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ABSTRACT
The game of bridge consists of two stages: bidding and playing.
While playing is proved to be relatively easy for computer programs,
bidding is very challenging. During the bidding stage, each player
knowing only his/her own cards needs to exchange information
with his/her partner and interfere with opponents at the same time.
Existing methods for solving perfect-information games cannot
be directly applied to bidding. Most bridge programs are based
on human-designed rules, which, however, cannot cover all situ-
ations and are usually ambiguous and even conflicting with each
other. In this paper, we, for the first time, propose a competitive
bidding system based on deep learning techniques, which exhibits
two novelties. First, we design a compact representation to encode
the private and public information available to a player for bidding.
Second, based on the analysis of the impact of other players’ un-
known cards on one’s final rewards, we design two neural networks
to deal with imperfect information, the first one inferring the cards
of the partner and the second one taking the outputs of the first
one as part of its input to select a bid. Experimental results show
that our bidding system outperforms the top rule-based program.
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1 INTRODUCTION
Games have long been of great interest for artificial intelligence (AI)
researchers. One set of works focus on full-information competi-
tive games such as chess [10] and go [5, 15]. Such games present
two challenges: the large state space for decision-making and the
competition from the opponent player. The AI program AlphaGo
[15, 16] has achieved great success in the game of Go. The other
set of AI researches investigate imperfect-information card games,
such as poker [14, 20] and bridge [1, 9, 21]. The computer programs
Libratus [4] and DeepStack [13] for no-limit Texas hold’em both
showed expert-level performance, but their techniques can only
handle the heads-up (two-player) situation.
∗This work was conducted in Microsoft Research Asia.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Contract bridge, or simply bridge, is one of the most interest-
ing and difficult card games, because 1) it presents all the above
challenges, i.e., large state space, competition and imperfect in-
formation; 2) four players rather than two in bridge makes the
methods designed for two-player zero-sum games (e.g., heads-up
no-limit poker [14, 20]), which focus on Nash equilibrium find-
ing/approximation, not applicable; 3) it has to deal with coopera-
tion between partners. The best bridge AI-programs, such as GIB1,
Jack2 and Wbridge53, have not yet reached the level of top human
experts, which is probably because of the weakness of their bidding
systems [1, 9].

The game of bridge consists of two parts, bidding and playing.
Playing is relatively easy for AI agents and many programs (e.g.,
GIB, Jack and Wbridge5) have shown good playing performance
[1, 9]. For example, in 1998, the GIB program attained the 12th
place among 35 human experts in a contest without bidding, which
demonstrates that computer bridge agents can compete against
human expert players in the playing stage. In human world champi-
onships, the variation in the level of the players during card playing
is also negligible, making the quality of the bidding the decisive
factor in the game [1].

Bidding is the hardest part of bridge. During bidding, the players
can only see their own cards and the historical bids and try to search
for a best contract together with their partners. The difficulty arises
from the imperfect-information setting and the complex meanings
of the bids. A bid can carry one or more of the following purposes: 1)
suggesting an optional contract, 2) exchanging information between
partners and 3) interfering with opponents. Human players design
a large number of complex bidding rules to explain the meanings
of bidding sequences and then suggest a bid based on one’s own
cards. To the best of our knowledge, almost all bridge programs
are based on such human-designed rules. However, since there
are 6.35 × 1011 possible hand holdings with 13 out of 52 cards [1]
and 1047 possible bidding sequences 4, it is unfeasible for the rules
to cover all the situations. Hence, the bidding rules are usually
ambiguous. Besides, as the bidding rules are hand-crafted, some of
them may be inefficient and it is very likely that a pair of hand and
bidding sequence is not covered by any rule or satisfies multiple
rules suggesting conflicting bids.

Considering these drawbacks, many researchers study how to im-
prove the rule-based computer bidding systems. Amit andMarkovitch
[1] used Monte Carlo Sampling to resolve the conflicts, but did not
consider the ambiguity problem. Some researchers tried to infer the

1GIB. http://www.gibware.com/
2Jack. http://www.jackbridge.com/
3Wbridge5. http://www.wbridge5.com/
4See the analysis at http://tedmuller.us/Bridge/Esoterica/CountingBridgeAuctions.htm
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cards of other players on the basis of their calls [1–3, 8]. However,
because the possible cards in others’ hands amount to 8.45 × 1016
and the rules are exactitude, the inference may be very inaccu-
rate due to the computing resource and time limit. DeLooze and
Downey [6] introduced the Self-Organizing Map neural network
trained with examples from a human bidding system in order to
reduce ambiguities, which is shown only to be effective for no
trump hands. Recently, deep neural networks have achieved un-
precedented performance in many games, e.g., playing the go [15]
and Atari games [11], and have also been applied to bridge bidding.
Yeh and Lin [21] used a reinforcement learning algorithm to train a
value network with raw data. However, the training for the system
is based on a small dataset with randomly generated games and
the competition from opponents is not considered (i.e., opponent
players were assumed to always “pass”).

In this paper, we, for the first time, develop a competitive bidding
system based on deep neural networks, which combines supervised
learning (SL) [12] from human expert data and reinforcement learn-
ing (RL) [11, 17] from self-play. Our techniques have the following
two novelties. First, we design an efficient feature representation for
learning, in which the bidding sequence is encoded to a compact 0-1
vector of 318 bits. Second, to deal with partnership bidding and im-
perfect information (i.e., unknown cards in the other three players’
hands), we propose a card estimation neural network (ENN) to infer
the partner’s cards and demonstrate by experiments that one’s re-
ward highly depends on his/her partner’s cards and the opponents’
cards are much less important and even not necessary for finding
the optimal contract. The ENN outputs a probability distribution
over possible cards, which serves as a part of the features of the
policy neural network (PNN) to produce a probability distribution
over possible bids. Both neural networks are first trained in the SL
stage using expert data. Then we design an RL algorithm based on
REINFORCE [19] to let the system gradually improve its ability and
learn its own bidding rules from self-play. The learning procedure
needs the final rewards of the game, which are related to the result
of bidding and the outcome of playing. We leverage the double
dummy analysis (DDA) 5 to directly compute the playing outcome.
We show by experiments that DDA is a very good approximation
to real expert playing.

We compare our bidding system with the program Wbridge5
[18], the champions of World Computer-Bridge Championship
2016 - 2018. Results indicate that our bidding system outperforms
Wbridge5 by 0.25 IMP, which is significant because Ventos et al.
[18] show that an improvement of 0.1 IMP can greatly enhance the
bidding strength of Wbridge5.

The rest of the paper is organized as follows. We introduce some
basic knowledge of bridge game in Section 2. Our neural network-
based bidding system is introduced in Section 3. The learning algo-
rithms are proposed in Section 4. In Section 5, we conduct extensive
experiments to evaluate our bidding system. The conclusion is given
in the last section.

2 BACKGROUND
In this section, we introduce the bidding, playing and scoring mech-
anism of the game of bridge.

5DDA. http://bridgecomposer.com/DDA.htm

2.1 Bridge Bidding
The game of bridge is played by four players, commonly referred
to as North, South, East and West. The players are divided into
two opposing partnerships, with North-South against West-East.
The game uses a standard deck of 52 cards with 4 suits (club ♣,
diamond ♦, heart ♥ and spade ♠), each containing 13 cards from A
down to 2. The club and the diamond are called the minor suits,
while the other two are major suits. Each player is given 13 cards
and one player is designated as the dealer that proposes the first
bid (called opening bid). Then the auction proceeds around the
table in a clockwise manner. Each player chooses one bid from the
following 38 candidates in his/her turn:
• a bid higher than that of his/her right-hand player according
to the ordered contract set

{1♣, 1♦, 1♥, 1♠, 1NT , 2♣, 2♦, . . . , 7NT }, (1)

where NT means no trump;
• pass;
• double a contract bid by the opponents;
• redouble if one’s or one’s partner’s bid is doubled

We call the bids in the contract set the contract bids and the
other three bids the non-contract bids. During the bidding, a player
can only observe his/her own 13 cards and the historical bids. The
bidding stage ends when a bid is followed by three consecutive
“passes”.

A contract is a tuple of the level (1-7) and the trump suit (♣, ♦, ♥,
♠, or NT), and the partnership that bids the highest contract wins
the auction. The winners are called the contractors and the other
two players are then the defenders. The player from the contractor
partnership who first called the trump suit becomes the declarer
and his/her partner the dummy. Bridge is a zero-sum game and
the contractors need to win at least the level plus 6 tricks in the
playing stage to get a positive score (usually referred to as “make
the contract”). For example, a contract of 4♣ proposes to win at
least 4 + 6 = 10 tricks in the playing. The tricks higher than the
level plus 6 are called the overtakes. In this example, 2 overtakes
for the contractors means that they win 12 tricks in total.

There is a large number of bidding systems, for example, the
Standard American Yellow Card (SAYC) 6. The bidding rules of
many systems are usually ambiguous and even conflicting. For
example, a rule may say that “do not bid with a balanced hand
after an enemy 1NT opening unless you are strong enough to
double”, where the definition of “strong enough” is ambiguous. The
suggested bid of the rule that “with 4-4 or longer in the minor suits,
open 1♦ and rebid 2♣” is conflicting with the rule that “always open
your longer minor and never rebid a five-card minor” for the hand
with 5 clubs and 5 diamonds. Human players usually devote much
time to practice together to reduce the ambiguities and conflicts.

2.2 Playing and Scoring
The playing begins right after the bidding stage, which runs for 13
rounds (tricks). The player sitting at the left side of the declarer
plays his/her first card (called opening lead) and then the dummy
exposes his/her cards to all players. The playing continues in a
clockwise manner. Each of the players puts one card on the table
6SAYC. https://en.wikipedia.org/wiki/Standard_American
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in each round. A player must follow the lead suit if possible or play
another suit. The winning hand of the four cards are based on the
following rule: if a trump suit is played, the highest card in that
suit wins the trick, otherwise, the highest lead suit card wins the
trick. During the play, the declarer plays both his cards and the
dummy’s. The player who wins the trick has the right to lead for
the next round.

The scoring depends on the number of tricks taken by the con-
tractors, the final contract and whether the contract is doubled or
redoubled. Besides, in bridge, partnerships can be vulnerable which
is predetermined before the game begins, increasing the reward for
successfully making the contract, but also increasing the penalty
for failure. If the contractors win the number of tricks they com-
mitted to, they get a positive score and the defenders a negative
score, otherwise the positive score is given to the defenders. The
most widely used scoring mechanism is the Duplicate Bridge Scoring
(DBS) 7, which encourages players to bid higher contract for more
bonuses, in addition to the trick points. For example, if a “game”
(contracts with at least 100 trick points) is made, contractors are
awarded a bonus of 300 points if not vulnerable, and 500 points if
vulnerable. A larger bonus is won if the contractors make a “small
slam” or “grand slam”, a contract of level 6 and level 7 respectively.
However, they might face a negative score if they fail, even if they
took most of the tricks.

In real-world clubs and tournaments, team competition is pop-
ular, where a team usually has four players. Two of the players,
playing as a partnership, sit at North-South of one table. The other
two players of the same team sit at East-West of a different table.
The two partnerships from the opposing team fill the empty spots
at the two tables. During the course of the match, exactly the same
deal is played at both tables. Then the sum of the duplicate scores
from the two partnerships of a team is converted to the Interna-
tional Match Points (IMPs) 8. The team with higher IMPs wins the
match.

3 NEURAL NETWORK-BASED BIDDING
SYSTEM

Bridge is a teamwork-based game and two players of a partnership
adopt the same bidding system for information exchange. The sys-
tem for human players consists of the predefined rules, which is
a set of agreements and understandings assigned to bids and se-
quences of bids used by a partnership. Each bidding system ascribes
a meaning to every possible bid by each player of a partnership, and
presents a codified language which allows the players to exchange
information about their card holdings. We implement the bidding
system by two neural networks, the ENN (estimation neural net-
work) and the PNN (policy neural network), where the ENN is
used to estimate the cards in our partner’s hands and the PNN is
designed for taking actions based on the information we have got.
We will show in the Section 5.1 that it is not necessary to estimate
opponents’ cards because the distribution of the remaining 26 cards
between opponents’ hands has little effect on the final results.

7DBS. http://www.acbl.org//learn_page/how-to-play-bridge/how-to-keep-score/
8IMP. http://www.acbl.org/learn_page/how-to-play-bridge/how-to-keep-score/
teams/

In the following two subsections, we first give the definitions of
the two networks and then introduce their feature representations.

3.1 Definitions of ENN and PNN
The set of players is represented as

P = {N ,E, S,W }, (2)

where N and S are in a team, so are E andW . We use p+ to denote
the partner of player p ∈ P. Let

C = {⟨xi ⟩
52
i=1 |xi ∈ {0, 1} ∧

∑52
i=1

xi = 13} (3)

be the set of possible initial cards of a player. Given the cards cp ∈ C
of player p ∈ P, C−cp represents possible initial hands excluding
cards in cp . We use H to indicate the set of all bidding histories and
let V be the set of vulnerabilities. A player p can infer the cards
of p+ based on the information he/she has got, including his/her
own cards cp ∈ C , the public vulnerability v ∈ V and the bidding
history h ∈ H . Specifically, we define

D : C ×V × H 7→ [0, 1]52 (4)

such that the i-th component of D(cp ,v,h) is the probability that,
in p’s belief, p+ were holding card xi . Our PNN is then defined as a
neural network

σθ : C ×V × H × [0, 1]52 7→ [0, 1]38, (5)

where θ represents the network parameters. That is, the PNN’s
features consist of the cards in one’s hands, the vulnerability, the
bidding history and the estimation of one’s partner’s cards. Let
π (x |y) represent the conditional probability of x given y and it
follows that

D(cp ,v,h) =
∑

cp+ ∈C−cp
π (cp+ |v,B(p

+,h)) · cp+ , (6)

where B(p+,h) is the set of bids called by p+ in the history h. In
the above equation, cp+ is a vector and π (cp + |v,B(p

+,h)), the
post probability of cp+, is a scalar. The product of a scalar and a
vector means multiplying each component of the vector by the
scalar. Given the PNN, theoretically, we can compute D(cp ,v,h)
based on Eq.(6) and Bayes’ rule [7]:

π (cp+ |v,B(p
+,h))=

π (cp+ ,v,B(p
+,h))

π (v,B(p+,h))

=
π (B(p+,h)|cp+ ,v)π (cp+ ,v)∑

c ′
p+
∈C−cp π (v,B(p+,h)|c ′p+ )π (c

′
p+ )

=
π (B(p+,h)|cp+ ,v)π (cp+ ,v)∑

c ′
p+
∈C−cp π (B(p+,h)|c ′p+ ,v)π (v |c

′
p+ )π (c

′
p+ )

=
π (B(p+,h)|cp+ ,v)∑

c ′
p+
∈C−cp π (B(p+,h)|c ′p+ ,v)

. (7)

Further, we have that

π (B(p+,h)|cp+ ,v)

=
∏

i
σθ (Bi (p

+,h)|cp+ ,v,hi (p
+),D(cp+ ,v,hi (p

+))), (8)

where Bi (p+,h) is the i-th bid of p+ and hi (p+) represents the bid-
ding sequence p+ observed when he/she takes his/her i-th actions.
Substituting Eqs. (7) and (8) into Eq. (6) leads to the fact that to
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compute D(cp ,v,h), we need to recursively apply the Bayes’ rule.
Since the space size of C−cp is(

39
13

)
= 8 × 109, (9)

when the length of h is n, the time complexity for computing
D(cp ,v,h) is

O((8 × 109)
n
2 ) = O(80.5n104.5n ). (10)

That is, it is impractical to directly use the Bayes’ rule to compute
D(·). Thus, we propose the neural network ENN

ϕω : C ×V × H 7→ [0, 1]52 (11)

to approximate D(·), where ω denote the parameters to be learned.
In our model, the ENN outputs 52 probabilities about the part-

ner’s cards, which are directly fed into the PNN, because in most
situations of bridge, it is unnecessary to know the exact 13 cards of
one’s partner and the probability distribution is sufficient for the
PNN for making decision. For example, to make a specific contract,
one may just want to confirm that his/her partner holds at least 4
minor-suit cards, i.e., the sum of the probabilities of minor suits is
not less than 4, no matter which minor-suit card is held.

In the next subsection, we study how the features of one’s cards
cp , the vulnerability of both partnerships v and the bidding se-
quence h are represented.

3.2 Compact Feature Representation
We use a 52-dimensional 0-1 vector for a player’s cards, where a “1”
in position i means the player has the i-th card in the ordered set

{♣2 −A, ♦2 −A,♥2 −A, ♠2 −A}. (12)

A 2-dimensional vector is used to indicate the vulnerability with
“00” for none of vulnerability, “11” for both of vulnerability, “01” for
favorable vulnerability (only the opponent partnership is vulnera-
ble) and “10” for unfavorable vulnerability (in contrast to favorable
vulnerability).

There are 38 possible bids, including 35 contract bids, “pass”,
“double” and “redouble”. According to the bidding instructions of
bridge, there are at most 8 non-contract bids after each contract bid,
i.e., “pass-pass-double-pass-pass-redouble-pass-pass”. Note that the
dealer can begin the bidding with “pass”, and if the other three
players also choose “pass” then the game ends immediately without
a playing stage. Thus, the maximum bidding length a player need to
consider is 3+ (1+ 8) · 35 = 318. Previous work like [21] represents
an individual bid with a one-hot vector of 38 dimensions, which
requires a vector with more than ten thousands of dimensions to
represent a bidding history. Such a representation is inefficient in
computation and it is assumed in [21] that the maximal length of a
bidding sequence is L (≤ 5) to address this problem. However, we
observe from the expert data that more than 83% of the sequences
havemore than 5 bids.We propose amore compact 318-dimensional
vector to represent the bidding sequence.

Figure 1 shows an example of the representation of the compact
feature with bidding sequence

pass-pass-1♣-double-redouble-pass-1♥-pass-pass,

where a “1” in position i indicates that the i-th bid in the possible
maximal bidding sequence is called. We do not need to represent

the player identity of each historical bid because the bids are called
by players one by one in a clockwise manner and the player to
bid can correctly match observed bids to corresponding players
directly from the bidding sequence.

4 LEARNING ALGORITHMS
We introduce the learning algorithms in this section, which com-
bines supervised learning from expert data and reinforcement learn-
ing from self-play.

The expert data are collected from the Vugraph Project 9, which
contains more than 1 million games from expert-level tournaments
of the past 20 years and keeps adding more data constantly. The
information of each game recorded in the dataset includes players’
cards, the vulnerability, the dealer, the bidding sequence, the con-
tract, the playing procedure, and the number of tricks won by the
declarer.

Since the PNN takes the output of the ENN as a part of its features,
we first train the ENN based on the tuples of (cp ,v,h, cp+ ) generated
from the expert data. The ENN is a multi-class multi-label classifier
because the label cp+ contains 13 ones and 39 zeros. The output
layer of the ENN consists of 52 sigmoid neurons. We calculate
the cross entropy of each neuron and then sum them together as
the final loss. When the training of the ENN is finished, we use it
to generate the features of the PNN by modifying each instance
(cp ,v,h, cp+ ) in the dataset into

(cp ,v,h,ϕω (cp ,v,h),bp ), (13)

where bp is the bid called by player p. The PNN is a multi-class
single-label classifier with a softmax output layer of 38 neurons.

After the SL procedure, we further improve the ability of our
bidding system by RL through self-play. We randomly generate the
deal, including the dealer, the vulnerability and the cards of each
player, and then the self-play starts. There are two bidding systems
in the RL phase, one for the target team to be improved and the
other for the opponents. Each deal is played twice, with the target
system playing at the N -S and E-W positions, respectively. Two
players of a partnership use the same bidding system (ENN and
PNN) and a player’s bid is sampled from the distribution output by
his/her PNN. The self-play ends when a bid is followed by three
“passes”.

Note that the final score depends on both the contract of bidding
and the playing result. It is time consuming to play each deal out
either by humans or by some playing program. To address this
problem, we use DDA to approximate the playing outcome, which
computes the number of tricks taken by each partnership for each
possible contract of a deal under the assumption of perfect infor-
mation and optimal playing strategy. Since players can exchange
information during bidding, the result of DDA is usually close to
the real one especially for professional players. The biggest ad-
vantage of DDA is its speed, usually within several seconds using
double dummy solvers, e.g., the Bridge Calculator 10. Given the
DDA results and the contract, we can compute the two partnerships’
duplicate scores based on the rule of DBS. The duplicate score r

9Vugraph Project. http://www.bridgebase.com/vugraph_archives/vugraph_archives.
php
10Bridge Calculator. http://bcalc.w8.pl/
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pass-pass-1♣-double-redouble-pass-1♡-pass-pass-double

110 1 00 1 00 1 10 0 00 0 00 0 00 1 11 1 00 0 00 all zeros
opening   9 bits for 1♣ 9 bits for 1♢ 9 bits for 1♡ 9×32 bits

pass

One’s own 13
cards

Estimation of
partner’s cards

vulnerability bidding sequence

52 bits                               52 bits 2 bits 318 bits

feature

bidding
sequence

Figure 1: Compact representation of an example bidding sequence.

for the target system is then used to update the parameters θ of its
PNN σθ (·) according to the following equation:

θ ← θ + αr
1
M

∑M

i=1
∇θ log(σθ (bi |si )), (14)

where α is the learning rate, M is the number of bids called by
the target PNN, bi and si correspond to the i-th sampled bid and
feature vector of σθ (·), respectively, and σθ (bi |si ) is the probability
of calling bi given the input si . The loss function of the ENN ϕω in
the RL phase is the same with that in the SL procedure.

We train the ENN and PNN simultaneously in the RL. The com-
plete process is depicted in Algorithm 1. To improve the stability
of the training, we use a mini-batch of 100 games to update the
parameters. Furthermore, following the practice of [15], we main-
tain a pool of opponents consisting of the target bidding systems
in previous iterations of the RL. We add the latest bidding system
into the pool every 100 updates and randomly select one for the
opponents at each mini-batch of self-plays.

5 EXPERIMENTAL RESULTS
We conduct a set of experiments to evaluate our bidding system. We
first give an overview of expert data and compare the DDA result
with that of expert playing in the dataset to demonstrate that DDA is
a good approximation of expert playing process and estimating the
partner’s cards is much more important than inferring opponents’
cards. Next we present the detailed evaluation on the performance
of the ENN and PNN. Finally, we test the strength of our bidding
system.

5.1 Expert Data Overview and DDA Evaluation
The expert data include the information of the bidding and playing
processes, the declarer, the contract and the number of tricks won
by the declarer. There exist some noise in the data, e.g., incomplete
records and mismatch between the tricks and the playing process.
After filtering the noisy data, we finally get about 1 million games.

The numbers of different contracts in the dataset are plotted in
Figure 2(a), from which we see that the major-suit and no-trump
contracts are more preferred by experts. This observation is con-
sistent with the DBS system, where the basic scores of making
the major-suit and no-trump contracts are higher than those of
minor-suit contracts. For example, basic scores of making 2NT ,
2♠ and 2♣ are 120, 110 and 90, respectively. Besides, we see from
Figure 2(b) that most of the major-suit and no-trump contracts are

Algorithm 1: Reinforcement learning for ENN and PNN
Input: The ENN ϕω (·) and PNN σθ (·) from SL, and a set of

randomly generated games (G);
Output: The improved ENN and PNN from RL;

1 Initialize the target bidding system with ϕω (·) and σθ (·);
2 Put [ϕω (·),σθ (·)] in the empty opponent pool O ;
3 for mini-batch i = 1, 2, . . . , |G |100 do
4 Ω1 ← ∅;
5 Ω2 ← ∅;
6 Randomly select a bidding system fromO for opponents;
7 for episode j = 1, 2, . . . , 100 do
8 Use the deal ci j ∈ C to initialize each player’s cards,

the vulnerability and the dealer;
9 for pos = N -S , E-W do
10 The target bidding system plays at position pos;
11 Let the four players bid until the end;
12 Use DDA to calculate the duplicate score r for

the target partnership;
13 Save the inputs, bids and r of the target PNN in

Ω1;
14 Save the inputs and corresponding cards of the

target ENN in Ω2;

15 Update θ based on Ω1 and update ω based on Ω2;
16 Save [ϕω (·),σθ (·)] in O every 100 mini-batches;

at the level of 4 and 3, respectively, which is because contracts with
level 4 of major suits and level 3 of no-trump suits constitute the
“game” contracts and making them is worth 250 bonus scores. The
distribution of lengths of bidding sequences in the data are depicted
in Figure 2(c), which indicates that most of the biddings run for
6∼15 rounds. We see from Figure 2(d) that the over takes with levels
greater than 4 are negative, which means that it is difficult to make
those contracts.

For each game, we use DDA to compute the declarer’s tricks t∗
and calculate the gap, t∗ − t , between the DDA’s result and the real
tricks t in the data. The declarer’s partnership can win at most 13
tricks in one deal and thus the range of the gap is [−13, 13]. Figure
3 shows the distribution of the gap. As can be seen, more than 90%
of the gaps lie in [−1, 1] and 55.19% of the gaps are equal to zero,
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Figure 2: Expert behaviors analysis.

which implies that DDA is a very good approximation to expert
playing.
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Figure 3: DDA evaluation.

Based on the DDA results, we demonstrate that 1) it is important
to estimate our partner’s cards for finding the optimal contract and
2) the card distribution in opponents’ hands has little effect on the
DDA results. Since there are 4 possible declarers and 5 possible
trump suits, given the initial cards of four players, DDA outputs
a 4 × 5 double dummy table (DDT), containing the numbers of
tricks each possible declarer can win with each possible contract
suit. The optimal contracts of the two partnerships can then be
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Figure 4: Importance comparison of estimating partner’s
and opponents’ cards.

calculated based on the DDT and the DBS system. Thus, we just
need to show that, given one’s own cards, 1) the DDTs with different
partner’s cards are of high divergence and 2) theDDTswith different
opponents’ cards are similar. We use player N as an example in
the experiments. For demonstration 1, 2 thousand decks of initial
cards for players N and E are randomly generated. For each deck,
we use DDA to compute the DDTs of 1 thousand different initial
cards of players S (note that once the cards of N , E and S are
given, the cards forW can be obtained directly) and then calculate
the standard deviation (std) of each declarer-suit pair over the 1
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thousand DDTs. Finally we get 2000×4×5 = 40000 std values, which
are indexed from the smallest to the largest and plotted in Figure
4. The second demonstration uses the similar method, except that
2 thousand decks of initial cards are generated for players N and
S , and then randomly sample 1 thousand E’s cards. The standard
deviation caused by modifying p’s cards indicates how relevant the
DDA result is to p’s cards. The lower the standard deviation is, the
weaker the relevance between the result and p’s cards are, and the
less important p’s cards are to the result. We see from Figure 4 that
about 90% of the std values of different partner’s cards are greater
than 1.5 and 55% of them are even greater than 2, while about 90%
of the std values of different opponents’ cards are less than 1 and
about half of them are less than 0.75, which are consistent with our
expectation.

5.2 Evaluation of ENN and PNN
We first evaluate the fitting accuracy of the ENN in expert data.
We generate more than 12 million training instances from the 1
million games, 70% of which are used for training, 10% for validation
and 20% for test. To increase the divergence of these dataset, the
instances from a single game are put in the same dataset (training,
validation or test).

The ENN uses a fully connected neural network with 8 layers,
each hidden layer of which has 1500 neurons. Besides, we add an
extra skip connection every two layers for the network. To evaluate
the accuracy of the ENN, cards with the highest 13 probabilities are
selected as predictions of the ENN and then the accuracy is equal to
the number of correct predictions divided by 13. Note that the PNN
takes the 52 probabilities output by the ENN as input, but not the 13
highest-probability cards. The average accuracies of the ENN with
different bidding length on the test dataset are shown in Figure 5.
We see that the accuracies increase gradually. That is, the more
actions we observe from our partner, the more accurately we can
estimate his/her cards. The average accuracy and recall of each card
is depicted in Figure 6(a). It implies that the accuracy and recall of
card of “A” are higher than other cards and the fitting performance
on major suits is slightly better than that on minor suits. Because
the number of possible partner’s hand is 8 × 109, it is very difficult
to get a high accuracy with very limited observations. In fact, in
most situations, it is not necessary to know the exact cards of the
partner, for example, to make a specific contract, one may just want
to confirm that his/her partner holds at least 4 minor-suit cards,
i.e., the sum of the probabilities of the ENN for minor suits is not
less than 4, no matter which minor-suit card is held. Note that
the outputted card distribution of the ENN is directly inputted to
the PNN and thus such information can be used by the PNN for
decision making.

The datasets for the PNN are generated based on the ENN. The
PNN consists of a fully connected neural network of 10 layers
with skip connection and each hidden layer has 1200 neurons. The
accuracies of the PNN for predicting experts’ moves with different
bidding lengths are shown in Figure 5. We learn that the accuracies
of the two partnerships’ first bids are higher, which is because the
rules for opening bids and corresponding responses are relatively
well-defined. Overall, the accuracy also increases with the number
of observed bids. The accuracies and recalls for different bids are
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Figure 5: Accuracies with different bidding lengths.

shown in Figure 6(b), where the first 35 indexes correspond to the
35 ordered contract bids and the last three (36, 37, 38) represent
“pass”, “double” and “redouble” respectively. The results indicate
that the “pass” action is easy to predict because both the accuracy
and recall are high. In fact, more than 50% of the bids in the expert
data are “pass”. Besides, we see that the PNN performs better at
low-level bids than at high-level bids, because the bidding usually
begins with low-level bids and thus we have more data for training
the PNN on them.

Next, we evaluate the improvements of the bidding system in
the RL procedure. We randomly generate 2 million deals and use
Algorithm 1 to train the ENN and PNN. To distinguish with the
different networks, we call the ENN (PNN) after the SL the SL-
ENN (SL-PNN). Similarly, we use RL-ENN (RL-PNN) to denote the
networks after the training of the RL. The opponent pool consists
of the historical versions of the RL-ENN and RL-PNN in the RL.
To evaluate the performance of the algorithm, we compare the
historical networks with the initial SL networks through bidding
competition over 10 thousand random deals. The average IMPs
got by these RL networks in the competition is plotted in Figure 7.
As can be seen, the strength of the bidding system is significantly
improved in the RL.

5.3 Performance of the Bidding System
To show the importance of the ENN, we trained another policy
neural network without consideration of the partner’s cards, which
has the same structure with the PNN except that the feature of
ϕω (·) is removed. We use the notations of SL-PNN (RL-PNN) and
SL-PNN+ENN (RL-PNN+ENN) to denote the bidding systems built
with the SL (RL) version of a single PNN and the SL (RL) version of
the PNN plus ENN in this subsection. The performances of different
bidding systems are shown in Table 1, where the IMPs are in view
of the row bidding systems and are averaged over 10 thousand
random deals when both teams are network-based systems.

We see that the RL bidding systems are stronger than SL systems
and even the RL-PNN can beat the SL-PNN+ENN by 2.1006 IMPs,
which implies that the RL can significantly improve the bidding
system. The strongest RL-PNN+ENN beats RL-PNN by 1.0856 IMPs,
which indicates that the ENN is a key component of our bidding
system. The comparison with Wbridge5 is manually tested on 64
random boards because there is neither code nor command line
interface for Wbridge5. We just compare the bidding ability with
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Figure 6: Fitting accuracy of ENN and PNN.

Table 1: Bidding strength comparison

SL-PNN RL-PNN SL-PNN+ENN RL-PNN+ENN Wbridge5
SL-PNN N/A -8.7793 -5.653 -9.2957 –
RL-PNN 8.7793 N/A 2.1006 -1.0856 –

SL-PNN+ENN 5.653 -2.1006 N/A -2.2854 –
RL-PNN+ENN 9.2957 1.0856 2.2854 N/A 0.25
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Figure 7: RL training curve.

Wbridge5 and the scores are also computed with DDA. Wbridge5
implements many bidding rules, e.g., Weak Two, Strong 2D and
Unusual 2NT, which can be selected by players in the “Options”
of Wbridge5. The comparison results indicate that our best RL-
PNN+ENN system is stronger in bidding, with a positive average
IMP of 0.25 overWbridge5. It is claimed that a 0.1 IMP improvement
is significant for bidding strength [18].

6 CONCLUSION AND DISCUSSION
In this paper, we designed a neural network-based bidding system,
consisting of an estimation neural network (ENN) for inferring
the partner’s cards and a policy neutral network (PNN) to select
bids based on the public information and the output of the ENN.
Experimental results indicate that our system outperforms the top
rule-based program – Wbridge5.

Contract bridge is a good testbed for artificial intelligence be-
cause it is one of the most difficult card games, involving large state
space, competition, cooperation and imperfect information. Our
methods can be applied to other games. Specifically, the feature
representation method in our paper provides a general idea to ef-
ficiently encode the action history in a game where the maximal
history length is finite. For example, the method can be applied to
limit Texas Hold’em poker. Since the possible action sequences in
each round and possible numbers of round in the game are finite,
we can use a vector whose length is equal to the maximal action
sequence to encode the action history, where a “1” in position i
means that the corresponding action is taken, while a “0” means
not taken.

Besides, how to deal with private information of other players
in imperfect-information games is a key problem. Although lack of
theoretical support, our work experimentally shows that using a
particular estimation component is effective. Since bridge is a very
complex game with multiple players, imperfect information, collab-
oration and competition, the experimental evidence can motivate
the method to be applied to other games, e.g., multi-player no-limit
Texas Hold’em poker and majhong.

For future work, first we will further improve the strength of our
system. Second, we will develop a computer program for bridge
and open to the community for public test. Third, we will “translate”
the network-based system to a convention to play with humans.
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