
Obviously Strategyproof Mechanisms without Money for
Scheduling

Maria Kyropoulou and Carmine Ventre

University of Essex

ABSTRACT
We consider the scheduling problemwhen no payments are allowed

and the machines are bound by their declarations. We are interested

in a stronger notion of truthfulness termed obvious strategyproof-

ness (OSP) and explore its possibilities and its limitations. OSP

formalizes the concept of truthfulness for agents/machines with a

certain kind of bounded rationality, by making an agent’s incentives

to act truthfully obvious in some sense: roughly speaking, the worst

possible outcome after selecting her true type is at least as good

as the best possible outcome after misreporting her type. Under

the weaker constraint of truthfulness, Koutsoupias [2011] proves a
tight approximation ratio of

n+1

2
for one task. We wish to examine

how this guarantee is affected by the strengthening of the incentive

compatibility constraint. The main message of our work is that

there is essentially no worsening of the approximation guarantee

corresponding to the significant strengthening of the guarantee of

incentive-compatibility from truthfulness to OSP. To achieve this,

we introduce the notion of strict monitoring and prove that such

a monitoring framework is essential, thus providing a complete

picture of OSP with monitoring in the context of scheduling a task

without money.

KEYWORDS
Obvious strategyproofness; Extensive-form mechanisms without

money; Monitoring; Machine scheduling

ACM Reference Format:
Maria Kyropoulou and Carmine Ventre. 2019. Obviously Strategyproof

Mechanisms without Money for Scheduling. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 8 pages.

1 INTRODUCTION
Consider the very basic situation in which we need to allocate a

set of tasks to a set of agents controlling machines, each with dif-

ferent and private processing capabilities, a.k.a. types. Agents are
assumed to be selfish and strategic, so they might misreport the

time they need to execute the tasks in an attempt to minimize their

own running time after the allocation. We are interested in design-

ing allocation protocols that do not use payments and the stable

outcomes are not far from the non-strategic, centrally enforced

optimum makespan, i.e., the completion time of the schedule.

A primary designer goal that has been extensively studied is

that of truthfulness, which informally implies that a player should

be able to optimize her own individual utility by reporting truth-

fully. For the case of a single task, and when payments are allowed,

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

we know that a second-price auction that allocates the task to

the machine declaring the lowest execution time and compensates

her with a payment equal to the second lowest declaration, in-

centivizes truth-telling. In other words, under the second-price

auction rational agents are expected to truthfully reveal their ex-

ecution times and the task can then be optimally allocated to the

machine that minimizes its completion time. However, the truth-

fulness of the second-price auction is not always easy to grasp

and its transparency depends also on its implementation. Indeed,
lab experiments show that people will lie to a sealed-bid imple-

mentation (Vickrey auction) more often than to a descending-price

implementation of the second-price auction [4]. Recently, Li [2017]

provided an explanation for this phenomenon by introducing the

notion of Obviously Strategy-Proof (OSP) mechanisms; descending

auctions are OSP mechanisms, while sealed-bid auctions are not.

Li characterized this solution concept as the correct one for peo-

ple with limited contingent reasoning skills, thus formalizing the

concept of truthfulness for agents with a certain kind of bounded

rationality.

In many cases, though, the use of payments might be considered

unethical, illegal (e.g. organ donations) or even just impractical

(see, e.g., [22]). Yet, truthfulness remains a very desirable prop-

erty that can help the mechanism designer know what kind of

behavior to expect from the agents, and for this reason, researchers

have started turning their attention to possible ways of achieving

truthfulness without the use of payments. Unfortunately, achieving

truthfulness is not always compatible with maintaining a good

objective value in the absence of payments [15, 23]. So, in order to

achieve a reasonable (even simply bounded) approximation of the

optimal solution, the use of additional machinery might be impera-

tive. Koutsoupias [2011] provides a positive result in the context

of scheduling without payments using the plausible assumption of

monitoring, that is, the machines are bound by their declarations.

In other words, the mechanism monitors the agents so that their

declarations are checked against their behavior at run-time, and can

force the machines to work longer than necessary (if they declared

higher execution time than what they actually need) by enforc-

ing that their execution time is compatible with their bid. This

was influenced by the notion of impositions, according to which

a mechanism can restrict the set of reactions available to a player

after the outcome is chosen (see e.g. [12, 20]). A framework that is

also very much related to monitoring is the notion of verification

where agents are heavily punished when caught lying [7, 10] or,

in presence of money, denied their payments [21]; these penalties

are, in some cases, in addition to being monitored [19]. Variants of

monitoring have been studied extensively in the literature (under

slightly different names) [7, 8, 11, 13, 14, 17, 20, 24].

Overall, monitoring and similar notions, are paradigms that

give the mechanism designer additional power that can help the

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1574

prevention of lies. The designer can exert this power in a number of

real-life situations, e.g., when agents and designer are in the same

physical space or when the designer can control the legislative

environment. Clearly, it might be trickier to motivate in some other

cases. Nonetheless, as from the related literature, whenever the

mechanism designer has the power to implement this paradigm,

then many impossibility results can be bypassed. In particular, for

the case of fully rational machines, Koutsoupias provides a truthful-

in-expectation (randomized) mechanism that allocates a single task

and achieves an (n+ 1)/2-approximation of the optimum makespan

(completion time) while proving that this is best possible.
1
The

question that remains is:

To what extent can we optimally allocate the task to
our set of n selfish agents when they have bounded
rationality?

More specifically, we seek a quantitative answer to the following

question: How much does the approximation guarantee deteriorate
when we strengthen the constraint of incentive-compatibility from
truthfulness to OSP? The literature on OSP commonly considers

mechanisms that are not direct revelation but rather implemented

as an extensive-form game through what is called the mechanism’s

implementation tree (see, e.g., [6]). Such a tree models the steps

that the mechanism takes according to the actions of the agents. In

particular, an agent is associated with each vertex of the tree (the

divergent agent) and actions (mapped to the types) are associated

with the edges. The mechanisms starts at the root and traverses a

path of the tree. At each step the mechanism asks the corresponding

divergent agent to act and select one of the outgoing edges; this

corresponds to the agent declaring that her type belongs to the set

of types associated with the corresponding edge. Each leaf node of

the tree is associated with an outcome which the mechanism will

enforce if the execution path reaches that leaf.

Extending the definition of monitoring to these extensive-form

mechanisms is not entirely straightforward. For example, the exe-

cution of the mechanism might follow a path that does not involve

all the agents. Or, it might be that, in the chosen execution path, a

divergent agent selected an edge with more than one types associ-

ated with it in the last time that she acted. Both of these cases show

that we might reach a leaf of the tree without having requested

that all agents declare their exact type. The question that arises

is: to what type compatible with the history should we tie the cost
of the monitored agent? As an answer this question, we introduce

the notion of strict monitoring, where we assume that monitoring

is enforced according to the maximum type of each agent that is

compatible with the history. While this is clearly a very rigid no-

tion, two complementary observations can be made to mitigate and

motivate its use. Firstly, we give a complete picture of the power of

monitoring in this context, as we show that any other definition of

monitoring for extensive-form games leads to unbounded approxi-

mation guarantees; strict monitoring is then essential to overcome

impossibility results. Secondly, many countries adopt legislation to

deal with incomplete declarations (of income, mainly). For example,

1
When applied to many tasks, this mechanism immediately implies an n(n + 1)/2

approximation ratio for the makespan objective. A different algorithm achieving an

approximation ratio of n was later provided in [14].

in New Zealand higher tax rates are used in the cases in which peo-

ple do not provide their Inland Revenue Department number when

collecting their investment incomes. In Italy, a business declaring

an income that is not in line with the sector average are subject

to a presumptive income taxation – i.e., the tax man rounds up the

income to the sector average and issues a tax bill for that amount.

The onus is on the business to prove that the income is effectively

lower.
2

1.1 Our contribution
We here study the problem of scheduling with monitoring when

payments are not allowed and examine the repercussion of a bounded

rationality assumption by considering OSP mechanisms. We con-

sider the results in [16] for fully rational agents, as a benchmark. As

noted above, for the case of scheduling a single task Koutsoupias

[16] proved that the approximation ratio of any (randomized) truth-

ful mechanism is at least (n + 1)/2 and gave a mechanism matching

this bound, where n is the number of machines. The main message

of our work is that there is essentially no worsening of the approxi-
mation guarantee corresponding to the significant strengthening

of the guarantee of incentive-compatibility from truthfulness to

OSP, as long as the mechanism designer can implement a particular

notion of monitoring.

Specifically, our work provides a complete picture of OSP with

monitoring in the context of scheduling a task without money. We

design an OSP mechanism that returns approximation α < n when

we have n machines and we show that this is tight. The actual

bound depends on the agents’ type domain (i.e., the allowed set

of types – execution times – that the agents can declare to the

mechanism) and gets smaller the smaller the difference between

maximum and minimum type therein. Therefore, the price to pay

to turn truthfulness into OSP is less than a factor 2 loss in the

approximation guarantee.

Another contribution of our work is the notion of strict moni-

toring which is suited for extensive-form mechanisms and allows

us to bypass the inapproximability results in the case of large do-

mains. In particular, we show that strict monitoring is necessary

and sufficient to obtain bounded approximation ratios; any other

(weaker) notion of monitoring
3
leads to a strong lower bound on

the approximation guarantee of OSP mechanisms.

Our work introduces in fact two new techniques to lower bound

the approximation guarantee of OSP mechanisms without money.

The first adapts the ideas in [6] to the setting without money;

specifically, we identify a property that implementation trees need

to satisfy in order to guarantee a “good” approximation, and then

combine this with OSP constraints. This is used to prove that the

approximation of our mechanism is tight (Lemma 3.3). The second

technique, instead, reverses the approach and the approximation

analysis yields structural properties on the implementation trees

of OSP mechanisms with bounded approximation. Specifically, we

2
In these examples, it is the case that agents choose to withhold information from the

system; in our case, it is the system – mechanism – itself which might prevent full

disclosure. However, since agents accept to work for free there must be an imbalance

of power between themselves and the designer just like in those examples. Therefore,

it is arguably the case that the agents will accept the rules of the system, both in terms

of declaration and punishment.

3
It is folklore that, already for truthful mechanisms, no bounded approximation is

possible without monitoring.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1575

mimic the typical structure of a lower bound to the approximation

guarantee of a truthful mechanism and combine approximation and

OSP constraints to reach the conclusion that one needs a careful

definition of monitoring to obtain bounded approximations (Lemma

4.1). Interestingly, we then show how this result can be used to

characterize the queries that need to be done to marry bounded

approximation and OSP.

We finally consider the extension to many tasks, the so-called

scheduling unrelated machines problem. We observe that we can

sequentially allocate each task to the machines preserving OSP, and

obtain an αn approximation. We leave as an open problem to under-

stand whether this is the best possible as opposed to truthfulness

where it is known that n-approximation is possible [14].

2 PRELIMINARIES
In the unrelated machines scheduling problem, we are given m
tasks that need to be allocated to n machines. Each machine has

job-dependent types ti , j ∈ D that correspond to the time machine

i needs to execute job j, D denoting the domain of agents’ types.

Types are private knowledge of the machines. We seek to design

mechanisms that probabilistically allocate the jobs to minimize the

makespan, defined as the completion time of the schedule. We focus

on mechanisms that are OSP, in that they incentivate truthtelling

even if the machines are not perfectly rational. Before we can

present the OSP notion, we need to give some background.

An extensive-form mechanism M is a pair (f ,T), where f is

an algorithm (also termed social choice function) that takes as in-

put bid profiles and returns a probabilistic allocation of tasks to

the machines (f is essentially a mapping between bid profiles and

outcomes), and T is an extensive-form game that we call imple-

mentation tree.
4
Each internal node u of T is labelled with a player

S(u), called the divergent agent at u, and the outgoing edges from

u are labelled with types in the domain of S(u) that are compatible

with the history leading to u; the edges’ labels denote a partition of

the compatible types. We denote by Di (u) the types in the domain

of i that are compatible with the history leading to u. The tree

models how M interacts with the agents: at node u the agent S(u)
is queried and asked to choose a strategy that will effectively select

one of the type-sets in the partition. The leaves of the tree will then

be linked to (a set of) bid profiles and f will return the probability

distribution used to allocate the tasks to the machines. (Observe

that this means that the domain of f is effectively given by the

leaves of T .) We use b to denote bid profiles, so that bi , j stands for
the execution time machine i “declared” (i.e., i played the game T

as if her type were (bi , j)j) for task j. For simplicity, we use f (b)
to denote the outcome of f for the leaf of T to which b belongs,

i.e., fi , j (b) denotes the probability that task j is allocated to ma-

chine i for declarations/actions according to b (when we examine

the case of a single task we drop the dependence on j for ease of
presentation). Figure 1 gives an example of an implementation tree

for scheduling a task to two machines with a three-value domain

{L,M,H }. The root partitions the domain of machine 1 into {M,H }

and L. If we let v denote the internal node that is labelled with 1,

4
The definition of a mechanism as a pair identifies that in OSP, in addition to the

social choice function, the design of the extensive-form implementation is essential to

define the incentive constraints. The authors of [6] show how this is equivalent to Li’s

original definition and the ones used in subsequent work.

then D1(v) = {M,H } as type L is no longer compatible with the

history of v . Finally, v partitions D1(v) into {M} and {H }.

We now define OSP with (strict) monitoring, the solution con-

cepts of interest to our work; since our main focus is on the case

of single task we will restrict our focus and notation tom = 1 in

order to simplify the exposition.

OSP informally implies that whenever an agent is asked to di-

verge, she is better off acting according to her true type in any
possible future scenario: the worst possible outcome after selecting

her true type is at least as good as the best possible outcome after

misreporting her type, at that particular point in the implementa-

tion tree. For the formal definition, we need to introduce some more

notation. We call a bid profile b compatible with u if b is compatible

with the history of u for all agents. We furthermore say that (t, b−i)
and (b, b′

−i) diverge atu if i = S(u) and t and b are labels of different

edges outgoing u. So, for example, (M,H) and (H , L) are compatible

at node w on Figure 1 (labelled with 2) and diverge at that node,

whilst (M,H) and (H ,M) are compatible but do not diverge.

1

2w f (L,⋆)

1v f (L̄, L)

f (M, L̄) f (H , L̄)

MH L

MH L

M H

Figure 1: An implementation tree for scheduling a task to
two machines with domain {L,M,H }; L̄ denotes the fact that
the type of a machine is in {M,H } in the corresponding leaf,
while⋆ denotes the fact that the machine can have any type
in the domain D in the corresponding leaf.

For every agent i and types t,b ∈ Di , we let u
i
t ,b denote a vertex

u in the implementation tree, T , such that, for some b−i , b′−i ∈

D−i (u) = ×j,iD j (u), we have that (t, b−i) and (b, b′−i) are compati-

ble with u but diverge at u . Note that such a vertex might not be

unique as agent i will be asked to separate t from b in different

paths from the root (but only once for every such path). We call

these vertices of T tb-separating for agent/machine i . We are now

ready to define OSP.

Definition 2.1 (OSP with monitoring). An extensive-form mecha-

nismM = (f ,T) is OSP with monitoring for scheduling a single

task if for all i , t,b ∈ Di , u
i
t ,b ∈ T , and b−i , b′−i ∈ D−i (u

i
t ,b), it

holds that

t · fi (t, b−i) ≤ max{t,b} · fi (b, b′−i).

In the definition above, we can appreciate howmonitoring bounds

an agent to her declaration: machine i will execute the task for a

time that is the maximum between her true type and her reported

one. So, the expected cost/workload of machine i of type t declaring
b is defined as max{t,b} · fi (b, b′−i).

However, there is not an immediate analogue of declaration in

extensive-form mechanisms. Let us turn our attention to Figure 1.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1576

Consider the right child of nodew in the tree. Along this path, we

have not given machine 1 the chance to separateM from H . What

type should we use to monitor machine 1 who claimed her type

to be eitherM or H? Strict monitoring implies that we assume the

highest compatible type. Although this is a very strict assumption,

we show later (Lemma 4.1) that it is indeed essential, as any weaker
monitoring notion would lead to an unbounded approximation of

the optimal makespan. Formally, if we let ℓb denote the unique leaf
of the tree with which b is compatible, we have the following.

Definition 2.2 (OSP with strict monitoring). An extensive-form

mechanism M = (f ,T) is OSP with strict monitoring for sched-

uling a single task if for all i , t,b ∈ Di , u
i
t ,b ∈ T and b−i , b′−i ∈

D−i (u
i
t ,b), it holds that

t · fi (t, b−i) ≤ max{t,maxDi (ℓ(b ,b′
−i)

)} · fi (b, b′−i).

We note that our definition implicitly assumes that we can iden-

tify the true processing time of a machine if we allocate them the

task, and not monitor them if they are being truthful (if their true

processing time is compatible with the leaf defining the outcome,

but other types are also compatible with it). This way, we can avoid

unfairly punishing truthful agents and only apply strict monitoring

to dishonest agents. (This is similar to the Italian presumptive taxa-

tion system discussed above.) Our results continue to hold even in

the case where such a type-identification mechanism is not avail-

able, and even the truthful agents are expected to (possibly unfairly)

exert effort equal to the highest possible type compatible with the

history.

Finally, we note that the above definitions of OSP are an imme-

diate application of the definitions introduced by Li in his seminal

paper [18] to scheduling – see discussion in [6]. OSP with moni-

toring has been considered already in [8]; however their definition

fails to capture the intricacies of extensive-form mechanisms and

mainly focuses on direct revelation. It is also worth remarking that

our use of randomness is compatible with the literature on OSP.

Randomness in Li’s definition can come in two shapes: chance (in-

ternal) nodes and lotteries in the leaves (cf. footnote 15 in [18]). It

has been noted in the literature how the former concept translates

“universally truthful mechanisms” to OSP (see, for example, foot-

note 9 in [3]). The latter is our focus herein; the expectation is taken

on each leaf and therefore fits with Li’s arguments for bounded

rationality. (Incidentally, a definition of OSP in expectation which

also considers the effects of internal chance nodes on bounded

rationality is given in a recent paper [9].)

3 TWO-VALUE DOMAINS
In this section we examine the case of two-value domains, i.e., D =
{L,H }, L < H , and demonstrate a tight approximation ratio α < n
for OSP mechanisms for scheduling. The mechanism that we design

is reminiscent of an ascending-price auction. It looks for the smallest

possible type (the fastest execution time) in the domain and as soon

as it identifies an agent with that type, it immediately allocates the

task with some carefully selected probability p to the corresponding

machine and evenly splits, amongst the other agents, the remaining

probability mass 1 − p. (If no fast agent/machine is found, the task

is allocated uniformly.) We show that the probabilities used by the

mechanism are small enough to satisfy OSP while also large enough

to guarantee a good approximation.

Definition 3.1 (Mechanism M2). M2 specifies an arbitrary order

of the machines and asks the machines one after the other in that

order if their type is L orH . Let machine i∗ be the first machine who

answers L. The mechanism will then stop querying the machines

and produce the following allocation: the task is allocated with

probability p = H
H+(n−1)L to machine i∗ and with probability

1−p
n−1
=

L
H+(n−1)L to each other machine. If no machine replies L, then the

task is allocated with probability 1/n to each machine.

Theorem 3.2. M2 is an OSP with monitoring5 mechanism that
achieves approximation ratio Hn

H+(n−1)L < n for scheduling one task
to n machines, when their type domain has two values, L and H .

Proof. Consider the non-trivial case where L < H and mech-

anism M2 as defined above (Definition 3.1). We start by proving

that M2 is OSP with monitoring (cf. (1) and (2)). First note that for

the specific allocation probabilities it holds that

1 − p

1 − n
=

L

H + (n − 1)L
<

1

n
.

Let a bidding vector of the form (Hk ,b,⋆) denote that the first k
machines declared H , the (k + 1)-th machine declared b, and the

machines that were potentially asked afterwards made an arbitrary

declaration. We have that

L · fi (H
i−1, L) ≤ H · fi (H

i−1,H ,⋆), ⇐⇒ (1)

L · p ≤ H min

{
1 − p

n − 1

,
1

n

}
⇐⇒

L
H

H + (n − 1)L
≤ H

L

H + (n − 1)L
,

which is true and confirms the OSP constraint for an agent whose

true type is L. For an agent whose true type is H , we have

H · fi (H
i−1,H ,⋆) ≤ H · fi (H

i−1, L) ⇐⇒ (2)

max

{
1 − p

n − 1

,
1

n

}
≤ p ⇐⇒

1

n
≤

H

H + (n − 1)L
,

which is again true and confirms the OSP property of the mecha-

nism.

To see that our mechanism achieves an
Hn

H+(n−1)L approximation

of the optimal makespan we observe that, should at least a machine

have type L, the expected completion time ofM2 is at most pL +
1−p
n−1

H (n− 1) = Hn
H+(n−1)L ·L, while the optimal makespan is at least

L. (The mechanism is optimal if no machine has type L.) �

The following result shows that the approximation ratio achieved

in Theorem 3.2 is actually the best possible for two-value domains.

Lemma 3.3. There is no OSP mechanism for scheduling one task
to n machines with approximation ratio better than Hn

H+(n−1)L even
with monitoring, when their type domain has two values, L and H .

5
Note that for two-value domains, monitoring and strict monitoring coincide.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1577

Proof. Consider a mechanismM with approximation ratio α ;
let us consider a domain where H > (2α − 1)L. We will prove that

if M is OSP (with monitoring) then

α ≥
Hn

H + (n − 1)L
.

M has to satisfy the following to have approximation ratio α :
At any path of the implementation tree from the root to a leaf, the

mechanism should have either discovered some machine with type

L, or have asked at least n − 1 machines to diverge between L and

H . Assume to the contrary that there exists a path where all the

divergent agents have played according to H and there are at least

two machines who have not been asked to diverge. Let exactly one

of these two machines have true type L. The best solution that M

can adopt is to return the uniform distribution over these machines

that has makespan at least (L + H)/2, which is more than α times

the optimum (L) since H > (2α − 1)L, a contradiction.
Consider a path of the implementation tree with the property

above. Consider the point where the last machine was asked to

diverge between L and H on that path. If she says L then she

should get the task with probability pl ≥ H−αL
H−L = p to satisfy

the approximation ratio guarantee of α . In that subtree/outcome, at

least one other machine will get the task with probability at most

1−p
n−1

=
(α−1)L

(n−1)(H−L) , let’s call that machine i∗. Now consider the

point in the previous path where machine i∗ was asked to diverge

between L and H . In the subtree where i∗ declared L there exists

the leaf/outcome where everyone else has type H so i∗ should get

at least
H−αL
H−L = p to guarantee approximation α .

Now consider the OSP constraint for i∗ diverging at the point

mentioned above:

Lp ≤ H
1 − p

n − 1

⇐⇒

L
H − αL

H − L
≤ H

1

n − 1

·
(α − 1)L

H − L
⇐⇒

α ≥
Hn

L(n − 1) + H
,

as desired. �

4 UNRESTRICTED DOMAINS
In this section we consider the general case of scheduling with

large finite domains.
6
Although monitoring is enough to achieve a

bounded approximation ratio for truthfulness [16], we here prove

that it is not enough to get a bounded approximation ratio for OSP,

while strict monitoring is sufficient.

Lemma 4.1. There is no OSP mechanism with bounded approxima-
tion ratio for scheduling one task when the type domain has at least
three values, even with monitoring when the type we use to monitor an
agent is different from the highest compatible type. In other words, we
cannot get a bounded approximation ratio without strict monitoring.

Proof. Consider the case of two machines and type domain

D = {t1, t2, . . . , td } where t1 < t2 < . . . < td .

6
The assumption here is that the domain is finite; this appears to be an inherent

limitation of OSP and mechanisms in extensive-form (and more in general extensive-

form games); see, e.g., the discussion in [1] and the references therein.

Let tl , th be any two types of the domain such that tl < th . The
approximation guarantee for an instance (tl , th) implies that

tl · f1(tl , th) + th (1 − f1(tl , th)) ≤ αtl ⇐⇒

f1(tl , th) ≥
th − αtl
th − tl

, (3)

Similarly, the approximation guarantee for an instance (th, tl) im-

plies that

th · f1(th, tl) + tl (1 − f1(th, tl)) ≤ αtl ⇐⇒

f1(th, tl) ≤
(α − 1)tl
th − tl

. (4)

Consider the first divergent machine; without loss of generality

let this be agent 1. Such a divergence must happen in order to have

a bounded approximation ratio. Assume that the machine is asked

to distinguish between P1 and P2 that form a partition of the type

domain and let the smallest type in the domain belong to the first

part, i.e., t1 ∈ P1. We denote by tm the minimum type that appears

in P2 and distinguish cases depending on the cardinality of P2.

We first consider the case where |P2 | = 1, i.e., P2 = {tm }, and

assume for now that tm , t2. Consider the OSP constraint regarding
the deviation from the divergent machine from true type t2 ∈ P1 to

type tm . We get

t2 · f1(t2, tm) ≤ tm · f1(tm, t1).

From this and Inequality (4) we get that

t2
tm

· f1(t2, tm) ≤
(α − 1)t1
tm − t1

⇐⇒

f1(t2, tm) ≤
tm
t2

(α − 1)t1
tm − t1

,

while from this and Inequality (3) we get that

tm − αt2
tm − t2

≤
tm
t2

(α − 1)t1
tm − t1

⇐⇒

α ≥
tmt2(tm − t1) + tmt1(tm − t2)

t2

2
(tm − t1) + tmt1(tm − t2)

.

Regarding the RHS of the above inequality we note that

α ≥
tmt2(tm − t1) + tmt1(tm − t2)

t2

2
(tm − t1) + tmt1(tm − t2)

≥
t2

mt2 + t
2

mt1

t2

2
tm + t

2

mt1
=

tm (t2 + t1)

tmt1 + t
2

2

which is increasing in tm and hence unbounded.

The case where P2 = {t2} leads to an equivalent argument if we

consider the following OSP constraint regarding the deviation from

the divergent machine from true type t2 ∈ P2 to type td ∈ P1:

t2 · f1(t2, td) ≤ td · f1(td , t1).

This is true because in our arguments we have only used the relative

order of t1, t2, and tm , which is maintained if we substitute tm with

td .
We now consider the case where |P2 | = 2. Note that since by

our assumption t1 ∈ P1, then we know that both elements of P2 are

larger than t1. Let us denote them by tm and th , such that tm < th .
We can prove the unboundedness of the approximation ratio by

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1578

considering the following OSP constraint regarding the deviation

from the divergent machine from true type t1 ∈ P1 to type tm ∈ P2:

t1 · f1(t1, th) ≤ tm · f1(tm, t1).

Note that the only monitoring paradigm that we can use here that is

not strict monitoring, is the classical monitoring where the machine

will be expected to execute the task for the declared time/type tm .

Similarly to the case above, using Inequality (4), we get that

t1
tm

· f1(t1, th) ≤
(α − 1)t1
tm − t1

,

while by combining this and Inequality (3) we get

th − αt1
th − t1

≤
tm
t1

(α − 1)t1
tm − t1

⇐⇒

α ≥
th (tm − t1) + tm (th − t1)

t1(tm − t1) + tm (th − t1)
.

The function at the RHS of the above inequality, which corre-

sponds to the best approximation guarantee that we can achieve, is

increasing in th , which means that it is unbounded.

It remains to consider the case where |P2 | ≥ 3. Let {tm, tj , th } ⊆
P2, where tm and th are the minimum and maximum type in P2.

This is the most interesting case, as we can now observe how a

monitoring paradigm that is not classical nor strict monitoring

would work and prove that for any such paradigm we will still get

an unbounded approximation ratio. Consider the OSP constraint

regarding the deviation from the divergent machine from true type

t1 ∈ P1 to type tm ∈ P2, but assume that monitoring will happen

according to the type tj
7
. We have

t1 · f1(t1, th) ≤ tj · f1(tm, t1).

Similarly to the cases above, we get that

t1
tj

· f1(t1, th) ≤
(α − 1)t1
tm − t1

,

and that

th − αt1
th − t1

≤
tj

t1

(α − 1)t1
tm − t1

⇐⇒

α ≥
th (tm − t1) + tj (th − t1)

t1(tm − t1) + tj (th − t1)
,

which is again increasing in th , hence unbounded. The proof is
now complete. �

In the following result we bypass the above inapproximability

result using the notion of strict monitoring. As from above, strict

monitoring implies that whenever a machine is allocated a task,

but she has not been asked to pinpoint her exact type, she will be

required to process the task for the maximum amount of time in

her type domain that she has not yet excluded.

Definition 4.2 (MechanismMd). Md specifies an arbitrary order

of the machines and considers all except the largest possible values

of the domain in an increasing order. For j = 1, . . .d − 1 the mecha-

nism asks the machines one after the other in the prespecified order

if their type is tj or not. Let machine i j be the first machine who

answers yes, i.e. that her type is tj . The mechanism will then stop

7
Monitoring according to the declaration tm would be equivalent to classical monitor-

ing, while monitoring according to the highest compatible type th would be equivalent

to strict monitoring.

querying the machines and produce the following allocation: the

task is allocated with probability pj =
td

td+tj (n−1)
to machine i j and

with probability

1−pj
n−1
=

tj
td+tj (n−1)

to each other machine. If after

the mechanism has asked all machines for all values at most td−1

no machine has replied yes (which would imply that all machines

have type td) then the task is allocated with probability 1/n to each

machine.

Theorem 4.3. Md is an OSP with strict monitoring mechanism
that achieves approximation ratio α < n for scheduling one task to n
machines with finite domain.

Proof. Consider domain D = {t1, t2, . . . , td } where t1 < t2 <
. . . < td , and mechanismMd as defined above (Definition 4.2). We

first prove thatMd is OSP with strict monitoring. The following

inequality shows that a machine will not misreport a type tj if her
true type is higher, i.e. tj+k , for some k .

tj+k · pj+k ≤ tj+k · pj ⇐⇒

pj+k ≤ pj ⇐⇒

td
td + tj+k (n − 1)

≤
td

td + tj (n − 1)
⇐⇒

tj ≤ tj+k

which is true. Next, we show that a machine with true type tj will
not misreport a higher type, i.e. tj+k , for any k . We have that

tj · pj ≤ tj+k · pj+k ⇐⇒

tj ·
td

td + tj (n − 1)
≤ tj+k ·

td
td + tj+k (n − 1)

which is true since
d
dx

(
xtd

td+x (n−1)

)
≥ 0 and tj ≤ tj+k .

It remains to consider the case where the machine with true type

tj unsuccessfully attempts to misreport a higher type, i.e. tj+k , and
prove that the OSP constraint holds in this case as well. In other

words, let a machine i reply no when asked from the mechanism

whether her type is tj , and before she is asked to diverge at tj+k ,
another machine i ′ replies yes to the mechanism (that she, i ′, has
type tj+k ′ fork

′ ≤ k). In this case, themachine i will be allocated the

task with probability

1−pj+k′
n−1

. Note that strict monitoring implies

that machine i , if allocated the task, will be asked to execute it

for time td since this is the highest type in the domain and it is

compatible with the outcome (the machine has not excluded the

possibility that her type is td yet). We need to prove that

tj · pj ≤ td ·
1 − pj+k ′

n − 1

.

Indeed, notice that p1 ≥ p2 ≥ . . . ≥ pd ≥ 1/n. So, it suffices to

prove that

tj · pj ≤ td ·
1 − pj

n − 1

⇐⇒

pj ≤
td

td + tj (n − 1)

which is true by definition.

We now argue regarding the approximation ratio of Md . If the

lowest type among the machines is tj , the expected completion

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1579

time under Md is

tj
td

td + tj (n − 1)
+ td

tj (n − 1)

td + tj (n − 1)

=
tdn

td + tj (n − 1)
tj ,

while the optimal approximation ratio is clearly tj . We can conclude

that the approximation ratio of Md is at most

α =
H · n

H + L(n − 1)
< n

where t1 = L and td = H are the smallest and largest value in the

domain, respectively. �

As noted above, strict monitoring is equivalent to monitoring

in the case of two-value domains. Hence, Lemma 3.3 provides a

corresponding lower bound for the case of two types in either

monitoring assumption, which proves the tightness of Theorem 4.3

above. Of course this can be observed by the fact that Mechanism

Md (Definition 4.2) is a generalization of M2 (Definition 3.1).

We conclude this section by discussing how to use the inap-

proximability result in Lemma 4.1 to (essentially) characterize the

implementation tree of OSP mechanisms with bounded approxi-

mation. A first easy observation is that “complete” extensive-form

implementation trees, i.e., those where each leaf correctly deter-

mines the agents’ declarations, lead to unbounded approximation

as it would not be possible to define strict monitoring (but only

monitoring). Our next lemma shows how to generalize this intu-

ition by characterizing the type of queries that can be used to obtain

a bounded approximation ratio.

Lemma 4.4. Any mechanism that achieves a bounded approxima-
tion ratio must use queries like the ones used in Mechanism Md . In
other words, each divergence has to partition the set of compatible
types to a singleton containing the minimum compatible type, and
all the remaining compatible types of the corresponding divergent
machine.

Proof. Consider a mechanismM whose implementation tree

includes a divergence different than the one in the statement of the

lemma. In particular, assume that the partition, P1 containing the

minimum type, t1 is not a singleton and let th denote the largest

type in P1, th > t1. We now distinguish between two cases:

First assume that the other partition, P2, contains at least one

element tm such that tm < th . Using similar arguments to the

proof of Theorem 4.1, we can prove that we will get an unbounded

approximation ratio by considering the OSP constraint regarding

the deviation from the divergent machine i from true type tm ∈ P2

to type th ∈ P1:

tm · fi (tm, th) ≤ th · f1(th, t1).

Otherwise, assume all elements of P1 are smaller than all ele-

ments of P2, but that the second smallest type t2 ∈ P1. Again, in

this case, using similar arguments, we can prove that we will get an

unbounded approximation ratio by considering the OSP constraint

regarding the deviation from the divergent machine i from true

type t2 ∈ P1 to the highest type td ∈ P2:

t2 · fi (t2, td) ≤ td · f1(td , t1).

This concludes the proof. �

The results in this section give a complete picture of OSP with

monitoring in the context of scheduling a task without money.

5 EXTENSION TO MANY TASKS
Our mechanisms can be applied independently to each task for

the case of many tasks and guarantee an approximation of n ·
Hn

H+L(n−1)
< n2

of the optimal makespan for the corresponding

cases. Whether or not this is the best that can be achieved is an

open question. We provide a preliminary result that gives a better

bound for a very special case, almost matching the lower bound

with monitoring provided in the previous section (
Hn

H+L(n−1)
≈ n

for carefully chosen type domain). Clearly, all inapproximability

bounds presented in the previous sections hold for the case of many

tasks as well, so proving a bounded approximation ratio for domains

with at least 3 types would require stricter notions of monitoring.

Lemma 5.1. There is an OSP mechanism with monitoring that
achieves approximation ratio α ≤ 2 for scheduling two tasks to 2

machines when their type domain has two values, L and H .

Proof. Consider the non-trivial case where H > 2L.8 Consider
mechanismM that picks an arbitrary machine, let that be machine

1, and only asks her to act. In particular, M first asks machine 1

to distinguish between types L and H for the first task, and then

asks her the same about the second task.M allocates the tasks as

follows according to the declarations of machine 1:

• If t1,1 = t1,2 = L, then f1,1 = f1,2 = 1, i.e. machine 1 gets

both tasks,

• If t1,1 = L and t1,2 = H , then f1,1 = 1, and f1,2 =
L
H ,

• If t1,1 = H and t1,2 = L, then f1,1 =
L
H , and f1,2 = 1,

• If t1,1 = t1,2 = H , then f1,1 = f1,2 =
L
H .

Note that in each of the above cases, the probabilities yield the

same total cost, 2L to machine 1.

We first argue that mechanismM is OSP. Indeed, we consider

the following cases: if t1,1 = L then if machine 1 acts truthfully, she

will get at most cost 2L, while by deviating to t ′
1,1 = H she will get at

least that, regardless of what choices she makes in the next step. If

t1,1 = H then the worst outcome yields cost 2L, while by deviating

to t ′
1,1 = L machine 1 will get the first task with probability 1 for

a cost H , which is higher by our original assumption. If t1,1 = L
and t1,2 = L then deviating to t ′

1,2 = H machine 1 will get cost

L + L
H H = 2L, same as her cost for reporting truthfully. If t1,1 = L

and t1,2 = H then deviating to t ′
1,2 = Lmachine 1 will get both tasks

with probability 1 for a cost L + H > 2L. If t1,1 = H and t1,2 = L
then deviating to t ′

1,2 = H will yield cost 2L to machine 1 (since by

monitoring she will be expected to take timeH to execute each task

she is allocated) same as her cost for reporting truthfully. Finally, if

t1,1 = H and t1,2 = H then by deviating to t ′
1,2 = L, machine 1 will

be allocated each task with at least the same probability compared

to reporting truthfully, hence her cost will be higher.

We now prove that mechanismM has approximation ratio 2. We

need to argue about each case independently, and take into account

8
Otherwise, if H ≤ 2L, the mechanism that allocates task 1 to machine 1 and task 2

to machine 2 always has approximation ratio at most 2 trivially.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1580

the possible true types of machine 2 as well. We abuse notation and

denote byM and O, the expected makespan from mechanism M,

and the optimal expected makespan, respectively, in each of the

cases, as the true types in each case will be clear from the context.

In particular, if t1,1 = t1,2 = L, thenM = 2L ≤ 2O. If t1,1 = L and

t1,2 = H , then we distinguish between two cases regarding type

t2,2:

- If t2,2 = L, then O = L, whileM = L
H (L +H)+

(
1 − L

H

)
L =

2L = 2O.

- If t2,2 = H , then O = H whileM = L
H (L+H)+

(
1 − L

H

)
H =

L2

H + H ≤ 2H = 2O.

If t1,1 = H and t1,2 = L, we can distinguish cases regarding type

t2,1 and the analysis will be equivalent to the one above. Finally if

t1,1 = t1,2 = H , then we distinguish between the following cases:

- If t2,1 = L and t2,2 = L, then O = 2L and M = L2

H 2
2H +

2

(
1 − L

H

)
L
H H +

(
1 − L

H

)
2

2L = 4L − 4L2

H +
2L3

H 2
≤ 4L = 2O.

- If t2,1 = H or t2,2 = H , then O ≥ H and M ≤ L2

H 2
2H +

2

(
1 − L

H

)
L
H H +

(
1 − L

H

)
2

2H = 2H − 2L+ 2L2

H ≤ 2H = 2O.

The proof is now complete. �

Unfortunately, as the next lemma shows, the mechanism that is

presented in the proof of the above result cannot be extended to

achieve a bounded approximation ratio for a larger type domain.

Lemma 5.2. A mechanism that only queries one machine cannot
provide a bounded approximation ratio for type domains of size at
least 3.

Proof. Regarding the first statement, consider the case of 2

tasks, 2 machines and 3 type domains (L,M,H). Let machine 1 be

the one that is asked to act and assume that she has type (M,M).

For a bounded approximation c , in case machine 2 has type (L, L),
machine 1 should be allocated task 1 with probability p1,1 and task

2 with probability p1,2, such that 2Mp1,1p1,2 + Mp1,1(1 − p1,2) +

Mp1,2(1−p1,1) = M(p1,1 +p1,2) ≤ c2L. However, in the case where

machine 2 has type (H ,H), then machine 1 should be allocated

task 1 with probability p1,1 and task 2 with probability p1,2, such

that Hp1,1(1 − p1,2) + Hp1,2(1 − p1,1) + 2H (1 − p1,1)(1 − p1,2) =

H (2 − p1,1 − p1,1) ≤ c2M . The above would imply that 2 − c2M
H ≤

p1,1 + p1,2 ≤ c2L
M , which is not feasible for very high values of

H . �

6 CONCLUSIONS
We advance the state of the art in the design of OSP mechanisms,

in the specific and well-studied domain of machine scheduling

[2, 14, 16, 19]. As proved by Li [2017], OSP mechanisms are the

only ones that are truthful for agents that have limited contingent

reasoning skills. Differently from much of the recent literature on

OSP [3, 5, 9], which shows that very little can be done with this

solution concept, we here give the strong positive message that the

approximation guarantee of OSP mechanisms can be basically as

good as that of truthful mechanisms. In a sense, our work extends

to the realm of mechanisms without money the main finding of

[8]; whilst they prove that monitoring allows to turn any algorithm

into an OSP mechanisms with payments (via direct revelation), we

here show that a careful implementation tree and the right notion

of monitoring can be used to match the approximation guarantee

of truthful mechanisms. Whenever our notion of strict monitoring

cannot be implemented in the setting at hand, our results show that

the designer needs to look at alternative means to guarantee even

a bounded approximation of the optimum; notably, even harsher

forms of punishments have been shown to be essentially ineffective

for OSP mechanisms without money [9].

The main technical open problem left by our work is to estab-

lish the correct approximation guarantee of OSP mechanisms for

scheduling unrelated machines (i.e. the case of many tasks). This

would appear to require significant advances in the understanding

of OSP for multi-dimensional agents.

REFERENCES
[1] Mohammad Akbarpour and Shengwu Li. 2018. Credible Mechanisms. In Proceed-

ings of the 2018 ACM Conference on Economics and Computation, Ithaca, NY, USA,
June 18-22, 2018. 371.

[2] Aaron Archer and Éva Tardos. 2001. Truthful Mechanisms for One-Parameter

Agents. In FOCS 2001. 482–491.
[3] Itai Ashlagi and Yannai A Gonczarowski. 2018. Stable matching mechanisms are

not obviously strategy-proof. Journal of Economic Theory (2018).

[4] Lawrence M Ausubel. 2004. An efficient ascending-bid auction for multiple

objects. American Economic Review 94, 5 (2004), 1452–1475.

[5] Sophie Bade and Yannai A. Gonczarowski. 2017. Gibbard-Satterthwaite Success

Stories and Obvious Strategyproofness. In EC 2017. 565.
[6] D. Ferraioli, A. Meier, P. Penna, and C. Ventre. 2018. On the approximation

guarantee of obviously strategyproof mechanisms. CoRR abs/1805.04190 (2018).

[7] Diodato Ferraioli, Paolo Serafino, and Carmine Ventre. 2016. What to Verify for

Optimal Truthful Mechanisms without Money. In AAMAS 2016. 68–76.
[8] Diodato Ferraioli and Carmine Ventre. 2017. Obvious Strategyproofness Needs

Monitoring for Good Approximations. In AAAI 2017. 516–522.
[9] Diodato Ferraioli and Carmine Ventre. 2018. Probabilistic Verification for Obvi-

ously Strategyproof Mechanisms. In IJCAI 2018.
[10] D. Fotakis, P. Krysta, and C. Ventre. 2014. Combinatorial auctions without money.

In AAMAS 2014. 1029–1036.
[11] D. Fotakis, P. Krysta, and C. Ventre. 2018. Equal-Cost Mechanism Design with

Monitoring. (2018). Submitted.

[12] Dimitris Fotakis and Christos Tzamos. 2010. Winner-Imposing Strategyproof

Mechanisms for Multiple Facility Location Games. InWINE. 234–245.
[13] Dimitris Fotakis and Christos Tzamos. 2013. Winner-imposing strategyproof

mechanisms for multiple Facility Location games. Theor. Comput. Sci. 472 (2013),
90–103. https://doi.org/10.1016/j.tcs.2012.11.036

[14] Y. Giannakopoulos, E. Koutsoupias, and M. Kyropoulou. 2016. The Anarchy of

Scheduling Without Money. In SAGT. 302–314.
[15] Allan Gibbard. 1973. Manipulation of Voting Schemes: A General Result. Econo-

metrica 41, 4 (1973), 587–601.
[16] E. Koutsoupias. 2011. Scheduling without Payments. In Proc. of SAGT (LNCS),

Vol. 6982. 143–153.

[17] Annamária Kovács, Ulrich Meyer, and Carmine Ventre. 2015. Mechanisms with

Monitoring for Truthful RAM Allocation. InWINE (Lecture Notes in Computer
Science), Vol. 9470. Springer, 398–412.

[18] Shengwu Li. 2017. Obviously strategy-proof mechanisms. American Economic
Review 107, 11 (2017), 3257–87. Available at ‘http://ssrn.com/abstract=2560028’.

[19] Noam Nisan and Amir Ronen. 2001. Algorithmic Mechanism Design. Games and
Economic Behavior 35 (2001), 166–196.

[20] Kobbi Nissim, Rann Smorodinsky, and Moshe Tennenholtz. 2012. Approximately

optimal mechanism design via differential privacy. In Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012. 203–213.

[21] Paolo Penna and Carmine Ventre. 2014. Optimal collusion-resistant mechanisms

with verification. Games and Economic Behavior 86 (2014), 491 – 509.

[22] Ariel D. Procaccia and Moshe Tennenholtz. 2013. Approximate Mechanism

Design without Money. ACM Trans. Economics and Comput. 1, 4 (2013), 18:1–
18:26.

[23] Mark Allen Satterthwaite. 1975. Strategy-proofness and Arrow’s conditions:

Existence and correspondence theorems for voting procedures and social welfare

functions. Journal of Economic Theory 10, 2 (1975), 187 – 217.

[24] Paolo Serafino, Angelina Vidali, and Carmine Ventre. 2018. Truthfulness on a

Budget: Trading Money for Approximation through Monitoring. (2018). Submit-

ted.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1581

https://doi.org/10.1016/j.tcs.2012.11.036

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	3 Two-value domains
	4 Unrestricted domains
	5 Extension to many tasks
	6 Conclusions
	References

