning (ML) to optimization problems. Motivated by
these advances, this work combines reinforcement learning (RL)
and supervised learning (SL) to parameterize the policy to obtain a
stronger heuristic algorithm.

In 3D-FBPP problem, the smaller objective (i.e. the surface area
that can pack all the items of a order) is better, implying a better
packing solution. To minimize the objective, a natural way is to
decompose the problem into three interdependent decisions [6, 14]:
1) decide the sequence to place these items; 2) decide the place ori-
entation of the selected item; 3) decide the spatial location. These
three decisions can be considered as learning tasks, however, in our
proposed method, we concentrate on the first two tasks, using RL
and SL, respectively. Specially, we adopt an intra-attention mecha-
nism to address the repeating item problem for the first sequence
decision task. To learn a more competitive orientation strategy,
we adopt the idea of hill-climbing algorithm, which will always
keep the current best sampled solution as the ground-truth and
make incremental change on it. Regardless of spatial location, the
sequence of packing the items into the bin will influence the orien-
tations of each item and vice versa, so the two tasks are correlated.
Meanwhile, with n items, the choice of orientations is 6n and the
choice of sequence is n!, so the two tasks are difficulty-unbalanced
in learning process. Inspired by multi-task learning, we adopt a
new type of training mode named Multi-task Selected Learning
(MTSL) to utilize correlation and mitigate imbalance mentioned
above. MTSL is under the following settings: each subtask and both
of them are treated as a training task. In MTSL, we select one kind
of the training tasks according to a probability distribution, which
will decay after several training steps ( Section 5.2.2).

In this paper, we present a heuristic-like policy learned by a neu-
ral model and quantitative experiments are designed and conducted
to demonstrate effectiveness of this policy. The contributions of
this paper are summarized below.

• This is a first and successful attempt to define and solve the
real-world problem of 3D flexible Bin Packing ( Section 3).
We collect andwill open source a large-scale real-world trans-
action order dataset (LRTOD) ( Section 5.1). By modeling
packing operation as a sequential decision-making problem,
the proposed method naturally falls into the category of re-
inforcement learning and it is one of the first applications of
reinforcement learning in large-scale real-time systems.

• We use an intra-attentionmechanism to tackle the sequential
decision problems during the optimization, which considers
items that have already been generated by the decoder.

• We propose a multi-task framework based on Selected Learn-
ing, which can significantly utilize correlation and mitigate
imbalance among training tasks. Based on this framework,
packing sequence and orientations can be conducted at the
same time.

• Weachieves 6.16%, 9.66%, 8.25% improvement than the greedy
heuristic algorithm designed for the 3D-FBPP in BIN8, BIN10
and BIN12 and an average 5.47% cost reduction on online
AB tests. Numerical results also demonstrate that our se-
lected learning method significantly outperforms the single
task Pointer Network and the multi-task network without
selected learning.

2 RELATEDWORK

2.1 Neural encoder-decoder sequence models
Neural encoder-decoder models have provided remarkable results
in Neural language Process (NLP) applications such as machine
translation [27], question answering [7], image caption [33] and
summarization [5]. These models encode an input sequence into
a fixed vector by a recurrent neural networks (RNN), and decode
a new output sequence from that vector using another RNN. At-
tention mechanism, which is used to augment neural networks,
contributes a lot in areas such as machine translation ([1]) and
abstractive summarization [21]. In [21], intra-attention mechanism,
which considers words that have already been generated by the
decoder, is proposed to address the repeating phrase problem in
abstractive summarization. The repeating problem also exists in
our 3D-FBPP, since an item cannot be packed into a bin more than
twice. In this study, we adopt the special intra-attention mechanism
for producing “better” output.

2.2 Machine learning for combinatorial
optimization

The application of ML to discrete optimization problems can date
back to the 1980’s and 1990’s [26]. However, very limited success is
ultimately achieved and the area of research is left nearly inactive at
the beginning of this century. As a result, these NP-hard problems
have traditionally been solved using heuristic methods [3, 24]. Cur-
rently, the related work is mainly focused on three areas: learning
to search, supervised learning and reinforcement learning. To ob-
tain a strong adaptive heuristics, learning to search algorithm[32]
adopts a multi-armed bandits framework to apply various variable
heuristics automatically. Supervised learning method [28] is a first
successful attempt to solve a combinatorial optimization problem
by using recent advances in artificial intelligence. In this work, a
specific attention mechanism named Pointer Net motivated by the
neural encoder-decoder sequence model is proposed to tackle TSP.
Reinforcement learning aims to transform the discrete optimization
problems into sequential decision problems. Base on Pointer Net-
work, [2] develops a neural combinatorial optimization framework
with RL, which solves some classical problems, such as TSP and
Knapsack Problem. Similar works using architecture like Pointer
Network can also be seen in [12, 19]. On a related topic, [10] solves
optimization problems over graphs using a graph embedding struc-
ture and a greedy algorithm learned by deep Q-learning (DQN).
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However, there are still some work about one-dimensional bin pack-
ing problem. [16, 25] try to select or generate the best heuristic
that can generate a better quality bin packing solution. Our work
focuses on the 3D-FBPP and the main difference between our work
and the previous work (e.g, TSP, VRP) is that our work consists of
several tasks that are imbalanced and correlated, which brings a
grave challenge.

3 PROBLEM STATEMENT
In real online e-commerce delivery phase, a large number of pack-
ages are wrapped with plastic materials as outer packaging before
shipping. The goal of this scenario is to minimize the packing
materials per order by generating a better packing solution. Af-
ter stacking all the items, the plastic material can be made into
a rectangular-shaped bin-like outer wrapping in warehouse . As
the result, the cost of this material is directly proportional to the
surface area of the rectangular-shaped bin. In this case, minimizing
the surface area for the bin would bring huge economic benefits
for traditional logistics.

Themathematical formulation of 3D-FBPP is shown below. Given
a set of cuboid-shaped items and each item i is characterized by
length (li ), width (wi ) and height (hi ). Our target is to find the
least-surface-area bin that can pack all items. Generally, we use
(xi ,yi , zi ) to denote the front-left-bottom (FLB) coordinate of item
i and assume that FLB corner of the bin is (0, 0, 0). To ensure that
there is no overlap, binary variables si j , ui j , bi j are defined to indi-
cate the placement of items i to each item j . si j , ui j , bi j is equal to 1
if items i is left of, under of, back of item j respectively; otherwise 0.
The variable δi1(resp. δi2, δi3, δi4, δi5, δi6) is equal to 1 if the orien-
tation of item i is front -up (resp. front-down, side-up, side-down,
bottom-up, bottom-down). Our aim is to find a least-surface-area
bin with size (L,W ,H ), where L,W and H is the length, width and
height of the bin respectively.

Based on the descriptions of problem and notations, the mathe-
matical formulation for the 3D-FBPP is followed by [8]:

min L ·W + L · H +W · H

subject to the following set of constraints:

si j + ui j + bi j = 1 (1)
δi1 + δi2 + δi3 + δi4 + δi5 + δi6 = 1 (2)

xi − x j + L · si j ≤ L − l̂i (3)
yi − yj +W · bi j ≤W − ŵi (4)
zi − zj + H · ui j ≤ H − ĥi (5)

0 ≤ xi ≤ L − l̂i (6)
0 ≤ yi ≤W − ŵi (7)
0 ≤ zi ≤ H − ĥi (8)

l̂i = δi1li + δi2li + δi3wi + δi4wi + δi5hi + δi6hi (9)
ŵi = δi1wi + δi2hi + δi3li + δi4hi + δi5li + δi6wi (10)
ĥi = δi1hi + δi2wi + δi3hi + δi4li + δi5wi + δi6li (11)

si j ,ui j ,bi j ∈ {0, 1} (12)
δi1,δi2,δi3,δi4,δi5,δi6 ∈ {0, 1} (13)

Constraints (9) − (11) denote the actual length, width, height of
item i after orientating it. Constraints (1)−(5) are used to guarantee
there is no overlap between two packed items while constraints
(6) − (8) are used to guarantee the item will not be put outside
the bin. Figure 1 explains the non-overlapping constraints in the
problem definition.

Figure 1: Illustration of non overlapping constraint: item 1
is under item 2 and this means u1,2 = 1 and z1 + h1 <= z2,
which is constraint (5); item 1 is in the left of item 3 and this
means s1,3 = 1 and x1 + l1 <= x3, which is constraint (3).

4 MULTI-TASK SELECTED LEARNING
In this section, we describe our multi-task selected learning ap-
proach and implementation details for solving the 3D-FBPP.

Pointer
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seq.
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Input
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Figure 2: Architecture for multi-task 3D-FBPP networks.
Rep.,ori. and seq. is short for representation, orientation out-
put and sequence output, respectively.

Basically, the procedure of solving the 3D-FBPP can be divided
into three related tasks: order of items to be packed (Sequence Gen-
eration), orientation of each item in the bin (Orientation Generation)
and front-left-bottom coordinate of each item (Spatial Location Se-
lection). Least Waste Space Criteria (LWSC), a heuristic greedy algo-
rithm currently being used in our online production system, inserts
the node (item, orientation, spatial location) with least increased
surface area to a partial solution. Orientation Generation has 3! = 6
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different choices (Suppose an item has 3 sides a,b,c; consequently,
there are 6 different orientations that each corresponds to one of
the following rotated dimensions for this item: a-b-c, a-c-b, b-a-c,
b-c-a, c-a-b, c-b-a). The management of the feasible spatial locations
is based on a list of empty-maximal-spaces (EMSs) as described in
[13]. Figure 3 depicts an example of the generation process of EMSs.
In this example we assume that we have one item to be packed in
a bin and three new EMSs shown in yellow results from the inter-
section of the item with the initial empty-maximal-space (empty
bin). Each time after an item is placed in an empty-maximal-space,
its corresponding new empty maximal-spaces are generated. As a
result, during the packing procedure, candidates of EMSs highly de-
pend on the previously placement of items and hard to incorporate
with existing machine learning method, such as neural network.

In this work, we disregard the spatial location selection strategy
and greedily choose the empty-maximal-space according to LSWC.
Therefore, we concentrate on the sequence and orientation gener-
ation tasks. In order to leverage useful information contained in
these two related tasks to help improve the generalization perfor-
mance of all the tasks, we propose a multi-task framework based on
selected learning. Sequence task is a sequential decision problem,
whereas the orientation task is a classification one. Since these
two correlated tasks work together to benefit each other, we pre-
fer to use a parameter-shared framework instead of training them
separately.

Recently, pointer network (Ptr) [1], whose output may be ex-
pressed as a sequence of indexes referring to elements of the input
sequence, has been widely used to learn a heuristic algorithm for
sequential decision operation research problem like TSP. In this
paper, particular to our multi-task setting, we make some adjust-
ments to meet special demand. The proposed network architecture
implicitly separates the representation of sequence decision and
orientation prediction. The specific architecture consists of two
streams that represent the sequence pointer and orientation pre-
dict functions, while sharing a common encoder-decoder learning
module. The overall architecture of our method is shown in Figure
2. Because different tasks have different learning difficulties and
interact with each other, we propose a selected learning mechanism
to improve different tasks separately in each round to keep them
dynamic balance in training step.

Figure 3: Example of empty-maximal-space. a) item packed
in the bin ; b), c), d) three newly generated maximal-spaces
shown in yellow.

Formally, a 3D-FBPP instance with n items can be denoted as
x = {xi = (li ,wi ,hi )}

n
i=1, where li ,wi and hi represents the length,

width and height of item i respectively. The solution of this prob-
lem is a sequence of triplets {(si ,oi , fi )}ni=1 which must meet the
constraints described in Section 3, where si , oi and fi represent the
item, orientation and empty-maximal-space to be placed in step i

during packing. Notably, si and oi are produced by our model while
fi is calculated by the greedy strategy LWSC mentioned above.
Our model reads the sequence of input tokens (items x) with a
Long Short-Term Memory (LSTM) [16] encoder and decodes the
sequence of output tokens (items s and orientation o). During de-
coding steps, the input of decoder cell for time-step t contains two
parts denoted as yt = (st−1,ot−1). Specially, the packing sequence
s = {s1, s2, ..., sn } is a permutation of the input items x.

4.1 Sequence Task
Due to the particularity of packing operation, it’s not allowed to
pack the same item repeatedly. The way to prevent the sequence
from containing the same item twice in the previous work [1] intro-
duces a hard constraint and probability distribution of next items
to be packed is independent of the already generated item subse-
quence. However, taking previously decoded items into considera-
tion means the network can have a priori knowledge to try to avoid
repetition to some extend. Moreover, incorporating the informa-
tion of previous decoding steps into the decoder can help network
to generate more reasonable and structured pointers. To achieve
this, we introduce an intra-attention mechanism [21], which is first
proposed to solve combinational optimization problem.

For notation purposes, let us define encoder and decoder hidden
states as hei and h

d
t respectively. Here hei and h

d
t are computed from

the embedding vector of xi and yt respectively. We define attndt j
as the intra-attention weight of the previous hidden states hdj at
decoding step t :

attndt j = so f tmax(v1T tanh(W1hdj +W2hdt )), j ∈ {1, . . . , t − 1},

whereW1,W2 and v1 are trainable parameters for intra-attention.
Thus, the intra-attention feature hintrat of the current decoding
item st is calculated by summing up the previous decoded hidden
states based on the computed intra-attention weights, for t > 1:

hintrat =
∑t−1
j=1 attn

d
t jh

d
j ,

Especially for the first decoder cell, we set hintra1 to a vector of
zeros since the already generated sequence is empty.

In previous deep reinforcement learning method for combinato-
rial optimization problems, the pointer mechanism considers the
encoder attention weights as the probability distribution to copy
the input item. In this work, we get the final attention weights p(st )
by integrating intra-attention feature at decoder step. In addition,
utj is intermediate result which will be normalized by softmax to
be the “attention” mask over the inputs.

utj = v2
T tanh(W3hej +W4hdt +W5hintrat ),

p(st ) = so f tmax(ut ), j ∈ {1, 2, ...,n},

whereW3,W4,W5 and v2 are trainable parameters for pointer
networks. We refer all parameters for sequence task as θseq and
the probability distribution output of sequence task as pθseq (·|x)
in the following discussions. Finally, we use a well-known policy
gradient approach named Proximal Policy Optimization(PPO) [23],
which has achieved great success recently.

Lseq (θseq ) = Et [min(rt (t)Â, clip(rt (t), 1 − ϵ, 1 + ϵ)Â) + Â2]
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Here, rt (t) =
πθseq (st |x)
πθoldseq

(st |x)
denotes the probability ratio between the

updated policy parameters θseq and the vector of policy parameters
before update θoldseq , Â = −SA(s, o |x) −V (x) denotes an estimator
of the advantage function, SA(s, o |x) denotes the surface area of
the bin in the case of placement sequence and its corresponding
orientation of o and s. Notably, the reward function is the negative
of SA(s, o |x), as the smaller SA(s, o |x) is better.

4.2 Orientation Task
As mentioned before, there are 6 orientations for each cuboid-
shaped item. For orientation generation, the decoder computes
the orientation based on a context vector c, which describes the
whole problem and is based on the partial solution constructed so
far. That is the context of the decoder at time step t comes from the
encoder outputs and the outputs up to time step t . For each time
step t , we calculate the context vector:

ct = [he ;hdt ;hintrat ].

Here, [.;.;] denotes vector concatenation, he denotes the represen-
tation of input sequence and is calculated by an attention-polling
function which is defined as follows:

he =
∑n
j=1 attc

d
t j ∗ h

e
j ,

attcdt j = so f tmax(v3T tanh(W6hej +W7[hdt ;hintrat ])),

j ∈ {1, . . . ,n}.

WhereW6,W7 andv3 are trainable parameters for attention-polling
function. And we apply the intra-attention feature hintrat similar to
the previous section to represent the context up to current decoding
step t .

Thus, the probability distribution of orientations for the current
decoding step t is generated by as follows:

p(ot ) = so f tmax(Wor ict + bor i ),

whereWor i and bor i are trainable parameters for orientations.
We define o∗ = {o∗1,o

∗
2, ...,o

∗
n } as the ground-truth orientation

sequence for a given input x and generated packing item sequence
s. Thus the orientation task parameterized by θor i can be trained
with the following standard differentiable loss (the cross-entropy
loss):

Lor i (θor i ) = −

n∑
i=1

logp(o∗i |s1,o
∗
1, ..., si−1,o

∗
i−1,θor i , x).

Inspired by the Hill Climbing (HC) algorithm [22], which starts
with an arbitrary sample solution to a 3D-FBPP and then attempts
to find a better solution by making an incremental change to the
solution, we will always keep the best solution for each problem
instance, and train on it and use the new model to generate a better
one. In that case, the orientation in the current best solution is the
ground-truth orientation o∗.

4.3 Training
In this subsection, we will illustrate the training which is specially
designed for the 3D-FBPP. To train a multi-task model, we use a
hybrid loss function to combine supervised learning and reinforce-
ment learning process. Nevertheless, as the orientation task is much

more complex(For example, if we have 8 items to be packed, the
choices of Sequence Generation is 8! = 40320 and the Orientation
Generation is 68 = 1679616), the sequence task will suffer from the
bad initializer of orientation if they are trained at the same time. To
overcome this shortcoming, pre-training the orientation task first
could be a reasonable idea. However, orientations of the items is
tightly attached to the existence of packing sequence of items in
the 3D-FBPP. Consequently, as a trade-off, we train different types
of tasks separately in each batch to keep them dynamic balance. We
called thisMulti-task Selected Learning (MTSL). Mathematically,
there are three kinds of basic loss function in our work: Lseq , Lor i
and Lall .

Lall = α ∗ Lseq (θseq ) + (1 − α) ∗ Lor i (θor i ).

Where α is the hyper-parameter we will fine-tune in our exper-
iments. During training, to utilize correlation and relieve imbalance,
ourmodel will choose one of the three kinds of losses {Lseq ,Lor i ,Lall }
according to a probability distributionwhichwill decay after several
training step.

As a conclusion of the discussion above, the training procedure
of our Multi-task Selected Learning method is summarized in Algo-
rithm 1.

Algorithm 1 Multi-task Selected Learning.
1: Training set X , training steps T , batch size B.
2: Init. Sequence and Orientation parameters θseq , θor i .
3: Init. best solution pool D = �

4: for t = 1 to T do
5: Select a batch of sample x.
6: Sample a sequence s according to prob. Pθseq (·|x).
7: for m = 1 to k do
8: Sample orientations o according to prob. Pθor i (·|x).
9: Obtain empty-maximal-space f by LWSC.
10: Calculate SA(s, o |x) by tuple (s, o, f )
11: end for
12: keep the current best solution tuple (s, o, f , x)
13: Compare with the best solution pool D and get the best

(s, o∗, f , x) for x
14: update D with the best solution (s, o∗, f , x)
15: Calculate sequence and orientation task gradient дθseq ,

дθor i based on the tuple (s, o∗, f , x)
16: дθ = choice(дθseq ,дθor i ,дθall )

17: Update θ = ADAM(θ ,дθ ).
18: end for
19: return all parameters θseq , θor i .

5 EXPERIMENTS
We conduct experiments to investigate the performance of the pro-
posed Multi-task Selected Learning (MTSL) 3D-FBPP methods. As
mentioned above, our experiments are conducted on the proposed
Large-scale Real-world Transaction Order Dataset (LRTOD).
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5.1 Dataset Description
We collect a dataset on 3D flexible bin packing problem based on
real-world order data from Taobao’s supermarket warehouse man-
agement system. This LRTOD consists of two parts: the customer
order data from E-commerce platform and its corresponding items’
size data (i.e., length, width and height) from Logistics platform. As
in real e-commerce scenario, 83.6% of the orders contain statistically
less than 10 items and only 0.2% of them over 40, so the problem we
studied are relative smaller than the dataset of 3DBPP generated by
a well-known released code 2. In particular, we randomly sample
150,000 training data and 150,000 testing data from customer orders
with 8, 10 and 12 items, which are named as BIN8, BIN10 and BIN12
respectively. We believe this real-world dataset will contribute to
the future research of 3DBPP.

5.2 Implementation Details
Across all experiments, we use mini-batches of fixed size 128 and
LSTM cells with 256 hidden units. In addition, description of each
item’s size is embedded into a 256-dimension input. We train our
model with Adam optimizer [11] by initial learning rate of 10−3 and
decay every 5000 steps by a factor of 0.96. All the parameters are ini-
tialized randomly in [−0.08, 0.08] and clip L2 norm of our gradients
to 5.0. For hyper-parameter α in loss function Lall , we fine-tune
it and set α = 0.5. We use the clipped surrogate objective of PPO
and the corresponding hyper-parameter ϵ is 0.2. We use 1000,000
steps to train the model and it will take about a few hours on Tesla
M40 GPU machine. Model implementation with TensorFlow will be
made available soon. Based on comprehensive consideration, the
performance indicator is average surface area (ASA) which denotes
the average cost of packing materials. The mathematical definition
of ASA is

∑n
i=1 SA(i)

n , where SA(i) is the surface area of ith order
and n is the number of orders. We will show the compared methods
and detailed experiments in the following.

5.2.1 Single Task Pointer Network. Pointer network used in
TSP is to generate the sequence of the cities to visit, which lays
the foundation for learning solutions to problems using a purely
data-driven approach. We use the Pointer network to produce the
placement sequence of items in a 3DFBPP and other tasks such as
Orientation Generation and Spatial Location Selection are finished
by LWSC mentioned above. The main difference between TSP and
3D-FBPP is the input and reward function. In our setting, the input is
the width, height and length of items and the reward function is the
surface area of the packed bin. Other experimental settings substan-
tially coincide with ones solving TSP. We refer the method which
never takes the packing sequence that has already been generated
into consideration as RL-vanilla in our paper. As a contrast, method
which introduces the intra-attention mechanism are referred as
RL-intra. It is worth mentioning that about other RL models in the
following sections have introduced the intra-attention mechanism
by default.

5.2.2 Multi-task Selected Learning. For MTSL experiments, at
each step, we choose a loss function of {Lseq ,Lor i ,Lall } (in Section

2http://hjemmesider.diku.dk/~pisinger/codes.html

4.3) dynamically adapting to the training process. Actually, we sam-
ple these three losses with probabilities (0.3, 0.5, 0.2). The values of
probabilities are annealed to (0.33, 0.33, 0.33) respectively over the
first 10,000 training steps. Similar to evaluation of RL-vanilla and
RL-intra , the results of MTSL are obtained by beam search with
beam size 5 as in Table 1.

Most heuristic methods usually search the solution space in
parallel and compare the candidate solutions. It is enlightening to
achieve better results using a sampling framework that constructs
multiple solutions and chooses the best one. Based on this, we also
introduce sampling into our proposed methods, which sample 128
solutions for each test instance and report the least surface area. For
comparison, we compare three different methods: 1) the sequence
is generated by the RL-intra model and orientation is generated
according to LWSC; 2) the sequence and orientation are both gen-
erated by our MTSL model; 3) the sequence and orientation are
both generated by the multi-task model without Selected Learning
whose loss function is Lall . We refer to those results as RL-intra-
Sample, MTSL-Sample and MT-Sample. These added results are
shown in Table 2. Naturally, the difference with other approaches
is diluted by sampling many solutions (Even a random policy may
sample good solutions occasionally).

5.3 Results and Analysis
First of all, we evaluate different models including RL-vanilla, RL-
intra and MTSL on our proposed dataset LRTOD. We report the
ASA results in Table 1. The problem cannot be solved directly by
optimization solvers, such as Gurobi [20], because its Hessian ma-
trix is not positive or semi-positive definite. As the table shows,
RL-vanilla achieves 4.89%, 4.88%, 5.33% improvement than LWSC
for BIN8, BIN10 and BIN12, whereas the improvement of RL-intra is
increased to 5.19%, 5.26%, 5.41% respectively. Apparently, it demon-
strates the usefulness of our intra-attention training mechanism,
which can help reduce the surface area of the 3D-FBPP. Moreover,
the significant results of MTSL also show that the orientation dis-
tribution trained by MTSL model comfortably surpass a greedy
orientation strategy produced by LWSC. Overall, MTSL obtains
6.16%, 9.66%, 8.25% surface area reduction than the well-designed
heuristic LWSC.

In order to improve the adequacy of contrast test, we also conduct
the approach BRKGA in [6] on LRTOD to validate whether these
methods designed for fixed-sized bin are appropriate for our 3D-
FBPP. BRKGA is one of the state-of-the-art methods to tackle 2D
and 3D fixed-sized bin packing problems which adopts a heuristic
method of Genetic Algorithm (GA) [31]. For fair comparison, we
first change the objective from minimizing the number of bins
to finding a minimized surface area bin. In BRKGA, the spatial
location strategy Distance to the Front-Top-Right Corner (DFTRC)
is rather sensitive to the given bin size and the main issue of our
problem is the flexible-sized bin. To achieve a good solution, we
test BRKGA with different sized bins by grid search. Besides, we
also adopt a spatial location strategy which rarely depends on the
bin size and usually cooperates with hybrid GA named deepest
bottom left with fill (DBLF) [9, 29] to replace DFTRC. Moreover, to
verify the effectiveness of LWSC, we also use LWSC as the spatial
location strategy to compare with the heuristic methods mentioned
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above. On one hand, according to Table 1, we find that GA+LWSC
works very well and use GA to evolve the packing sequence and
orientation is rather effective. On the other hand, the better results
of MTSL illustrate that our model can generate better bin packing
sequence and orientation than GA in saving packing cost. To sum
up, the statistical analysis confirms that MTSL is significantly better
than all the other approaches outlined above.

Table 1: Comparison with RL-vanilla and RL-intra on
the LRTOD. The difference among GA+LWSC, GA+DBLF,
BRKGA is the spatial location strategy and BRKGA is the
only method which use grid search to obtain a better solu-
tion. Note that the unit of the surface area in all experiments
is cm2.

model BIN8 BIN10 BIN12
Random 44.70 48.38 50.78
Gurobi – – –
LWSC 43.97 47.33 49.34

BRKGA (GA+DFTRC) 43.44 47.84 50.01
GA+LWSC 42.44 44.49 48.77
GA+DBLF 42.22 46.87 50.70
RL-vanilla 41.82 45.02 46.70
RL-intra 41.69 44.84 46.67
MTSL 41.26 42.76 45.27

We also report the ASA results of multiple methods which in-
troduce sampling mechanism in Table 2. By calculation, the pro-
posed MTSL-sample achieves 6.21%, 10.06%, 8.55% improvement
than the greedy LWSC for BIN8, BIN10, and BIN12. In our experi-
ments, MTSL-sample is superior than other methods in most cases
but is slightly less competitive than RL-intra-sample in BIN8. The
comparisons between MT-sample and MTSL-sample also indicates
the effectiveness of Selected Learning. Without Selected Learning,
the multi-task method performs much worse than the single task
method RL-intra-sample.

Table 2: Multiple solutions experiment. Best of 128 sampled
solutions in RL-intra, multi-task without Selected Learning
and MTSL model.

model BIN8 BIN10 BIN12
LWSC 43.97 47.33 49.34

RL-intra-sample 41.12 44.03 45.58
MT-sample 42.31 45.01 45.62

MTSL-sample 41.24 42.31 45.12

Finally, we randomly choose an example order instance from
BIN8 and display packing results by different methods in Figure
4 for case study. As shown, the surface area computed by each
method is listed on the top of its corresponding image. Obviously,
the packing results demonstrate that MTSL can produce a more
reasonable packing policy than other methods.

5.4 Online Experiment
Having obtained encouraging results on the large-scale real-world
transaction order dataset, we finally perform our proposed method
on our online production system of Taobao. We first detail the
design of our experiments, and then show its corresponding results.

5.4.1 A/B Test Design. A/B testing is a widely-used method for
comparing two or more varied algorithms in real-world systems,
including item recommendation and real-time bidding. We first
deploy our method on online supermarket warehouse system of
Taobao across 4 different cities of China and then we do a traffic
assigning strategy that randomly splits users into 50/50 groups for
LSWC and MTSL.

5.4.2 Experiment Setup and Results. Our proposed method and
its comparison method has undertaken online A/B testings for one
month . MTSL is initially trained based on historical data from
previous real production data. We use the same hyper-parameters
asmentioned in Section 5.2. Considering sensitivity of business data,
experimental results ignore the real package cost. Table 3 show that
the performance improvement brought by our method is consistent
in all cities, with gains in global cost reduction rate ranging from
4.5% to 6.6%. Given these promising results, the proposed algorithm
has been successfully deployed in Taobao’s supermarket warehouse
system for more than 20 major cities, saving a huge logistics cost
in a daily basis.

Table 3: Comparison of cost reduction results on online A/B
testings in four cities. Rate stands for the average cost reduc-
tion rate for orders.

City Rate
City A −5.7%
City B −6.6%
City C −5.1%
City D −4.5%

6 CONCLUSION
In this paper, we first introduce, define and solve the 3D Flexible Bin
Packing Problem. We model this problem as a sequential decision-
making problem and propose a multi-task framework based on
selected learning to generate packing sequence and orientations si-
multaneously, which can utilize correlation and mitigate imbalance
between the two tasks. We also adopt an intra-attention mecha-
nism to address the repeated item problem and use the idea of
hill-climbing algorithm to learning a more competitive orientation
strategy. Through comprehensive experiments, we achieves 6.16%,
9.66%, 8.25% improvement than the greedy algorithm designed for
the 3D-FBPP in BIN8, BIN10 and BIN12 and an average 5.47% cost
reduction on online AB tests across different cities’ supermarket
warehouse system of Taobao. Numerical results also demonstrate
that our selected learning method significantly outperforms the
single task Pointer Network and the multi-task network without se-
lected learning. A large-scale real-world transaction order dataset
is collected and will be released after company’s internal audit.
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GA+LWSC  26.66GA+DFTRC 29.10

RL-vanilla 27.92 RL-intra 27.42

MTSL 26.52

LWSC  31.02

GA+DBLF  31.86

Figure 4: Results of MTSL-vanilla, GA+DFTRC, GA+LWSC, GA+DBLF, RL-vanilla, RL-intra and LWSC. The surface area of
these method are 26.52, 29.1, 26.66, 31.86, 27.92, 27.42 and 31.02 respectively

In future research, we will focus on investigation of more effec-
tive network architecture and learning algorithm. Meanwhile, it
is beneficial to apply our proposed method to more interesting
combinatorial optimization problems in the domain of logistics to
help reduce costs of the industry.
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