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ABSTRACT

This paper is devoted to the facility location games with
payments, where every agent plays a dual role of facility and
customer. In this game, each selfish agent is located on a
publicly known location in a metric space, and can allow a
facility to be opened at his place. But the opening cost is
his private information and he may strategically report this
opening cost. Besides, each agent also bears a service cost
equal to the distance to his nearest open facility. We are
concerned with designing truthful mechanisms for the game,
which, given agents’ reports, output a set of agents whose
facilities could be opened, and a payment to each of these
agents who opens a facility. The objective is to minimize
(exactly or approximately) the social cost (the total opening
and service costs) or the maximum agent cost of the outcome.

We characterize the normalized truthful mechanisms for
this game. Concerning the minimum social-cost objective, we
give an optimal truthful mechanism without regard to time
complexity, and show a small gap between the best known
approximation ratio of polynomial-time truthful mechanisms
for the game and that of polynomial-time approximation
algorithms for the counterpart of pure optimization. For the
minimum maximum-cost objective, we provide an optimal
truthful mechanism which runs in polynomial time. We also
investigate mechanism design for the game under a budget
on the total payment.
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1 INTRODUCTION

The classic facility location games without payments
model the scenario where the government plans to build some
public facilities in a street or a general metric space, where
some self-interested customers are located. Each customer
has a service (connection) cost equal to the distance to the
nearest facility. As strategic agents, the customers hold their
locations as private information and can strategically report
them to minimize their own service costs. After receiving
the reported information, the government will then use a
mechanism to map it to some facility locations. The purpose
of the mechanism is to optimize a certain objective, such as
minimizing the total cost or minimizing the maximum agent
cost, while guaranteeing that truthfully reporting is every
customer’s optimal strategy.

In most studies of the facility location games without
payments, the government can build facilities anywhere in the
space and only the customers are strategic players. However,
in reality the potential facility locations are usually limited
and pre-given; each potential facility might have an opening
cost. Archer and Tardos [1] studied a facility location game
with payments where only facilities are selfish players and can
strategically report their opening costs, while the customers’
locations are public information.

In this paper, we study a game model merging the cus-
tomers with the location owners, i.e., facilities are only al-
lowed to open at the locations of some customers and the
customers are also the location owners (in the following, we
refer to them as agents, or equivalently facilities). The agents
report their opening costs as private information, while their
locations are publicly known. Once receiving the reports
(referred to as bids), the government uses a mechanism to
decide which facilities to be opened and how much to pay to
the corresponding agents. Each agent is incurred either an
opening cost if a facility is open at his location, or a service
cost if not; he wishes to maximize his utility: the difference
between the payment he receives and the cost he is incurred.

The studied problem models the scenario where the au-
thority of a city wants to build some public facilities (e.g.,
libraries and supermarkets) for some communities. Due to
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land use restrictions, the facilities can only be built in the
communities, while other lands are urban green space. Each
community has a private opening-cost, which contains many
components (e.g., the cost for demolition, construction, reno-
vation, and daily management), and the community has its
own connections to different parties (and therefore can deal
on different prices) who can take care of these components.
Therefore, the authority has no way to access these values,
and the opening-costs for facilities by communities can be
considered private. In some cases, the authority has a budget
and cannot pay too much.

Our goal is to design mechanisms, which satisfy one or
more desirable properties, for this facility location game,
where each agent plays a dual role of both a facility and a
customer. Usually, a mechanism is required to be truthful,
that is, for every agent reporting his true opening cost is
the optimal strategy to maximize his utility. In addition, the
mechanism is expected to have a good performance guarantee
(w.r.t. a certain objective function) and to satisfy individual
rationality, that is, every agent benefits from participating
the game.

Related Work
Facility Location Problem. The metric uncapacitated facili-

ty location problem (UFL) studies the optimization problem
of selecting a set of facilities in a metric space to minimize
the sum of facility opening costs and customer service (con-
nection) costs. This is a well-known NP-hard problem. It is
proved that any polynomial-time algorithm cannot be 1.463-
approximate, unless P = NP [11, 24]. Jain et al. [12] give
a 1.61-approxime algorithm (JMS algorithm). Combining
it with cost scaling, the algorithm of Mahdian et al. [16]
achieves the currently best approximation ratio 1.52 in the
deterministic sense. The UFL falls into the 𝑘-facility location
problem (𝑘-UFL) if at most 𝑘 facilities can be opened. For
the 𝑘-UFL, Zhang [27] gives the best-known approximation

ratio of 2 +
√
3 + 𝜖.

Facility Location Game. Mechanism design for the facility
location game was first studied by Procaccia and Tennenholtz
[20]. After that, the model in which strategic customers
report their locations have been widely studied, see, e.g.,
[3, 7, 8, 14, 15, 26]. Archer and Tardos [1] study the model
with publicly known service costs and strategic facilities who
report their private opening costs, where the differences to
our model are (i) customers are not the players of the game;
(ii) each winning facility only pays his real opening cost and
each losing facility pays nothing. They prove that any optimal
algorithm for the UFL admits a truthful mechanism for the
social-cost objective (involving both facilities and customers).

Single Parameter Problem. A mechanism design problem
is single parameter, if each agent holds only one private
value. Myerson [17] first gives a characterization of truthful
mechanisms in reverse-auction setting where each agent has a
private scalar value for “winning”, with “losing” having value
of 0. Archer and Tardos [1] extend the result to a more general
setting, where the cost of agent 𝑖 is his private data times the

amount of load assigned to him. Similar characterizations
in somewhat different settings can be found in [18, 19, 21].
Our model of dual-role facility location games falls into the
single-parameter framework in a totally different way.

VCG Mechanisms. One of the most celebrated results
in mechanism design is the Vickrey-Clarke-Groves (VCG)
mechanism [4, 10, 25], which is truthful for the social objective
functions. It has been shown that VCG-like mechanisms are
the only truthful ones that maximize the social welfare [9,
13, 19]. A main difficulty in applying VCG mechanism is its
computational complexity, as finding an optimal solution of
the corresponding optimization problem is often NP-hard.

Budget on Payments. A mechanism is budget feasible if the
total payment provided by the mechanism does not exceed a
given budget. Singer [23] initiates the budget-feasible mech-
anism design problem, and provides constant-approximate
algorithms for maximizing monotone submodular objective
functions. Later, Chen et al. [2] improve the approximation
ratio by a greedy scheme.

Our Results and Organizations
This paper extends the family of facility location games

to the area with payment, while most of the previous works
mainly concern the case without money. We characterize
the truthful mechanisms, and design optimal and approxi-
mate truthful mechanisms both for the social-cost and the
bottleneck-cost objectives. When there is a budget on the
payments, we show a lower bound of Ω(𝑛) for truthful budget
feasible mechanisms under the social-cost objective, in con-
trast of the constant approximation results for maximizing
a supermodular function. Our work contributes in two as-
pects: in terms of facility location games, we provide the first
nontrivial results with payment to dual-role agents, and it
can lead to the studies with respect to strategic customers or
facilities; in terms of single parameter problems, we initiate
the study for the class where an agent incurs some cost even
it loses (i.e., he is not selected as a winner by the mechanism),
and we believe this can be extended to many other topics
such as reverse auction, especially combined with budget.
The details are as follows.

In Section 2 we formally present our model of dual-role
facility location game. It is the first time to merge strategic
customers with strategic facilities, where the government only
allows facilities to be opened at the places of the customers
(for example, other lands in the city are urban green space),
and they are combined together to act as an agent. This model
offers a new sight on extending the classic facility location
games, and possibly avoids the criticism on the common
assumption that the government having no information about
the locations of customers.

Section 3 provides the characterization of normalized truth-
ful mechanisms. For the facility location game with only s-
trategic facilities, it is known [1] that a mechanism is truthful
if and only if the selection function is monotone and the pay-
ment to each opened facility is its threshold bid at which the
facility would no longer be opened. In our setting, because of
the extra cost for the “losing” agents, the characterization for
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the truthfulness is no longer the same as that in [1]. We show
that a truthful mechanism for our game is additionally re-
quired to keep the service cost of any losing agent unchanged
no matter how he increases his bid, and the payment to a
winner should be his threshold bid minus the invariant service
cost in any outcome where he is a loser. This conclusion can
be extended to more general settings.

In Section 4 and 5, we study truthful mechanisms for the
social-cost and the bottleneck-cost objectives, respectively.
For the former, we give an optimal truthful mechanism, re-
gardless of the time complexity. Although this is a VCG
mechanism, it remains a challenge to assure the normali-
ty and individual rationality. In special cases, such as the
tree space and 𝑘-UFL game with constant 𝑘, this mech-
anism is polynomially computable. Further, we provide a
polynomial-time 1.61-approximation mechanism, based on
JMS algorithm for the UFL [12], and thus the gap between
the best-known approximation ratios of polynomial-time algo-
rithms and polynomial-time truthful mechanisms is 0.09. For
the bottleneck-cost objective, which minimizes the maximum
agent cost, we provide an optimal truthful mechanism that
runs in polynomial time.

Section 6 introduces the budget constraint on payments
to the dual-role facility location game. Given a budget 𝐵,
the total payment of the mechanism for the game cannot
exceed 𝐵. We give a lower bound Ω(𝑛) (resp. 1.5) on the
approximation ratio of any truthful and budget feasible mech-
anisms w.r.t. the social-cost objective (resp. bottleneck-cost
objective), where 𝑛 is the number of agents in the game.
Furthermore, we show that there is an optimal mechanism
when only one facility is allowed to open.

2 THE MODEL

Let 𝑁 = {1, 2, . . . , 𝑛} be a set of agents, where each agent
takes a dual role of both a customer and a facility. We will use
“agent” and “facility” interchangeably. The agents are located
in a metric space (Ω, 𝑑), where 𝑑 : Ω×Ω → R+ is the metric.
Each agent 𝑖 ∈ 𝑁 is located at 𝑙𝑖 ∈ Ω and has a (facility)
opening cost 𝑓𝑖. Let 𝑑(𝑖, 𝑗) := 𝑑(𝑙𝑖, 𝑙𝑗) denote the distance
between any two agents 𝑖, 𝑗 ∈ 𝑁 . The profile of locations and
that of opening costs are written as l = (𝑙1, 𝑙2, . . . , 𝑙𝑛) and
f = (𝑓1, 𝑓2, . . . , 𝑓𝑛), respectively.

While the opening cost 𝑓𝑖 is agent 𝑖’s private information
for each 𝑖 ∈ 𝑁 , the location profile and the distances are
publicly known. Each agent 𝑖 strategically reports his own
opening cost as his bid 𝑏𝑖 (which is not necessarily equal to
𝑓𝑖). Once a mechanism receives all bids 𝑏1, 𝑏2, . . . , 𝑏𝑛 from the
agents, it outputs a subset 𝑊 ⊆ 𝑁 of agents (referred to as
winners) for opening facilities, and a payment 𝑝𝑖 to each 𝑖 ∈
𝑁 . Formally, a mechanism ℳ = (𝑠, 𝑝) consists of a selection
function 𝑠 : R𝑛

+ → 2𝑁 and a payment function 𝑝 : R𝑛
+ → R𝑛

+,
which map each bid vector b = (𝑏1, . . . , 𝑏𝑛) to a winner
set 𝑠(b) = 𝑊 and a payment vector 𝑝(b) = (𝑝1, 𝑝2, . . . , 𝑝𝑛),
respectively. If both functions can be computed in polynomial
time, ℳ is said to be a polynomial-time mechanism.

Given a winner set 𝑊 ⊆ 𝑁 , each agent 𝑖 ∈ 𝑁 bears a cost
𝑐𝑖(𝑊 ) = 𝐼𝑊 (𝑖) · 𝑓𝑖 + 𝑑(𝑖,𝑊 ), where 𝐼𝑊 (𝑖) equals 1 if 𝑖 ∈ 𝑊
and 0 otherwise, and 𝑑(𝑖,𝑊 ) = min𝑗∈𝑊 𝑑(𝑖, 𝑗) is the distance
between agent 𝑖 and 𝑊 (moreover, 𝑑(𝑖, ∅) := 𝑄 where 𝑄 is a
big constant).1 Each agent 𝑖 wishes to maximize his utility :
𝑝𝑖 − 𝑐𝑖(𝑊 ), where 𝑝𝑖 is the payment he receives. We call a
mechanism ℳ truthful, if bidding the true opening cost is
the best strategy for every agent . That is, for every 𝑖 ∈ 𝑁
with bid 𝑏𝑖, and every set of bids b−𝑖 by 𝑁∖{𝑖}, it holds
that 𝑝𝑖 − 𝑐𝑖(𝑊 ) ≥ 𝑝′𝑖 − 𝑐𝑖(𝑊

′), where (𝑊,p) and (𝑊 ′,p′)
are the outputs of ℳ for the input bid vectors (𝑓𝑖,b−𝑖) and
(𝑏𝑖,b−𝑖), respectively.

We consider some system objective function 𝐶 : 2𝑁 → R+,
that depends on the opening cost profile f , and distances
between agents (determined by (Ω, 𝑑) and location profile l).
The mechanism tries to minimize 𝐶(𝑊 ), while it does not
know f , and just makes decisions according to public informa-
tion and the bids reported. Subject to certain constraints for
facility opening (possibly none), we say that a mechanism has
approximation ratio 𝛼(≥ 1), if for any facility game instance
(Ω, 𝑑, l, f) the mechanism outputs a winner set 𝑊 such that
𝐶(𝑊 ) ≤ 𝛼 ·min𝑆 𝐶(𝑆), where the minimum is taken over all
𝑆 that could be chosen for opening facilities. Our goal is to
design polynomial-time truthful mechanisms that exactly or
approximately minimize the objective function 𝐶. As usual,
we assume that the mechanism is normalized (i.e., 𝑝𝑖 = 0 if
𝑖 /∈ 𝑊 ) and individual rational (i.e., no agent will lose any of
his utility by participating this game).

In this paper, we consider two objective functions 𝐶 and
𝐶𝐵 , respectively. For any 𝑊 (⊆ 𝑁), which is considered as
a solution of the facility location game, we define its social
cost and bottleneck cost as follows.

∙ Social cost:

𝐶(𝑊 ) =
∑︁
𝑖∈𝑁

𝑐𝑖(𝑊 ) =
∑︁
𝑖∈𝑁

𝑑(𝑖,𝑊 ) +
∑︁
𝑖∈𝑊

𝑓𝑖.

∙ Bottleneck cost:

𝐶𝐵(𝑊 ) = max
𝑖∈𝑁

𝑐𝑖(𝑊 ) = max
𝑖∈𝑁

(𝐼𝑊 (𝑖) · 𝑓𝑖 + 𝑑(𝑖,𝑊 )).

We can tackle the mechanism design when some constraints
are imposed on the selection or payment function: (i) given
constant integer 𝑘, at most 𝑘 facilities can be open; (ii) given
a budget 𝐵 ∈ R+, the total payment does not exceed the
budget:

∑︀
𝑖 𝑝𝑖 ≤ 𝐵. A mechanism satisfying (ii) is said to be

budget feasible.

Remark 2.1. While the property no positive transfer (i.e.,
𝑝𝑖 ≥ 0) is common in other game settings, it is not needed
here. If the potential service cost of an agent in some solution
is larger than his opening cost, he might conversely pay an
amount of “money” to the government (mechanism), asking

1Note that each winner 𝑖 ∈ 𝑊 bears his associated facility opening cost
𝑓𝑖, while each loser 𝑗 /∈ 𝑊 bears the service cost 𝑑(𝑗,𝑊 ). The words
“winner” and “loser” are used to distinguish agents whose locations
are selected for opening facilities with those whose locations are not
selected. Being a winner does not mean a smaller cost than being a
loser .

Session 5E: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1472



for a facility to be opened at his location. So a negative
payment is also reasonable.

3 CHARACTERIZATION OF
TRUTHFULNESS

In this section, we study the properties of normalized
truthful mechanisms for the dual-role facility game with pay-
ments. This game is a single-parameter mechanism design
problem, as the single parameter 𝑓𝑖 directly determines the
cost function 𝑐𝑖. Single-parameter problems are widely stud-
ied in the reverse-auction setting where each agent 𝑖 has a
private scalar data 𝑓𝑖 which is the cost incurred to him if he
wins (losing incurs him 0 cost). In a more general setting, the
cost of agent 𝑖 equals his private data 𝑓𝑖 times the amount
of load assigned to him by the assignment function.

For the reverse-auction setting, Myerson [17] gives a well-
known characterization: a normalized mechanism is truthful
if and only if (i) the selection function 𝑠 is monotone (i.e.,
a winner keeps winning if he unilaterally decreases his bid);
and (ii) the payment to each winner is his threshold bid to
win. For the general setting, Archer and Tardos [1] proves
that an assignment function admits a truthful mechanism
(via suitable payments) if and only if it is monotone. Our
setting is, however, different from them, as a loser always
bears a positive cost which equals the distance to the nearest
winner. Before stating the characterization for the truthful
mechanisms of our facility game, we give some essential
definitions.

Definition 3.1. A selection function 𝑠 is called monotone,
if for any player 𝑖 ∈ 𝑁 and bid vector (𝑏𝑖,b−𝑖) with 𝑖 ∈
𝑠(𝑏𝑖,b−𝑖), we have 𝑖 ∈ 𝑠(𝑏′𝑖,b−𝑖) for all 𝑏′𝑖 < 𝑏𝑖. That is, if
agent 𝑖 wins with bid 𝑏𝑖, then he also wins by bidding any
𝑏′𝑖 < 𝑏𝑖.

Definition 3.2. For a monotone selection function 𝑠, given
others’ bids b−𝑖, the threshold value of agent 𝑖 is 𝑟𝑖(b−𝑖) =
inf𝑖/∈𝑠(𝑏𝑖,b−𝑖) 𝑏𝑖, i.e., the “smallest bid” under which agent 𝑖

loses (facility 𝑖 is not opened). The threshold value at b−𝑖 is
undefined if {𝑏𝑖 | 𝑖 /∈ 𝑠(𝑏𝑖,b−𝑖)} is empty.

In this paper, we always assume without loss of the generali-
ty that the infimum (if exists) in the definition of the threshold
belongs to the bid set, i.e., inf𝑖/∈𝑠(𝑏𝑖,b−𝑖) 𝑏𝑖 = min𝑖/∈𝑠(𝑏𝑖,b−𝑖) 𝑏𝑖.
The following claim about the payment is useful.

Lemma 3.3. For any agent 𝑖 and any fixed bids b−𝑖 of
other agents, if agent 𝑖 wins, then a truthful mechanism must
pay the same to 𝑖.

Proof. Consider payments 𝑝𝑖 and 𝑝′𝑖 to winner 𝑖 under
bids (𝑏𝑖,b−𝑖) and (𝑏′𝑖,b−𝑖), respectively. For the instance
with 𝑓𝑖 = 𝑏𝑖 (resp. 𝑓𝑖 = 𝑏′𝑖), the truthfulness guarantees
𝑝𝑖 − 𝑏𝑖 ≥ 𝑝′𝑖 − 𝑏𝑖 (resp. 𝑝′𝑖 − 𝑏′𝑖 ≥ 𝑝𝑖 − 𝑏′𝑖). It follows that
𝑝𝑖 = 𝑝′𝑖. �

Denote as 𝒮𝑖(b−𝑖) = {𝑠(𝑏𝑖,b−𝑖) | 𝑏𝑖 ≥ 𝑟𝑖(b−𝑖)} the collec-
tion of all possible winner sets when agent 𝑖 bids at least his
threshold value. Now we are ready to state the characteriza-
tion:

Theorem 3.4. A normalized mechanism ℳ = (𝑠, 𝑝) is
truthful if and only if the following hold:

(i) 𝑠 is monotone;
(ii) For any agent 𝑖 ∈ 𝑁 and winner sets 𝑆, 𝑆′ ∈ 𝒮𝑖(b−𝑖),

there holds 𝑑(𝑖, 𝑆) = 𝑑(𝑖, 𝑆′);
(iii) Every winner is paid his threshold value minus the

distance to any winner set when he bids at least the threshold
value. Precisely, for every agent 𝑖 ∈ 𝑁 and others’ bids
b−𝑖, if 𝑖’s threshold value is undefined, then 𝑖 is paid by a
constant independent of his bid; otherwise, for every bid 𝑏𝑖
with 𝑖 ∈ 𝑠(𝑏𝑖,b−𝑖), 𝑖’s payment is

𝑝𝑖(𝑏𝑖,b−𝑖) = 𝑟𝑖(b−𝑖)− 𝑑(𝑖, 𝑆), (1)

where 𝑑(𝑖, 𝑆) is an invariant for all 𝑆 ∈ 𝒮𝑖(b−𝑖).

Proof. The “if” part. Given bids b−𝑖, if 𝑖’s threshold
value is undefined, then 𝑖 always wins with a constant utility;
else by the definition of threshold value, we have 𝑖 /∈ 𝑠(𝑓𝑖,b−𝑖)
if 𝑓𝑖 ≥ 𝑟𝑖(b−𝑖), and 𝑖 ∈ 𝑠(𝑓𝑖,b−𝑖) otherwise. To prove the
truthfulness, we show that in any case, for 𝑖, bidding 𝑓𝑖 is no
worse than bidding any 𝑏𝑖. Let 𝑊 and 𝑊 ′ denote the winner
sets 𝑠(𝑓𝑖,b−𝑖) and 𝑠(𝑏𝑖,b−𝑖), respectively. We may assume
𝑟𝑖(b−𝑖) is defined.

In the case of 𝑓𝑖 ≥ 𝑟𝑖(b−𝑖), we have 𝑊 ∈ 𝒮𝑖(b−𝑖), and 𝑖’s
utility when telling the truth is 0−𝑐(𝑊 ) = −𝑑(𝑖,𝑊 ). Agent 𝑖
could change this utility only by bidding 𝑏𝑖 < 𝑟𝑖(b−𝑖), at
which he wins with a utility 𝑝𝑖(𝑏𝑖,b−𝑖)− 𝑐(𝑊 ′) = (𝑟𝑖(b−𝑖)−
𝑑(𝑖,𝑊 ))− 𝑓𝑖 ≤ −𝑑(𝑖,𝑊 ).

In the case of 𝑓𝑖 < 𝑟𝑖(b−𝑖), agent 𝑖’s utility when telling
the truth is 𝑝𝑖(𝑓𝑖,b−𝑖) − 𝑐𝑖(𝑊 ) = 𝑟𝑖(b−𝑖) − 𝑑(𝑖, 𝑆) − 𝑓𝑖 >
−𝑑(𝑖, 𝑆) for some 𝑆 ∈ 𝒮𝑖(b−𝑖). The only possibly way that
agent 𝑖 could change this utility is bidding 𝑏𝑖 ≥ 𝑟𝑖(b−𝑖), at
which 𝑊 ′ ∈ 𝒮𝑖(b−𝑖), and 𝑖’s utility becomes 0 − 𝑐𝑖(𝑊

′) =
−𝑑(𝑖,𝑊 ′) = −𝑑(𝑖, 𝑆) by (ii).

The “only if ” part. Condition (i): Suppose for a contra-
diction that 𝑠 is not monotone. Then there exist 𝑖 ∈ 𝑁 and
𝑏𝑖, 𝑏

′
𝑖,b−𝑖 with 𝑏′𝑖 < 𝑏𝑖 such that 𝑖 ∈ 𝑠(𝑏𝑖,b−𝑖) wins with

payment 𝑝𝑖 when bidding 𝑏𝑖, while 𝑖 ̸∈ 𝑊 ′ := 𝑠(𝑏′𝑖,b−𝑖) loses
with payment 0 when biding 𝑏′𝑖. For the instance with 𝑓𝑖 = 𝑏𝑖,
the truthfulness of ℳ implies 𝑝𝑖 − 𝑏𝑖 ≥ −𝑑(𝑖,𝑊 ′), while for
the instance with 𝑓𝑖 = 𝑏′𝑖, we have −𝑑(𝑖,𝑊 ′) ≥ 𝑝𝑖 − 𝑏′𝑖. A
contradiction to 𝑏′𝑖 < 𝑏𝑖 follows.

Condition (ii): For any winner sets 𝑆 = 𝑠(𝑏𝑖,b−𝑖) and
𝑆′ = 𝑠(𝑏′𝑖,b−𝑖) in 𝒮𝑖(b−𝑖), considering the instances with
𝑓𝑖 equal to 𝑏𝑖 and 𝑏′𝑖 respectively, ℳ’s truthfulness gives
𝑑(𝑖, 𝑆) = 𝑑(𝑖, 𝑆′).

Condition (iii): Suppose that 𝑖 ∈ 𝑠(𝑏𝑖,b−𝑖). If 𝑖’s threshold
value w.r.t. b−𝑖 is undefined, then it is instant from ℳ’s
truthfulness that 𝑝𝑖(𝑏

′
𝑖,b−𝑖) is the same constant for all 𝑏′𝑖. So

we may assume that 𝑟𝑖(b−𝑖) is defined, and 𝑏𝑖 < 𝑟𝑖(b−𝑖). Sup-
pose for a contradiction that 𝑝𝑖(𝑏𝑖,b−𝑖) ̸= 𝑟𝑖(b−𝑖)−𝑑(𝑖, 𝑆) for
some 𝑆 ∈ 𝒮𝑖(b−𝑖). On the one hand, if 𝑝𝑖(𝑏𝑖,b−𝑖) > 𝑟𝑖(b−𝑖)−
𝑑(𝑖, 𝑆), then for the instance whose 𝑓𝑖 satisfies 𝑝𝑖(𝑏𝑖,b−𝑖) >
𝑓𝑖 − 𝑑(𝑖, 𝑆) > 𝑟𝑖(b−𝑖)− 𝑑(𝑖, 𝑆), since 𝑓𝑖 > 𝑟𝑖(b−𝑖) and condi-
tion (ii) holds, 𝑖’s utility when telling the truth is −𝑑(𝑖, 𝑆),
which is lower than his utility 𝑝𝑖(𝑏𝑖,b−𝑖)− 𝑓𝑖 when he bids
𝑏𝑖, a contradiction to ℳ’s truthfulness. On the other hand,
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if 𝑝𝑖(𝑏𝑖,b−𝑖) < 𝑟𝑖(b−𝑖)− 𝑑(𝑖, 𝑆), then for the instance whose
𝑓𝑖 satisfies 𝑝𝑖(𝑏𝑖,b−𝑖) < 𝑓𝑖 − 𝑑(𝑖, 𝑆) < 𝑟𝑖(b−𝑖) − 𝑑(𝑖, 𝑆),
by 𝑓𝑖 < 𝑟𝑖(b−𝑖), condition (i) and Lemma 3.3, we have
𝑝𝑖(𝑓𝑖,b−𝑖) = 𝑝𝑖(𝑏𝑖,b−𝑖). It follows that 𝑖’s utility when telling
the truth is 𝑝𝑖(𝑏𝑖,b−𝑖)−𝑓𝑖. However, 𝑖’s utility when bidding
at least 𝑟𝑖(b−𝑖) is −𝑑(𝑖, 𝑆) > 𝑝𝑖(𝑏𝑖,b−𝑖)− 𝑓𝑖, a contradiction
to ℳ’s truthfulness. �

The main difference between the above characterization
(Theorem 3.4) and Myerson’s is the existence of the extra
term −𝑑(𝑖, 𝑆) in (1). Similar to the generalization of My-
erson’s characterization for selection functions [17] to that
for assignment functions [1], Theorem 3.4 for cost functions
𝑐𝑖(𝑊 ) = 𝐼𝑊 (𝑖) · 𝑓𝑖 + 𝑑(𝑖,𝑊 ) admits a generalization for cost

function 𝑐𝑖(𝑊 ) = 𝐴𝑊 (𝑖) · 𝑓𝑖 + 𝑑𝑖(𝑊 ), where 𝐴𝑊 (𝑖) is the
amount of load assigned to agent 𝑖 corresponding to winner
set 𝑊 , and 𝑑𝑖(𝑊 ) is the counterpart to 𝑑(𝑖,𝑊 ).

4 SOCIAL COST

By the characterization (Theorem 3.4), a selection function
(algorithm) can be extended to a truthful mechanism if and
only if it is monotone and a loser always bears the same
(service) cost whenever increasing his bid; and the unique way
for the extension is paying agents according to condition (iii).
In this section, we design truthful mechanisms to minimize
the social cost. The challenge is to find eligible algorithms
(satisfying conditions (i) and (ii)) for the UFL with good
approximation ratios. In the remainder of the paper, we use
algorithm and selection function indiscriminately.

4.1 Optimal Truthful Mechanism

We are first concerned with the existence of an optimal truth-
ful mechanism which exactly minimizes the social cost, regard-
less of the time complexity of the algorithm. Every optimal
algorithm is clearly monotone, but it does not necessarily sat-
isfy condition (ii) in Theorem 3.4. Suppose a UFL instance
has two different optimal solutions 𝑊 and 𝑊 ′ neither of
which contains agent 𝑖, and 𝑖’s distances from them 𝑑(𝑖,𝑊 )
and 𝑑(𝑖,𝑊 ′) are different. However, 𝑊 and 𝑊 ′ could be the
winner sets output by an optimal algorithm in responses to
different bids of 𝑖. The algorithm violates condition (ii). To
avoid this event, we can adopt a trivial optimal approach that
traverses and indexes all feasible solutions, and then outputs
the optimal one with lowest index, where the sets are indexed
in the same way for any input of reported opening costs
(bids). It is easy to see that the trivial optimal algorithm,
denoted as 𝑠, satisfies condition (ii) in a way that

|{𝒮𝑖(b−𝑖)}| = 1 for all 𝑖 and b−𝑖. (2)

More generally, let 𝑠 denote an optimal algorithm for the
UFL which satisfies condition (ii) in a way that 𝒮𝑖(b−𝑖) con-
sists of a unique set 𝑆𝑖 for every 𝑖 and b−𝑖. Note that 𝑖 ̸∈ 𝑆𝑖.
Consider the following mechanism ℳ = (𝑠, 𝑝).

Mechanism 1. ℳ = (𝑠, 𝑝) is defined as: Given bid vector
b = (𝑏1, 𝑏2, . . . , 𝑏𝑛),

(i) The winner set is 𝑊 = 𝑠(b).

(ii) For each agent 𝑖, his payment 𝑝𝑖(b) is⎛⎝ ∑︁
𝑗∈𝑁∖{𝑖}

𝑑(𝑗, 𝑆𝑖) +
∑︁
𝑗∈𝑆𝑖

𝑏𝑗

⎞⎠−

⎛⎝ ∑︁
𝑗∈𝑁∖{𝑖}

𝑑(𝑗,𝑊 ) +
∑︁

𝑗∈𝑊∖{𝑖}

𝑏𝑗

⎞⎠ .

Theorem 4.1. Mechanism 1 for the dual-role facility game
is normalized, truthful, individual rational, and optimal for
the social-cost objective.

Proof. Normality. For 𝑖 ̸∈ 𝑊 = 𝑠(b), note that 𝑊 = 𝑆𝑖.
It is straightforward from Mechanism 1(ii) that 𝑝𝑖(b) = 0.

Truthfulness. By Theorem 3.4, it suffices to prove (1) hold-
s. Indeed, for every 𝑖 ∈ 𝑊 = 𝑠(b), we have 𝑑(𝑖,𝑊 ) =
0 and 𝑟𝑖(b−𝑖) − 𝑑(𝑖, 𝑆𝑖) = (

∑︀
𝑗∈𝑁 𝑑(𝑗, 𝑆𝑖) +

∑︀
𝑗∈𝑆𝑖

𝑏𝑗) −
(
∑︀

𝑗∈𝑁 𝑑(𝑗,𝑊 ) +
∑︀

𝑗∈𝑊∖{𝑖} 𝑏𝑗)− 𝑑(𝑖, 𝑆𝑖) = 𝑝𝑖(b).

Individual rationality. The individual rationality of losers is
obvious. For each winner 𝑖 ∈ 𝑠(b), if facility 𝑖 is open, then his
“utility” is 𝑝𝑖(b)−𝑏𝑖 = 𝑟𝑖(b−𝑖)−𝑑(𝑖, 𝑆𝑖)−𝑏𝑖 ≥ −𝑑(𝑖, 𝑆𝑖), where
𝑟𝑖(b−𝑖) ≥ 𝑏𝑖 is implied by the monotonicity of 𝑠. Otherwise, 𝑖
has to bear a service cost 𝑑(𝑖, 𝑆𝑖), and his “utility” is −𝑑(𝑖, 𝑆𝑖),
no more than that when he participates the game. �

VCG mechanism
Recall that, given cost functions 𝑐𝑖 of agents 𝑖 ∈ 𝑁 , a

VCG mechanism (not necessarily normalized) consists of
a selection function 𝑠(𝑐1, . . . , 𝑐𝑛) minimizing the social cost∑︀

𝑖∈𝑁 𝑐𝑖(𝑠(𝑐1, . . . , 𝑐𝑛)), and payment functions 𝑝𝑖(𝑐1, . . . , 𝑐𝑛) =
ℎ𝑖(𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛)−

∑︀
𝑗 ̸=𝑖 𝑐𝑗(𝑠(𝑐1, . . . , 𝑐𝑛)), where

ℎ𝑖 is a real function independent of 𝑐𝑖. Concerning Mechanis-
m 1 of our facility location game, let us consider 𝑐𝑖(𝑊 ) :=
𝐼𝑊 (𝑖) · 𝑏𝑖 + 𝑑(𝑖,𝑊 ) for all 𝑖 ∈ 𝑁 and 𝑠(𝑐1, . . . , 𝑐𝑛) = 𝑠(b) as
a special case. For any agent 𝑖, notice that 𝑆𝑖 defined above
Mechanism 1 does not contain 𝑖, and it does not depend on 𝑏𝑖,
nor on 𝑐𝑖. It is valid to take ℎ𝑖(𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛) :=∑︀

𝑗∈𝑁∖{𝑖} 𝑐𝑗(𝑆𝑖) =
∑︀

𝑗∈𝑁∖{𝑖} 𝑑(𝑗, 𝑆𝑖) +
∑︀

𝑗∈𝑆𝑖
𝑏𝑗 . It is clear

that
∑︀

𝑗∈𝑁∖{𝑖} 𝑐𝑗(𝑊 ) =
∑︀

𝑗∈𝑁∖{𝑖} 𝑑(𝑗,𝑊 ) +
∑︀

𝑗∈𝑊∖{𝑖} 𝑏𝑗 ,

and therefore ℎ𝑖(𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛)−
∑︀

𝑗∈𝑁∖{𝑖} 𝑐𝑗(𝑊 ) =

𝑝𝑖(b), from which we see that the payment defined in Mecha-
nism 1(ii) falls within the general VCG framework. Therefore,
Mechanism 1 is actually in the family of VCG mechanisms.

Although VCG mechanisms are various, finding a normal-
ized (and individual rational) one needs some tricks, especially
when it is additionally required that the optimal algorithm
satisfy condition (ii). The main challenge lies in the selection
of ℎ𝑖 to yield a normalized mechanism. A most-used choice of
ℎ𝑖 in a VCG mechanism is Clarke Pivot Rule (see [19]):
ℎ𝑖(𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛) = min𝑆⊆𝑁∖{𝑖}

∑︀
𝑗∈𝑁∖{𝑖} 𝑐𝑗(𝑆).

The payment to 𝑖 under this rule and that in Mechanis-
m 1 can both be regarded as 𝑖’s marginal contribution to
the social cost of other agents. The key difference lies on
that under Clarke’s rule, ℎ𝑖(𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐𝑛) is the
minimum social cost of others provided 𝑖 is absolutely absent
from the problem instance, while in Mechanism 1 it is the
total cost of others in a best facility solution that does not
contain 𝑖 (Note that here “best” corresponds to the social
cost with all players).
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Time complexity
The time complexity of computing payments entirely relies

on the selection function. The brute-force search mentioned
at the beginning of this subsection takes an exponentially
long period of time, and is intolerable in practice. In fact we
should not expect to find an optimal solution in polynomial
time, as the UFL in a general metric space is a well-known
NP-hard problem.

On the other hand, the UFL admits positive results in
some special cases. For example, the line is a widely studied
metric space for facility location games, because it models
a street in reality. When all agents lie on a tree and the
distances are given by the path lengths, Shah and Farach-
Colton [22] provides an 𝑂(𝑛2)-time dynamic programming
algorithm for finding an optimal solution of the UFL. As the
algorithm (when denoted as 𝑠) satisfies (2), we can apply it
to Mechanism 1.

Corollary 4.2. For the dual-role facility location game
in a tree space, there is a truthful mechanism that is optimal
for the social-cost objective, and runs (i.e., finds the winner
set and payments) in polynomial time.

Alternatively, we can impose restrictions on the cardinality
of the winner sets in a way that at most 𝑘 facilities can be
open. Then, the selection function required by Mechanism 1
becomes an algorithm for the 𝑘-facility location problem
instead of the UFL. When 𝑘 is a constant, we can implement
an exhaustive search, and let the selection function output
the optimal solution of the 𝑘-facility location problem with
the lowest index.

Corollary 4.3. Let 𝑘 be a positive constant. For the
dual-role facility location game with the constraint that every
winner set can contain at most 𝑘 agents, there is a truthful
mechanism that is optimal for the social-cost objective, and
runs in polynomial time.

4.2 Approximate Truthful Mechanism

In a general metric space, the exponential running time of
an optimal mechanism is unacceptable, and we turn our at-
tention to truthful mechanisms that approximately optimize
the objective function in polynomial time. Recall from The-
orem 3.4 that an algorithm admits a truthful mechanism if
(and only if) it satisfies conditions (i) and (ii) in the theorem.

We are interested in the price of being truthful, that is, how
much is the gap between the best approximation factors of
algorithms and truthful mechanisms, both running in polyno-
mial time. Dobzinski [6] provides an extended multi-auction
setting, in which deterministic polynomial-time truthful mech-
anisms cannot guarantee any bounded approximation ratio,
but a non-truthful FPTAS exists. On the other hand, D-
hangwatnotai et al. [5] prove that for a minimum makespan
scheduling problem, there are a randomized monotone PTAS
and a deterministic monotone quasi-PTAS, where monotonic-
ity can guarantee the truthfulness. These related works show
that the gap in our concern may be arbitrarily large or small,
depending on different problem settings.

As far as the UFL is concerned, Jain et al. [12] give a
1.61-approximate algorithm, referred to as JMS Algorithm.
Combing it with cost scaling, the algorithm of Mahdian et
al. [16] achieves the best-known deterministic approximate-
ratio 1.52. Next, we state JMS Algorithm, and show that it
admits a truthful mechanism; then we remark that why the
1.52-approximation algorithm [16] cannot be extended to a
truthful mechanism.

JMS Algorithm [12]
Phase 1. At the beginning, all agents (facilities) are uncon-

nected (unopened). Set 𝛼𝑗 = 0 for every agent 𝑗. At every mo-
ment, each agent 𝑗 offers some money to each unopened facil-
ity 𝑖. The amount of this offer is equal to max{𝛼𝑗 −𝑑(𝑖, 𝑗), 0}
if 𝑗 is unconnected, or max{𝑑(𝑖′, 𝑗) − 𝑑(𝑖, 𝑗), 0} if 𝑗 has al-
ready been connected to some other facility 𝑖′ (that has been
opened).

Phase 2. While there is an unconnected agent, increase
the parameter 𝛼𝑗 of each unconnected agent 𝑗 at the same
rate, until one of the following two events occurs:

- For some unopened facility 𝑖, the total offer he receives
is equal to his opening cost 𝑓𝑖. In this case, we open
facility 𝑖, and connect 𝑗 to 𝑖 for every agent 𝑗 (connected
or unconnected) which has a non-zero offer to 𝑖.

- For some unconnected agent 𝑗, and some facility 𝑖 that
has already been opened, 𝛼𝑗 = 𝑑(𝑖, 𝑗). In this case, we
connect 𝑗 to 𝑖.

JMS algorithm runs in time 𝑂(𝑛3), and the corresponding
threshold values are polynomially computable.

Theorem 4.4. JMS algorithm can induce a 1.61-approximate
efficiently-computable truthful mechanism.

Proof. Take JMS algorithm as the selection function 𝑠.
It is easy to see that 𝑠 is monotone, satisfying condition (i)
of Theorem 3.4. To prove the truthfulness, we verify that 𝑠
satisfies (2).

Suppose that agent 𝑖 bids 𝑏𝑖 ≥ 𝑟𝑖(b−𝑖). Then facility 𝑖 will
not be unopened. In the algorithm, the increasing process
of all parameters 𝛼𝑗 will stop at a time point 𝑡 before the
total offer that agent 𝑖 receives reaches 𝑟𝑖(b−𝑖), and all the
connections of agents and opening of facilities have been
determined at this time point 𝑡. Note that 𝑡 has the same
value for all 𝑏𝑖 ≥ 𝑟𝑖(b−𝑖), which implies |𝒮𝑖(b−𝑖)| = 1. �

The best-known 1.52-approximation deterministic algorith-
m, however, does not satisfy condition (ii). It utilizes a cost
scaling technique, and the solution is sensitive to the scaled-
up or scaled-down (reported) opening costs. So the current
gap between the approximation ratios of polynomial-time al-
gorithms and truthful mechanisms is 1.61− 1.52 = 0.09. This
is a quite small value, indicating that for the dual-role facility
location game the requirement of truthfulness produces little
influences on the approximation ratios.
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5 BOTTLENECK COST

In this section, we study the bottleneck-cost objective
function 𝐶𝐵(𝑊 ) = max𝑖∈𝑁 𝑐𝑖(𝑊 ), instead of the social cost.
This objective partly means that neither a large opening cost
nor a large service cost is welcome. Most of the conclusions
in the previous sections adapt to this bottleneck objective.
First, the characterization of truthfulness in Theorem 3.4
does not depend on the objective function. So we can design
algorithms that satisfy conditions (i) and (ii), which implies
truthfulness. The difference is that we can exactly solve this
minimum bottleneck-cost problem in polynomial time, which
stands in contrast to the NP-hardness of the UFL problem.
The following mechanism consists of the exact algorithm and
its corresponding payments.

Mechanism 2. Sort the bids in nondecreasing order: 𝑏1 ≤
𝑏2 ≤ · · · ≤ 𝑏𝑛, renaming if necessary. Set 𝑖 := 1,𝑊 := {1}.

(i) while 𝑏𝑖+1 ≤ max{max𝑗∈𝑁 𝑑(𝑗,𝑊 ), 𝑏𝑖} do
𝑊 := 𝑊 ∪ {𝑖+ 1}; 𝑖 := 𝑖+ 1;

The winner set 𝑠(b) is 𝑊 * := 𝑊 .
(ii) For each 𝑖 ∈ 𝑊 , let 𝑟*𝑖 be the optimal value of the

program: minimize 𝑟, subject to max𝑗∈𝑁 𝑑(𝑗, 𝑆𝑟) ≤ 𝑟,
where 𝑆𝑟 = {𝑗 | 𝑏𝑗 ≤ 𝑟, 𝑗 ∈ 𝑁 ∖ {𝑖}}; the payment to 𝑖
is 𝑝𝑖(b) := 𝑟*𝑖 − 𝑑(𝑖, 𝑆𝑟*𝑖

). For each 𝑖 /∈ 𝑊 , 𝑝𝑖(b) = 0.

Lemma 5.1. For any bid vector b, the selection algorith-
m 𝑠 in Mechanism 2 finds an optimal winner set 𝑊 * ∈
argmin𝑊⊆𝑁 max𝑖∈𝑁{𝐼𝑊 (𝑖) · 𝑏𝑖 + 𝑑(𝑖,𝑊 )}.

Proof. In view of the nondecreasing ordering of bids, we
may suppose that the output winner set 𝑊 * = {1, . . . , 𝑖}. For
every 𝑆 ⊆ 𝑁 , define 𝐶𝐵(𝑆) := max𝑖∈𝑁{𝐼𝑆(𝑖)·𝑏𝑖+𝑑(𝑖, 𝑆)}. By
contradiction, suppose that 𝑆(⊆ 𝑁) has a lower bottleneck-

cost 𝐶𝐵(𝑆) < 𝐶𝐵(𝑊
*). Note that 𝑏𝑖 ≤ 𝐶𝐵(𝑊

*) < 𝑏𝑖+1,

enforcing 𝑆 ⊆ 𝑊 *. It follows from 𝐶𝐵(𝑊
*) > 𝐶𝐵(𝑆) ≥

max𝑗∈𝑁 𝑑(𝑗, 𝑆) ≥ max𝑗∈𝑁 𝑑(𝑗,𝑊 *) that 𝐶𝐵(𝑊
*) = 𝑏𝑖 >

max𝑗∈𝑁 𝑑(𝑗, {1, . . . , 𝑖}).
At each iteration of the algorithm we add one agent to

𝑊 , maintaining 𝐶𝐵(𝑊 ) and max𝑗∈𝑁 𝑑(𝑗,𝑊 ) nonincreasing.

If 𝑏1 > max𝑗∈𝑁 𝑑(𝑗, {1}), then 𝐶𝐵(𝑊
*) = 𝑏1 ≥ 𝐶𝐵(𝑆) gives

a contradiction. So we take the largest ℎ(≤ 𝑖) such that
max𝑗∈𝑁 𝑑(𝑗, {1, . . . , ℎ}) ≥ 𝑏ℎ, which combined with 𝑏𝑖 >
max𝑗∈𝑁 𝑑(𝑗, {1, . . . , 𝑖}) implies 𝑏ℎ+1 > max𝑗∈𝑁 𝑑(𝑗, {1, . . . , ℎ+
1}) and 𝑏ℎ ≤ 𝑏ℎ+1 = · · · = 𝑏𝑖 ≤ max𝑗∈𝑁 𝑑(𝑗, {1, . . . , ℎ}) since
the iteration stops at step 𝑖. As 𝐶𝐵(𝑆) < 𝑏𝑖, it follows that

𝑆 ⊆ {1, . . . , ℎ} and 𝐶𝐵(𝑆) ≥ max𝑗∈𝑁 𝑑(𝑗, {1, . . . , ℎ}) ≥ 𝑏𝑖, a
contradiction. �

Lemma 5.2. The threshold value of winner 𝑖 ∈ 𝑠(b) is 𝑟*𝑖 .

Proof. We discuss the outcome when agent 𝑖 bids 𝑟 below
or above 𝑟*𝑖 . When 𝑟 < 𝑟*𝑖 , it cannot be a feasible solution
of the programm, that is, 𝑟 < max𝑗∈𝑁 𝑑(𝑗, 𝑆𝑟). According to
the selection algorithm 𝑠, 𝑖 must be added to the winner set
𝑠(𝑟,b−𝑖). When 𝑟 > 𝑟*𝑖 , the optimal objective value 𝑟* of the
program is actually the minimum bottleneck cost of a solution
that does not contain 𝑖 . It follows from the optimality of the
selection algorithm (Lemma 5.1) that 𝑖 ̸∈ 𝑠(𝑟,b−𝑖). �

Theorem 5.3. Mechanism 2 for the dual-role facility loca-
tion game is normalized, truthful, individual rational, optimal
for the bottleneck-cost objective, and runs in polynomial time.

Proof. The normality and polynomial-time efficiency is
clear from the context. The optimality has been verified in
Lemma 5.1. To see the truthfulness, we show that conditions
(i) – (iii) in Theorem 3.4 are satisfied. By the process of the
selection algorithm 𝑠, 𝑠 is clearly monotone, giving condition
(i), and no single loser can change the winner set by unilater-
ally increasing his bid, yielding condition (ii). Combining this
with Lemma 5.2 (which implies condition (iii)), we deduce
from Theorem 3.4 that Mechanism 2 is truthful. As in the
proof of Theorem 4.1, individual rationality follows from the
fact that every winner’s threshold value is at least his bid. �

6 BUDGETED GAMES

In this section, we study the game with a budget con-
straint. Given a budget 𝐵 ∈ R+ (suppose 𝐵 ≥ min𝑖∈𝑁{𝑓𝑖}),
a truthful mechanism is budget feasible if its total payment
to agents does not exceed 𝐵. Payments could be considered
as “compensations” for agents to open their facilities. To
measure the performance of a budget-feasible mechanism for
the social-cost objective, we compare it to the optimum of
the UFL under the budget constraint of the total opening
cost being at most 𝐵. Formally, a budget-feasible mechanism
ℳ is pseudo-optimal (resp. pseudo-𝛼-approximate) if for any
instance, the social cost of the outcome by ℳ equals (resp.
is no more than 𝛼 times) the optimal objective value of the
programm: min𝑊⊆𝑁 𝐶(𝑊 ) subject to

∑︀
𝑖∈𝑊 𝑓𝑖 ≤ 𝐵. The

counterparts for the bottleneck-cost objective are defined
analogously, with 𝐶𝐵(·) in place of 𝐶(·).

Social-cost objective
We show that, however, the additional requirement of

budget feasibility almost excludes possibility of acceptable
pseudo-approximation ratios. The high-level idea is: Consider
the instance where the optimal solution opens at least two
facilities with opening costs far less than the budget, while
all suboptimal solutions have unacceptable social costs. Then
the threshold value of each winner is large, which may come
up to an exceeded total payment.

Theorem 6.1. Every truthful and budget-feasible mecha-
nism has a pseudo-approximation ratio of Ω(𝑛).

Proof. Consider an instance with an even number of
agents represented by nodes in the tree network depicted in
Figure. 1, where agents (nodes) 1 and 2 are neighbors, both
having degree 𝑛

2
, all other 𝑛 − 2 agents (nodes) are leaves;

the edge between agents 1 and 2 has length 𝐿 = 𝐵
8
, and all

other 𝑛− 2 (pendent) edges each having a very small length
𝜖. The distances between agents are defined as the lengths
of the shortest paths between them. We show that for the
opening cost profile f = (𝛿, 𝛿, 2𝐵, . . . , 2𝐵) with a very small
𝛿, any truthful mechanism ℳ with pseudo-approximation
ratio 𝛼 less than Θ(𝑛) cannot be budget feasible.
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First, with any bids, a truthful mechanism which selects a
facility with opening cost 2𝐵 must violate the budget, since
its threshold is at least 2𝐵 (at 2𝐵, he still wins), and the
total payment is at least 2𝐵 − 3𝐿 > 𝐵 (agent 1 and 2 may
have payment −𝐿). Second, under f , the optimal solution is
𝑊 = {1, 2} with social cost approximately 0, and in turn,
𝛼 < Θ(𝑛) enforces that ℳ must output 𝑊 as the winner set.

Now we study the threshold, and consider the bid vector
b = ( 3𝐵

4
, f−1). We have

∑︀
𝑖∈𝑁 𝑑(𝑖,𝑊 )+

∑︀
𝑖∈𝑊 𝑏𝑖 ≈ 3𝐵

4
, while

the other two budget-feasible solutions {1} and {2} of the
UFL have social costs at least 𝑛𝐿

2
= 𝑛𝐵

16
. Thus under b,

𝛼 < Θ(𝑛) dictates again the selection 𝑊 . Therefore agent 1
wins under b and his threshold value w.r.t. f−1 is at least 3𝐵

4
.

Similarly, agent 2 has a threshold at least 3𝐵
4

w.r.t. f−2. Then

by payment formula (1), ℳ should pay at least 3𝐵
4

−𝐿 = 5𝐵
8

to each agent 1 and 2. At this case, the total payment exceeds
the budget 𝐵. It is a contradiction. �

Figure 1: A tree network for the lower bound.

From the above we may find that, even if the government
plans to open at most two facilities and within the budget, a
corresponding truthful and budget-feasible mechanism still
has a pseudo-approximation ratio at least Θ(𝑛). Next, we
show that if only one facility is allowed to open, there is an
optimal truthful and budget feasible mechanism.

Mechanism 3. Given input: bid vector b = (𝑏1, . . . , 𝑏𝑛)

and budget 𝐵, for each agent 𝑖 ∈ 𝑁 , define 𝐶({𝑖}) =∑︀
𝑗∈𝑁 𝑑(𝑗, 𝑖) + 𝑏𝑖. Sort all 𝑚 agents with bids no more than

𝐵 as 𝐶({1}) ≤ 𝐶({2}) ≤ · · · ≤ 𝐶({𝑚}), breaking the tie
arbitrarily and renaming if necessary. Then

∙ If 𝑚 = 0, the selection function gives 𝑠(b) = ∅, and
there is no payment. Else, 𝑠(b) = {1}.

∙ If 𝑚 = 1, the payment to agent 1 is 𝑝1(b) = 𝐵 −𝑄. If

𝑚 ≥ 2, 𝑝1 = min{𝐶({2}) − 𝐶({1}) + 𝑏1, 𝐵} − 𝑑(1, 2).
For each other agent, the payment is 0.

Theorem 6.2. If at most one facility is allowed to open,
Mechanism 3 is an optimal truthful and budget feasible mech-
anism, running in polynomial time.

Proof. To show the truthfulness, it suffices to verify the
payment is defined as (1), since the selection rule satisfies both
condition (i) and (ii) in Theorem 3.4. When 𝑚 = 1, we have
𝒮1(𝑏−1) = {∅}, and the payment should be 𝑟1(b−1)−𝑑(1, ∅) =
𝐵 − 𝑄. When 𝑚 ≥ 2, agent 1 is selected if and only if his
bid does not exceed 𝐵 and 𝐶({2}) + 𝑏1 − 𝐶({1}), otherwise

the mechanism will select agent 2. So the threshold value is
min{𝐶({2}) + 𝑏1 − 𝐶({1}), 𝐵}.

The optimality, budget feasibility and polynomial com-
putability are all obvious. It remains to show the individual
rationality. The case 𝑚 ≤ 1 is trivial. Suppose 𝑚 ≥ 2 and a-
gent 1 rejects to participate the game, then his utility changes
from 𝑝1−𝑏1 to −𝑑(1, 2). As 𝐵 ≥ 𝑏1 and 𝐶({2}) ≥ 𝐶({1}), we
have 𝑝1 − 𝑏1 ≥ −𝑑(1, 2), giving the individual rationality. �

Bottleneck-cost objective
Generally, with the budget constraint, we can find a lower

bound 1.5 for the approximation ratio of any truthful and
budget feasible mechanisms for the dual-role facility location
game with bottleneck-cost objective, by a similar instance in
Theorem 6.1. To find an upper bound needs more techniques,
for which we have no idea so far. When we are allowed to
open only one facility, there is an optimal and budget-feasible
mechanism: Define 𝐶𝐵({𝑖}) = max{max𝑗∈𝑁 𝑑(𝑗, 𝑖), 𝑏𝑖}, 𝑖 ∈
𝑁 , and modify Mechanism 3 by replacing 𝐶(·) with 𝐶𝐵(·).
The optimality, truthfulness and budget feasibility can be
easily checked, similar to the proof of Theorem 6.2.

7 CONCLUSIONS

Chen et al. [2] study designing budget-feasible mecha-
nisms for maximizing monotone submodular function. They
provide a 7.91-approximate randomized algorithm and a 8.34-
approximate deterministic algorithm by a greedy scheme,
according to marginal contributions relative to cost. In this
paper, the objective function 𝐶(·) is supermodular, and it
seems natural to ask what would happen if we turn our ob-
jective into maximizing an appropriate constant minus 𝐶(·),
which is a submodular set function. This function, however,
is not monotone, as generally the number of facilities opened
should be moderate. In view of this, the greedy scheme is no
longer applicable here.

This paper initiates the study of single parameter problems
where an agent incurs some cost even it loses, and we believe
this can be extended to many other interesting topics such as
reverse auction, especially combined with budget. In terms of
facility location games, different from previous works which
mainly consider non-money case, our study provides results
with payment, and it can lead to various studies with respect
to strategic customers or facilities.
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