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ABSTRACT
We consider group identification models in which the aggregation

of individual opinions concerning who is qualified in a given society

determines the set of socially qualified individuals. In this setting,

we study the extent to which social qualification can be changed

when societies expand, shrink, or partition themselves. The answers

we provide are with respect to the computational complexity of

the corresponding control problems and fully cover the class of

consent aggregation rules introduced by Samet & Schmeidler (2003)

as well as procedural rules for group identification. We obtain both

polynomial-time solvability results and NP-hardness results. For

some NP-hard problems, we also derive fixed-parameter algorithms.
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1 INTRODUCTION
Group decision-making plays an important role in multi-agent sys-

tems. Imagine for instance a set N of agents who have to determine

those among them who are eligible or qualified to complete a task.

In this paper, we study a model where each individual (agent) qual-

ifies or disqualifies every individual in N , and then a social rule
is applied to select the socially qualified individuals. This model

has been extensively studied under the name group identification
in the literature (see [4] for a survey). We particularly study the

complexity of some control problems in this model. We focus on the

consent rules, the consensus-start-respecting rule (CSR), and the

liberal-start-respecting rule (LSR) [5, 11, 12, 17, 18]. Each consent

rule is characterized by two positive integers s and t . If an individual
qualifies herself, then this individual is socially qualified if and only

if there are at least s − 1 other individuals who also qualify her.

However, if the individual disqualifies herself, then this individual

is not socially qualified if and only if there are at least t − 1 other

individuals who also disqualify her. The CSR and the LSR social

rules iteratively determine the socially qualified individuals. In the
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beginning, the set KL
of individuals each of whom qualifies herself

are considered LSR socially qualified, while the set KC
of individu-

als each of whom is qualified by all individuals are considered CSR

socially qualified. Then, in each iteration for the social rule LSR

(resp. CSR), an individual a is added to KL
(resp. KC

) if there is an

individual in KL
(resp. KC

) qualifying a. The iteration terminates

when no new individual can be added to KL
(resp. KC

), and the

socially qualified individuals are the ones in KL
(resp. KC

).

In general, in each of the control problems studied in this pa-

per, there is an external (strategic) agent who has an incentive to

change the results by either adding some individuals (GCAI), or

deleting some individuals (GCDI), or partitioning the set of indi-

viduals (GCPI). In particular, in each problem there is a subset S of

distinguished individuals and the external agent aims to make all

individuals in S socially qualified by performing the corresponding

control operations. We achieve both polynomial-time solvability

results and NP-hardness results for these problems for the afore-

mentioned social rules. Importantly, we obtain dichotomy results

for all problems considered in this paper for the consent rules, with

respect to the values of s and t . For some of the NP-hard problems,

we also derive fixed-parameter algorithms with respect to |S |.
Group identification is related to the widely-studied Approval

voting rule [2, 9, 10, 15, 16, 20], where each voter approves or

disapproves each candidate and the winners are those with the

most approvals. However, group identification and Approval are

different in several aspects. First, Approval is often considered as

a single-winner voting rule and thus is used along with some tie-

breakingmethod. Recently, several variants of Approval voting have

been studied as multi-winner voting rules. However, the number

of winners is bounded by (or exactly equal to) an integer (see,

e.g., [1, 14]). Second, the goal of voting is to find some outstanding

candidates. Therefore, when voters and candidates coincide, it is

natural to assume that every candidate approves herself, or we

ask voters only to approve or disapprove other candidates except

herself. However, in group identification, everyone can qualify or

disqualify herself. Recently, approval-based multi-winner voting

with a variable number of winners has also been studied (see, e.g., [3,

8, 13, 21]). However, these rules are completely different from what

we study in the paper. Moreover, to the best of our knowledge,

to date only the very recent papers [8] and [21] (appeared after

the workshop version of our paper) considered such multi-winner

voting from the complexity point of view and are concerned with

different problems from ours.

2 PROBLEM FORMULATION
Let N be a set of individuals where each a ∈ N has an opinion

about who from the set N possesses a certain qualification and who
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Table 1: Here, “P” stands for “polynomial-time solvable”, “I” stands for “immune”, and “FPT” stands for “fixed-parameter
tractable”. FPT results arewith respect to the size of S , the set of individuals the strategic agentwants tomake socially qualified.

consent rules f (s,t )

s = 1 s ≥ 2 f CSR f LSR

t = 1 t = 2 t ≥ 3 t = 1 t = 2 t ≥ 3

GCAI I I I NP-hard (FPT) NP-hard (FPT) NP-hard (FPT) NP-hard NP-hard

GCDI I P NP-hard (FPT) I P NP-hard (FPT) P I

GCPI I NP-hard NP-hard I NP-hard NP-hard Open I

does not. For a′ ∈ N , we write φ(a,a′) = 1 to denote the fact that a
qualifies a′, and φ(a,a′) = 0 to denote the fact that a disqualifies a′.
The mapping φ : N × N → {0, 1} is called a profile over N . A

social rule is a function f assigning a subset f (φ,T ) ⊆ T to each

pair (φ,T ) consisting of a profile φ over N and a subset T ⊆ N . We

call the individuals in f (φ,T ) the socially qualified individuals of T
with respect to f and φ.

In what follows we focus our analysis on the class of consent

rules introduced by Samet and Schmeidler [18] and two procedural

rules axiomatically studied in [5].

Consent rules f (s,t ). Each consent rule f (s,t ) is specified by

two positive integers s and t such that for every T ⊆ N and every

individual a ∈ T , it holds that

(1) if φ(a,a) = 1, then a ∈ f (s,t )(φ,T ) if and only if

|{a′ ∈ T | φ(a′,a) = 1}| ≥ s , and

(2) if φ(a,a) = 0, then a < f (s,t )(φ,T ) if and only if

|{a′ ∈ T | φ(a′,a) = 0}| ≥ t .

Consensus-start-respecting rule f CSR. For everyT ⊆ N , this

rule determines the socially qualified individuals iteratively. First,

all individuals who are qualified by everyone in the society are

considered socially qualified. Then, in each iteration, all individuals

who are qualified by at least one of the currently socially qualified

individuals are added to the set of socially qualified individuals. The

iterations terminate when no new individual is added. Formally,

for every T ⊆ N , let KC

0
(φ,T ) = {a ∈ T | ∀a′ ∈ T , φ(a′,a) = 1}.

For each positive integer ℓ = 1, 2, . . . , let KC

ℓ
(φ,T ) =

KC

ℓ−1(φ,T ) ∪ {a ∈ T | ∃a′ ∈ KC

ℓ−1(φ,T ), φ(a
′,a) = 1}.

Then, f CSR(φ,T ) = KC

ℓ
(φ,T ) for some ℓ such that

KC

ℓ (φ,T ) = KC

ℓ−1(φ,T ).

Liberal-start-respecting rule f LSR. This rule is similar to f CSR

with the only difference that the initial socially qualified individuals

are those who qualify themselves. Particularly, for everyT ⊆ N , let

KL

0
(φ,T ) = {a ∈ T | φ(a,a) = 1}. For each positive integer ℓ = 1, 2,

. . . , let KL

ℓ
(φ,T ) =

KL

ℓ−1(φ,T ) ∪ {a ∈ T | ∃a′ ∈ KL

ℓ−1(φ,T ), φ(a
′,a) = 1}.

Then, f LSR(φ,T ) = KL

ℓ
(φ,T ) for some ℓ such that

KL

ℓ (φ,T ) = KL

ℓ−1(φ,T ).

Observe that due to the above definitions, when KC

0
(resp. KL

0
) is

empty, we have that f CSR(φ,T ) = ∅ (resp. f LSR(φ,T ) = ∅).

For a social rule f , we define the following three problems.

Group Control by Adding Individuals (GCAI)

Input: A 5-tuple (N , φ, S, T , k ) of a set N of individuals, a pro-

file φ over N , two nonempty subsets S, T ⊆ N such

that S ⊆ T and S ⊈ f (φ, T ), and a positive integer k .

Question: Is there a subset U ⊆ N \ T such that |U | ≤ k and S ⊆

f (φ, T ∪U )?

Group Control by Deleting Individuals (GCDI)

Input: A 4-tuple (N , φ, S, k ) of a set N of individuals, a profile φ
over N , a nonempty subset S ⊆ N such that S ⊈ f (φ, N ),

and a positive integer k .
Question: Is there a subset U ⊆ N \ S such that |U | ≤ k and S ⊆

f (φ, N \U )?

Group Control by Partitioning of Individuals (GCPI)

Input: A 3-tuple (N , φ, S ) of a set N of individuals, a profile φ
over N , and a nonempty subset S ⊆ N such that S ⊈
f (φ, N ).

Question: Is there a subset U ⊆ N such that S ⊆ f (φ, V ) where

V = f (φ, U ) ∪ f (φ, N \U )?

A social rule is immune to a control type if it is impossible to

make a socially disqualified individual socially qualified by carrying

out the corresponding control operation.

3 COMPLEXITY RESULTS AND DISCUSSION
We refer to Table 1 for a summary of our main findings. We can

see from the table that almost all social rules studied in this paper

resist the three different control types, in the sense that either

control problems for these rules are NP-hard or these rules are

immune to the corresponding control types. Only GCDI for the

consent rules f (s,2) and for f CSR is polynomial-time solvable. From

the parameterized complexity point of view, GCAI and GCDI for

consent rules are fixed-parameter tractable (FPT). In addition, given

that the procedural rule f LSR is immune to GCDI and GCPI, we can

conclude that f LSR outperforms the consent rules and the f CSR rule

in terms of resistance to control behavior. Note that whether GCAI

for the two procedural rules is FPT with respect to |S | remains open.

Moreover, whether GCPI for f CSR is NP-hard remains open.

Recently, Erdélyi, Reger, and Yang studied the complexity of

other strategic problems in the setting of group identification [6, 7].

Session 5D: Social Choice Theory 3 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1441



REFERENCES
[1] H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie, N. Mattei, and T. Walsh. 2015.

Computational Aspects of Multi-Winner Approval Voting. In AAMAS. 107–115.
[2] D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.

2010. Computational Aspects of Approval Voting. Springer Berlin Heidelberg,

Handbook on Approval Voting, Chapter 10, 199–251.

[3] D. Berga, G. Bergantiños, J. Massó, and A. Neme. 2004. Stability and Voting by

Committees with Exit. Social Choice and Welfare 23, 2 (2004), 229–247.
[4] D. Dimitrov. 2011. The Social Choice Approach to Group Identification. In

Consensual Processes. 123–134.
[5] D. Dimitrov, S. C. Sung, and Y. Xu. 2007. Procedural Group Identification. Math-

ematical Social Sciences 54, 2 (2007), 137–146.
[6] G. Erdélyi, C. Reger and Y. Yang. 2017. Complexity of Group Identification with

Partial Information. In ADT. 182–196.
[7] G. Erdélyi, C. Reger and Y. Yang. 2017. The Complexity of Bribery and Control

in Group Identification. In AAMAS. 1142–1150.
[8] P. Faliszewski, A. Slinko, and N. Talmon. 2017. The Complexity of Mul-

tiwinner Voting Rules with Variable Number of Winners. Arxiv (2017).

https://arxiv.org/abs/1711.06641.

[9] P. C. Fishburn and S. J. Brams. 1981. Approval Voting, Condorcet’s Principle, and

Runoff Elections. Public Choice 36, 1 (1981), 89–114.
[10] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. 2007. Anyone but Him: The

Complexity of Precluding an Alternative. Artificial Intelligence 171, 5-6 (2007),
255–285.

[11] N. Houy. 2007. “I Want to Be a J!": Liberalism in Group Identification Problems.

Mathematical Social Sciences 54, 1 (2007), 59–70.
[12] A. Kasher and A. Rubinstein. 1997. On the Question “Who Is a J?”: A Social

Choice Approach. Logique & Analyse 40, 160 (1997), 385–395.
[13] D. M. Kilgour. 2016. Approval Elections with a Variable Number of Winners.

Theory and Decision 81, 2 (2016), 199–211.

[14] D. M. Kilgour and E. Marshall. 2012. Approval Balloting for Fixed-Size Com-

mittees. In Electoral Systems, D. S. Felsenthal and M. Machover (Eds.). Springer

Berlin Heidelberg, 305–326.

[15] J-F. Laslier and M. R. Sanver (Eds.). 2010. Handbook on Approval Voting. Springer
Berlin Heidelberg.

[16] A. P. Lin. 2011. The Complexity ofManipulatingk -Approval Elections. In ICAART
(2). 212–218. http://arxiv.org/abs/1005.4159.

[17] A. D. Miller. 2008. Group Identification. Games and Economic Behavior 63, 1
(2008), 188–202.

[18] D. Samet and D. Schmeidler. 2003. Between Liberalism and Democracy. Journal
of Economic Theory 110, 2 (2003), 213–233.

[19] Y. Yang and D. Dimitrov. 2018. How Hard Is It to Control a Group? Autonomous
Agents and Multi-Agent Systems 32, 5 (2018), 672–692.

[20] Y. Yang and J. Guo. 2017. The Control Complexity of r -Approval: From the

Single-Peaked Case to the General Case. Journal of Computer and System Sciences
89 (2017), 432–449.

[21] Y. Yang and J. Wang. 2018. Multiwinner Voting with Restricted Admissible Sets:

Complexity and Strategyproofness. In IJCAI. 576–582.

Session 5D: Social Choice Theory 3 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1442


	Abstract
	1 Introduction
	2 Problem Formulation
	3 Complexity Results and Discussion
	References



