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ABSTRACT
We introduce a method for formally verifying properties of arbi-

trarily large swarms whose agents are modelled probabilistically.

We define a parameterised probabilistic semantics for modelling

swarms and observe that their verification problem against PLTL

specifications is undecidable. We develop a partial procedure for

verifying arbitrarily large swarms based on counter abstraction and

show its correctness. We present an implementation and report the

experimental results obtained when verifying a swarm foraging

protocol.
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1 INTRODUCTION
Robotics swarms have been proposed as an alternative to single-

robot systems in many applications including surveillance [38]

and search and rescue [32]. Swarms have been shown to provide

a number of advantages such as scalability and fault-tolerance.

Typically, physical agents in a swarm follow simple protocols in

line with their limited computation and sensing ability. While their

individual behaviours may be simple, their interaction can lead to

sophisticated overall behaviour that is difficult to predict [5, 36, 37].

At run-time a swarm system will typically be composed of a

variable number of agents, depending on a number of factors such

as the size of the problem being solved, the level of performance

required, and whether a degree of fault-tolerance is necessary. Thus,

it is desirable to verify at design-time that the protocols followed by

the agents are correct regardless of the number of agents that will be

deployed at run-time. This cannot be achieved by traditional model-

checking techniques as they are limited to finite-state systems and

thus can only verify swarms composed of a fixed number of agents.

Parameterised model checking can be used to verify systems of

arbitrary size [4]. In its most general formulation, the parameterised

model checking problem is known to be undecidable [2]. Nonethe-

less, by limiting the communication patterns between agents or the

specification language, decidable fragments of this problem have

been explored, particularly in the context of network systems [1, 7].
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In one direction of work a semantics amenable to modelling

multi-agent systems has been proposed and parameterised verifica-

tion methods based on identifying cutoffs (a sufficient number of

agents to display every behavior) have been developed [20, 24].

Adaptations and extensions of these methods have enabled the

verification of unbounded swarm protocols such as the alpha al-

gorithm [22]. A key limitation of this line of work is that it does

not fully support the modelling of probabilistic aspects of swarms.

This hinders the applicability to protocols in which the behaviour

of the agents is stochastic and thus cannot be modelled in a mean-

ingful way using only non-determinism. Probabilistic aspects were

incorporated to some extent in [23], but this was done in an ad-hoc

way to consider an opinion formation protocol [8]. Recently [31]

introduced a more general semantics for reasoning about proba-

bilistic swarms. However, as discussed in the related work, this had

a number of limitations, thereby limiting its applicability.

The aim of this contribution is to introduce a novel formal veri-

fication method, including an expressive probabilistic agent-based

semantics and a paramaterised verification technique, for reasoning

about unbounded swarm systems. As is typical in parameterised

verification, this will result in an undecidable verification problem.

Nonetheless, we develop a partial decision procedure for it based on

counter abstraction [33] that enables us to derive conclusions on all

the infinitely many swarm systems. Building from these theoretical

results we introduce an open-source implementation which we use

to evaluate a probabilistic swarm foraging algorithm [6, 29].

After discussing related work, the rest of the paper is organ-

ised as follows. In Section 2 we give some background on proba-

bilistic model checking, and introduce notation that will be used

throughout the paper. In Section 3, we present our novel seman-

tics for reasoning about probabilistic swarm systems, and present

the decision problem we will consider. In Section 4, we develop a

partial decision procedure based on counter abstraction and show

its correctness. In Section 5 we present an implementation of this

procedure, and evaluate its performance on a foraging protocol.

Finally, we conclude in Section 6.

Related Work. There has been a significant amount of work in

verifying properties of probabilistic swarm systems [11, 15, 19, 40];

some work has included strategy synthesis aspects [13]. However,

these lines have focussed on swarm systems with a bounded num-

ber of agents. Recent developments [12] have aimed to increase

the maximum number of agents that can be checked; however the

number of agents that will be present in the system is unknown at

design-time and may be larger than what could possibly be checked.

In contrast, we here present a method to investigate whether prop-

erties hold on systems of any size.
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Work in parameterised model-checking for unbounded multi-

agent systems and swarms [20, 22, 24] aims to give the same guaran-

tees that we pursue here; however this line is not usually concerned

with stochastic aspects and therefore it is not comparable to the

present contribution. One exception is [23], where a semantics

specifically tailored to opinion formation is proposed. The seman-

tics we consider here is more general and allows us to consider

not one but various protocols as well as quantitative probabilistic

properties in addition to the qualitative ones considered there.

A related area of work in probabilistic verification of network

protocols [10, 14] has enabled verification of probabilistic protocols

with an arbitrarily large number of agents. However, the commu-

nication pattern used between agents in these semantics is not

amenable to modelling swarms.

Closest to the present contribution is [31] where a stochastic

treatment of swarm systems amenable to establishing whether

emergent properties arise is put forward. In contrast, in this pa-

per we focus on the parametrised verification problem and not

emergence identification. Moreover, the specification language we

analyse is more expressive, allowing us to express properties on

infinite traces and not just properties on finite traces as considered

in [31]. Lastly, our semantics allows for interleaved executions in

which the agents take turns to perform actions. This is considerably

more expressive than the fully synchronous semantics considered

in [31], thereby enabling the analysis of further swarm protocols.

2 BACKGROUND
In this section we introduce some background on probabilistic

model checking, along with the notation that we will use through-

out the paper.

Discrete TimeMarkov Chains.We briefly summarise discrete
timeMarkov chains (DTMCs). Formore background onmodel check-

ing DTMCs, see [3, 17, 26].

Definition 2.1 (DTMC). A discrete-time Markov chain (DTMC) is a

tupleD = ⟨S, ι, t ,L⟩where S is a set of states, ι ∈ S is a distinguished
initial state, t : S × S → [0, 1] is a transition probability function

(with

∑
s ′∈S t(s, s

′) = 1 for any s ∈ S) and L : S → P(AP) is a
labelling function on a set AP of atomic propositions.

A path in a DTMC is a sequence of states s0s1s2 . . . such that for

every i ∈ N it is the case that t(si , si+1) > 0. We use FPathD and

IPathD respectively, to denote the set of all finite and infinite paths

starting from the initial state ι. For a finite path we define its proba-

bility by PD (s0 . . . sn ) ≜
∏n−1

i=0 t(si , si+1). Following [17], this can
be extended to the set of all infinite paths. For ease of presentation

we omit this; however note that this probability space is uniquely

defined by the probabilities on finite paths. This corresponds to

the intuition that the probability of an infinite path occurring is

uniquely defined by the probability of its finite prefixes occurring.

We also define the probability of a set of paths occurring by sum-

ming over them, i.e. for a set X ⊆ (FPathD ∪ IPathD ) we define

PD (X ) ≜
∑
ρ ∈X PD (ρ). Further, we sometimes omit the subscript

from PD and simply write P when D is clear from context.

Markov Decision Processes. We now summarise some key

aspects of Markov decision processes (MDPs). We refer to [3, 35] for

more details. We mostly follow the notation used in [9].

Definition 2.2 (MDP). A Markov decision process (MDP) is a tuple

M = ⟨S, ι,A, P , t ,L⟩ where S is a finite set of states, ι ∈ S is a

distinguished initial state, A is a finite set of actions, P : S → P(A)
is a protocol function (such that P(s) , ∅ for all s ∈ S), t : S×A×S →

[0, 1] is a transition function (with

∑
s ′∈S t(s,a, s

′) = 1 for any s ∈ S
and a ∈ P(s)) and L : S → P(AP) is a labelling function on a set AP
of atomic propositions.

Intuitively, a transition from a state s of an MDP occurs by first

non-deterministically selecting some action a ∈ P(s) and then

transitioning to state s ′ with probability t(s,a, s ′). MDPs thus give

a way of describing systems that include both probabilistic and

non-deterministic choice, unlike DTMCs which do not capture the

latter.

A path in an MDP is a sequence of states and actions s0a0s1a2 . . .
such that for all i ∈ N it is the case thatai ∈ P(si ) and t(si ,ai , si+1) >
0. We use FPathM (IPathM , respectively) to denote the set of all

finite (infinite, respectively) paths starting from the initial state ι.

For a finite path ρ = s0a0 . . . sn , last(ρ) ≜ sn denotes its last state.

In order to reason about the probability of a path occurring in

an MDPs, we need a way to resolve the inherent non-determinism.

This is captured by a scheduler (also referred to as an adversary,
strategy or policy in some literature).

Definition 2.3 (Scheduler). Given an MDP M = ⟨S, ι,A, P , t ,L⟩
a scheduler for M is a function σ : FPathM × A → [0, 1] such

that for any finite path ρ ∈ FPathM , we have σ (ρ,a) > 0 only if

a ∈ P(last(ρ)) and
∑
a∈A σ (ρ,a) = 1.

We denote by AdvM the set of all schedulers for M. Various

classes of schedulers may be defined [9]. Note that when maximis-

ing or minimising the probability of reaching a target set of states,

it is sufficient to consider schedulers that are memoryless (only

make choices based on the final state of the path) and deterministic

(only assign values from {0, 1} to all actions).

We now proceed to define the DTMC induced by a scheduler on

an MDP. Intuitively, this describes the purely probabilistic system

that results from fixing a given choice of scheduler in an MDP.

Definition 2.4 (Induced DTMC). Given an MDPM = ⟨S, ι,A, P ,
t ,L⟩ and a strategy σ : FPathM × A → [0, 1], the induced DTMC
Mσ = ⟨FPathM , ι, t

′,L′⟩ is defined by:

• t ′ : FPathM × FPathM → [0, 1] is given by:

t ′(ρ, ρ ′) ≜

{
σ (ρ,a) × t(last(ρ),a, s) if ρ ′ = ρas,a ∈ P(last(ρ))

0 otherwise

• L′(ρ) ≜ L(last(ρ)) for all ρ ∈ FPathM

Notice that while in general the induced DTMC might have an

infinite number of states, when considering memoryless schedulers

it is possible to derive an equivalent DTMC that has only finitely

many states [9].

3 PROBABILISTIC SWARM SYSTEMS
In this section we introduce the syntax and semantics of probabilis-

tic swarm systems and define their model checking problem.

Models.We begin by defining probabilistic parameterised inter-

leaved interpreted systems (PPIISs). A PPIIS is composed of an agent
template, which describes the behaviour of individual agents and

Session 1D: Verification and Validation AAMAS 2019, May 13-17, 2019, Montréal, Canada

162



an environment which captures the behaviour of the other parts of

the system. It is straightforward to extend the framework to finitely

many agent templates. For ease of presentation we do not carry out

this exercise here.

Definition 3.1 (Probabilistic agent template). A probabilistic agent
template is a tuple T = ⟨S, ι,Act , P , t⟩ where:

• The set S is a finite set of agent local states.

• ι ∈ S is a distinguished initial state.

• Act = A∪AE∪GS is the non-empty set of actions that can be

performed by the agents. These may either be asynchronous
actions, agent-environment actions or global-synchronous ac-
tions. Each type of action implies a different communication

pattern between the agents, as outlined in Definition 3.4.

• The agent’s protocol function P : S → P(Act) defines which
actions are enabled at a given state.

• The agent’s transition function t : S × Act × S → [0, 1] de-

scribes the evolution of the agent’s state: given a local state s ,
an action a, and a local state s ′, t returns the probability that

upon performing action a in state s the agent will transition
to state s ′. Notice we require that for every l ∈ S and a ∈ P(l)
we have

∑
l ′∈S t(l ,a, l

′) = 1.

The agent template is closely related to MDPs (see Section 2),

suitably extended to encode action types to account for synchroni-

sation purposes.

For the remainder of this paper we will assume that agents

transition deterministically when performing global actions, i.e.,

if a ∈ GS then t(s,a, s ′) ∈ {0, 1}. This restriction will simplify the

presentation, but does not limit the expressivity of the formalism.

More precisely, systems with probabilistic global transitions can

be transformed into equivalent systems with deterministic global

transformations by introducing a further asynchronous probabilis-

tic action selecting the resulting global transition.

We now proceed to define the environment that the agents op-

erate in.

Definition 3.2 (Environment). An environment E is a tuple E =
⟨SE , ιE ,ActE , PE , tE ⟩ where SE is a finite set of local states, ιE ∈ SE
is a distinguished initial state, ActE is a non-empty set of actions

ActE = AE ∪ AE ∪ GS, the environment protocol PE is a function

PE : SE → P(ActE ), and a transition function tE : SE × ActE ×

SE → [0, 1] such that for every l ∈ SE and a ∈ PE (l) we have∑
l ′∈SE t(l ,a, l

′) = 1.

As above an environment is an MDP suitably extended with

action types. We can now define PPIIS.

Definition 3.3 (PPIIS). A probabilistic parameterised interleaved
interpreted system (PPIIS) is a tuple S = ⟨T ,E,L⟩, where T is a

probabilistic agent template, E is an environment and L : S × SE →

P(AP) is a labelling function for a set of atomic propositions AP .

PPIISs, as defined above, extend the framework of parameterised

interpreted systems (PIISs) presented in [24] to reason about multi-

agent systems composed of an unbounded number of agents. In

turn, parameterised interpreted systems extend interleaved inter-

preted systems (IISs) [30]. The framework we introduced above is

a modification of PIISs to account for probabilistic behaviour of the

agents and the environment.

Each PPIIS describes an unbounded collection of concrete sys-

tems obtained by choosing a different number of agents in the

system. Given a PPIIS S and n ∈ Z+, the system S(n) of n agents

is the result of the composition of n copies of T with the environ-

ment. We denote the set of concrete agents instantiated from T by

Aдtn ≜ {1, . . . ,n}. When referring to a subset of these agents, we

will use the notationAдtx,y ≜ {x , . . . ,y} when this is well-defined.

A global state д = ⟨s1, . . . , sn , se ⟩ is an (n + 1)-tuple of local

states for all the agents and the environment in S(n); it describes
the system at a particular instant of time. Let Sn denote the set

of all such global states. For a global state д ∈ Sn we write д.i to
denote the local state of agent i in д and д.E to denote the state of

the environment in д.

The set of global actions is given by Actn ≜ GS ∪ AE ∪ ((A ∪

AE) ×Aдtn ). Thus, each action is either a global synchronous one,

an asynchronous environment one, an asynchronous agent one, or

an agent-environment one; the latter two are labelled by the agent

involved in the action. The actions that are enabled in each global

state are defined by the global protocol.

Definition 3.4 (Global protocol). The global protocol Pn : Sn →

P(Actn ) is defined by a ∈ Pn (д) if and only if

• (Global-synchronous). (i) a ∈ GS ; (ii) for all i ∈ Aдtn , a ∈

P(д.i); (iii) a ∈ PE (д.E).
• (Asynchronous environment). (i) a ∈ AE ; (ii) a ∈ PE (д.E).
• (Asynchronous agent). (i) a = (a′, i) ∈ A × Aдtn ; (ii) a

′ ∈

P(д.i).
• (Agent-environment). (i) a = (a′, i) ∈ AE × Aдtn ; (ii) a

′ ∈

P(д.i); (iii) a′ ∈ PE (д.E).

Thus, global actions are enabled only if they are enabled for all

agents and the environment. Asynchronous environment actions

must be enabled for the environment, whilst asynchronous agent

actions must be enabled for the participating agent. Finally, agent-

environment actions must be enabled for both the participating

agent and the environment.

Transitions in the system occur according to the global transition

function, which we will now define.

Definition 3.5 (Global transition function). The global transition
function tn : Sn ×Actn × Sn → [0, 1] is defined by tn (д,a,д

′)

≜



tE (д.E,a,д
′.E) ·

∏n
i=1 t(д.i,a,д

′.i) if a ∈ GS

tE (д.E,a,д
′.E) if a ∈ AE

and ∀i ∈ Aдtn : д.i = д′.i

t(д.i,a′,д′.i) if a = (a′, i) ∈ A ×Aдtn and

∀j ∈ Aдtn \ {i} : д.j = д′.j

tE (д.E,a
′,д′.E) · t(д.i,a′,д′.i) if a = (a′, i) ∈ AE ×Aдtn and

∀j ∈ Aдtn \ {i} : д.j = д′.j

0 otherwise

Intuitively, the global transition function is defined by multi-

plying the transition functions of the agents participating in the

transition while ensuring that any agents not participating in the

transition remain in the same state. The observation below follows

immediately from the definitions.

Observation 1. For any д ∈ Sn and a ∈ Pn (д), it is the case that∑
д′∈Sn tn (д,a,д

′) = 1.
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(a) An agent
template.

(b) An envi-
ronment. (c) The concrete system of 2 agents.

Figure 1: An example PPIIS together with the concrete in-
stantiation for two agents. The a action is asynchronous,
while the д one is global synchronous.

This observation will enable us to show that a concrete system of

n agents, defined below, is an MDP. Notice that in a global system

the scheduler chooses both which agents act and what action they

perform. It does not, however, choose the transition, which occurs

according to the probability distribution defined in Definition 3.5.

Definition 3.6 (Concrete system). Given a PPIIS S and an n ∈ Z+,
the concrete system of n agents is defined by S(n) = ⟨Sn , ιn ,Actn ,
Pn , tn ,Ln⟩, where ιn = ⟨ι, . . . , ι, ιE ⟩, the labelling function Ln :

Sn → P(AP × Aдtn ) is defined by Ln (д) ≜ {(p, i) ∈ AP × Aдtn :

p ∈ L(д.i,д.E)}, and the other components are defined as in Defini-

tions 3.4 and 3.5.

Notice that for the labelling function we create one copy of an

atomic proposition for each agent, and label a global state with this

if the agent’s local state is labelled with it.

A small example of a PPIIS and its corresponding concrete system

built on two agents is shown in Figure 1. Here, the agents begin

in state 0, where they can only perform the asynchronous action

a, which with equal probability either does nothing or takes the

agent to state 1. Once all agents are in state 1, they can perform

the global synchronous action д which does not cause a change in

state. The environment has only the state 0 which always enables д.
We will exemplify the use of PPIIS in swarm robotics in Section 5.

Having defined the models, we now define the specification

language that will be used to reason about properties of swarms.

Specifications. We express properties of swarm systems by

means of a variant of the probabilistic LTL logic [9], tailored to

expressing properties of multi-agent systems by labelling atomic

propositions with the agent that they should hold for.

Definition 3.7 (PLTL). For a ∈ AP and i ∈ N, the probabilistic LTL
logic is the set of formulas ϕ defined by the following BNF:

ϕ ::= Pmax

▷◁x [ψ ] | Pmin

▷◁x [ψ ] for x ∈ [0, 1] and ▷◁∈ {≤, <, ≥, >}

ψ ::= ⊤ | (a, i) | ¬ψ | ψ ∧ψ | Xψ | ψ U ψ

We say a formula ism-indexed if it refers to agents with index at

mostm (i.e., all atomic propositions in the formula are of the form

(a, i) for some i ≤ m).

Intuitively, the property Pmax

▷◁x [ψ ] holds if, with a scheduler that is
trying to maximise the probability of a path satisfyingψ occurring,

this probability is ▷◁ x . Similarly, Pmin

▷◁x [ψ ] holds if the probability
is ▷◁ x with a scheduler that is attempting to minimise it. A path

satisfies Xψ if it satisfiesψ in its second state; it satisfiesψ1Uψ2 if
it satisfiesψ2 at some point, and satisfiesψ1 until then. We assume

the abbreviations F , G, and finite time variants of all operators, as

usual.

We now define the satisfaction relation for PLTL.

Definition 3.8 (Satisfaction). Given a concrete swarm systemS(n)
and ϕ anm-indexed formula, where n ≥ m, the satisfaction of ϕ on

S(n) is inductively defined as follows:

S(n) |= Pmax

▷◁x [ψ ] iff sup

σ ∈AdvM

P({ρ ∈ IPathS(n)σ : ρ |= ψ }) ▷◁ x

S(n) |= Pmin

▷◁x [ψ ] iff inf

σ ∈AdvM

P({ρ ∈ IPathS(n)σ : ρ |= ψ }) ▷◁ x

Satisfaction for path formulae is defined as usual in LTL.

For example, the PLTL formula Pmax

≤0.3[F
<5(win, 1)] is a 1-indexed

formula that holds if no matter what choices the scheduler makes,

the probability of agent 1 reaching a state where win holds within 5

time-steps cannot exceed 0.3. The PLTL formula Pmin

<0.9[G(alive, 2)]
is a 2-indexed formula that holds if, when the scheduler tries to

minimise the probability that agent 2 is always in a state where

alive holds, then this probability will be below 0.9.

For the remainder of the paper with no loss of generality we

will only consider properties of the form Pmax

≤x [ψ ]. Note in fact

that the other cases can either be handled similarly or transformed

into equivalent cases. For instance, checking that Pmin

>x [ψ ] holds is
equivalent to checking that Pmax

≤x [¬ψ ] does not hold.
In the following we will focus on the parameterised model check-

ing problem, which amounts to checking whether a certain formula

holds in systems of any size. We formalise this below.

Definition 3.9 (Parameterised Model Checking). Given a PPIIS

S and an m-indexed PLTL formula ϕ, the parameterised model

checking problem involves establishing whether it is the case that

S(n) |= ϕ for all n ≥ m. We write S |= ϕ if this is the case.

Notice that since this is a probabilistic extension of a problem

that is known to be undecidable in general [2], it is certainly also
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undecidable in general. In the following we will explore decidable

fragments.

4 MODEL CHECKING PPIIS
In this section we introduce a procedure for verifying swarm sys-

tems modelled by PPIISs. To do so, we introduce an abstract model,

which captures all the possible paths in concrete systems of any

size. The abstract model that we consider is inspired by the litera-

ture in counter abstraction [33] as well as its adaptation in swarm

systems [21]. We are not aware, however, of these methods having

been explored in a probabilistic setting.

First, consider that to evaluate anm-indexed formula, we need

to represent the state of at least the firstm agents in the system.

Accordingly, the state of the abstract model will have two compo-

nents: the first will represent the state of the firstm agents and the

environment; the second will consist of a set containing the states

of all the other agents (abstracting away the information about how

many agents are in each state).

Transitions of the firstm agents will occur exactly as before; for

transitions involving the remaining agents we will label the action

with the local state the transition was occurring from and whether

it was a “shrinking” (↓) transition or a “growing” (↑) transition. A

shrinking transition will represent that there was only one agent

in the local state the action was performed from. Conversely, a

growing transition will represent that there were at least two agents

in the local state the action was performed from.

Definition 4.1 (Abstract system). Given a PPIIS S and anm ∈ Z+,

the abstract system ofm agents is defined by
ˆS(m) = ⟨Ŝm , ι̂m , Âctm ,

P̂m , t̂m , L̂m⟩, where:

• Ŝm ≜ Sm × P(S) is the set of abstract global states.

• ι̂m ≜ (ιm , {ι}) is the initial abstract global state.

• Âctm ≜ Actm ∪ ((A ∪AE) × S × {↑,↓}) is the set of abstract

global actions.

• P̂m : Ŝm → P(Âctm ) is defined by:

P̂m (д,X ) ≜(Pm (д) \ {a ∈ GS : ∃x ∈ X with a < P(x)})

∪ {(a, s,v) ∈ A × X × {↑,↓} : a ∈ P(s)}

∪ {(a, s,v) ∈ AE × X × {↑,↓} : a ∈ P(s) ∩ PE (д.E)}

• t̂m : Ŝm × Âctm × Ŝm → [0, 1] is the transition function,

defined for asynchronous agent actions by:

t̂m ((д,X ), (a, l ,↑), (д′,X ′)) ≜
t(l ,a, l ′) if X ′ \ X = {l ′} and д = д′∑
l ′∈X t(l ,a, l ′) if X ′ = X and д = д′

0 otherwise

t̂m ((д,X ), (a, l ,↓), (д′,X ′)) ≜
t(l ,a, l ′) if X ′ = (X \ {l}) ∪ {l ′} and д = д′∑
l ′∈X ′ t(l ,a, l ′) if X ′ = X \ {l} and д = д′

0 otherwise

t̂m ((д,X ), (a, i), (д′,X ′)) ≜

{
tm (д,a,д′) if X ′ = X

0 otherwise

For agent-environment actions, we similarly define:

t̂m ((д,X ), (a, l ,↑), (д′,X ′)) ≜ t(д.E,a′,д′.E)×
t(l ,a, l ′) if X ′ \ X = {l ′} and ∀i ∈ Aдtm : д.i = д′.i∑
l ′∈X t(l ,a, l ′) if X ′ = X and ∀i ∈ Aдtm : д.i = д′.i

0 otherwise

t̂m ((д,X ), (a, l ,↓), (д′,X ′)) ≜ t(д.E,a′,д′.E)×

t(l ,a, l ′) if X ′ = (X \ {l}) ∪ {l ′}

and ∀i ∈ Aдtm : д.i = д′.i∑
l ′∈X ′ t(l ,a, l ′) if X ′ = X \ {l}

and ∀i ∈ Aдtm : д.i = д′.i

0 otherwise

t̂m ((д,X ), (a, i), (д′,X ′)) ≜

{
tm (д,a,д′) if X ′ = X

0 otherwise

For asynchronous environment actions, we define:

t̂m ((д,X ),a, (д′,X ′)) ≜

{
tm (д,a,д′) if X ′ = X

0 otherwise

Finally, for global actions we define:

t̂m ((д,X ),a, (д′,X ′)) ≜{
tm (д,a,д′) if X ′ = {s ′ ∈ S |∃s ∈ X : t(s,a, s ′) = 1}

0 otherwise

• L̂m : Ŝm → P(AP ×Aдtm ) is the labelling function given by

L̂m (д,X ) ≜ Lm (д).

The protocol enables those actions that would have been enabled

for the firstm agents, unless they are global synchronous actions

which one of the remaining agents cannot perform. It also enables

asynchronous and agent-environment actions (both growing and

shrinking), for the remaining agents.

For growing asynchronous transitions, we either use the proba-

bility of transitioning to a new state l ′ if the set of states grows, or
the sum of the probabilities of transitioning to one of the existing

states if the set of states does not change. The case for shrinking

transitions is similar. Finally, transitions of the firstm agents are

handled as before by simply re-using tm and enforcing that none

of the other agents change state.

Agent-environment actions are handled almost identically to

asynchronous ones, except that they also include the probability of

the environment performing the transition it does.

Lastly, global-synchronous actions can be handled in a straight-

forward way by using our assumption that the agents transition

deterministically when performing a global action.

Finally, notice that the labelling function simply discards the

information not pertaining to the local state of the firstm agents,

since this is not needed to evaluate the formula.

An example of an abstract system can be seen in Figure 2. This

is obtained by applying Definition 4.1 with m = 1 to the PPIIS

previously introduced in Figure 1. For instance, in the initial state

the first agent is in state 0, as is the environment and all other

agents. This gives us an initial state of ((0, 0), {0}). In this state, the

first agent could perform the action a. This is denoted by the action
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Figure 2: The abstract system with one agent for the PPIIS
introduced in Figure 1.

(a, 0) and results in either no change or a transition to the state

((1, 0), {0}) if the first agent changes its state to 1. Similarly, the last

of the other agents could perform an a action, which is denoted

by the (a, 0, down) transition and either results in no change or

a transition to the state ((0, 0), {1}). Finally, one of several other

agents in state 0 could perform the a action. This is denoted by the

(a, 0, up) transition and either results in no change or a transition

to the state ((0, 0), {0, 1}). The rest of the transitions are similarly

defined.

We now proceed to observe, as we did for the concrete system,

that the transition probabilities in an abstract system sum to 1.

Observation 2. For any д̂ ∈ Ŝm and â ∈ Âctm , it is the case that∑
д̂′∈Ŝm

t̂m (д̂, â, д̂′) = 1.

It follows from this observation that
ˆS(m) is a well-defined MDP.

We now give a few technical definitions that will be useful to prove

our main result in Theorem 4.9.

Definition 4.2 (State abstraction). Let n,m ∈ Z+ with n > m.

Then, the abstraction map on states λn,m : Sn → Ŝm is given by:

λn,m (l1, . . . , ln , lE ) ≜ ((l1, . . . , lm , lE ), {lm+1, . . . , ln })

Intuitively, this maps concrete states of size n > m into abstract

states of sizem by abstracting away how many agents are in each

state for agents after the first m. We define a similar notion for

actions.

Definition 4.3 (Action abstraction). Let n,m ∈ Z+ with n > m.

Then, the abstraction map on actions λn,m : Sn ×Actn → Âctm is

given by:

λn,m (д,a) ≜



a if a ∈ GS ∪AE ∪ ((A ∪AE) ×Aдtm )

(a′,д.i,↓) if a = (a′, i) ∈ (A ∪AE) ×Aдtm+1,n

and |{j ∈ Aдtm+1,n |д.i = д.j}| = 1

(a′,д.i,↑) if a = (a′, i) ∈ (A ∪AE) ×Aдtm+1,n

and |{j ∈ Aдtm+1,n |д.i = д.j}| > 1

Intuitively, this maps global actions and actions of the firstm
agents to themselves. For actions of the remaining agents, it maps

them to an abstracted action by labelling them with the state they

occurred from and whether they were growing or shrinking actions.

We now give a technical lemma that will be useful later.

Lemma 4.4. Let n,m ∈ Z+ with n > m. Let д ∈ Sn and a ∈ Pn (д).
Then, for any д̂′ ∈ Ŝm :

t̂(λn,m (д), λn,m (д,a), д̂′) =
∑

д′∈λ−1n,m (д̂′)

tm (д,a,д′)

Proof sketch. The proof can be obtained by checking all pos-

sible cases for action types. □

Intuitively, this lemma states that at each time-step, the probabil-

ity of a transition in the abstract model is the sum of the probabilities

of the concrete transitions that it encodes.

We now extend our notion of abstraction to paths.

Definition 4.5 (Path abstraction). Let n,m ∈ Z+ with n > m.

Then, the abstraction map on paths λn,m : IPathS (n) → IPath
ˆS(m)

is given by sending each infinite path ρ = д0a0д1 . . . in S(n) to the

unique infinite path ρ̂ = д̂0â0д̂1 . . . in ˆS(m) such that, for all i ∈ N:
(i) д̂i = λn,m (дi ); (ii) âi = λn,m (дi ,ai ).

Intuitively, this simply uses the maps for states and actions that

we have already defined to make a map on paths. We restrict this

definition to finite paths in the obvious way. We now proceed to

define a notion of an equivalent scheduler in the abstract model.

Definition 4.6 (Equivalent scheduler). Let σ : FPathS (n)×Actn →

[0, 1] be a scheduler in S(n). Then, for anym < n we define the

equivalent scheduler σ̂ : FPath
ˆS(m)

× Âctm → [0, 1] by:

σ̂ (ρ̂, â) ≜∑
ρ ∈λ−1n,m (ρ̂)

∑
a∈Actn :λn,m (last (ρ),a)=â PS(n)σ (ρ) · σ (ρ,a)∑

ρ ∈λ−1n,m (ρ̂) PS(n)σ (ρ)

Observe that after an abstract path ρ̂ the probability of choosing

an abstract action â is defined by summing over all possible concrete

paths ρ that map to ρ̂ and all concrete actions a that map to â the

probability σ (ρ,a), weighted by the probability PS(n)σ (ρ) of the
path occurring. We now show that this does indeed give a valid

scheduler.

Lemma 4.7. σ̂ : FPath
ˆS(m)

× Âctm → [0, 1] is a valid scheduler.

Proof. The fact that σ̂ (ρ̂, â) > 0 only if â ∈ P(last(ρ̂)) follows
from σ being a valid scheduler and the definition of the abstract
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protocol. It remains to check that for any ρ̂ ∈ FPath
ˆS(m)

we have

that

∑
â∈ ˆActm

σ̂ (ρ̂, â) = 1. For this notice that:∑
ρ ∈λ−1n,m (ρ̂)

∑
â∈ ˆActm

∑
a∈Actn :λn,m (last (ρ),a)=â

PS(n)σ (ρ) · σ (ρ,a)

=
∑

ρ ∈λ−1n,m (ρ̂)

∑
a∈Actn

PS(n)σ (ρ) · σ (ρ,a) =
∑

ρ ∈λ−1n,m (ρ̂)

PS(n)σ (ρ)

with the first equality following simply from λn,m being a function

and the second fromσ being a valid scheduler. So

∑
â∈ ˆActm

σ̂ (ρ̂, â) =

1, as desired. □

Having proved the validity of our definition, we present a further

lemma.

Lemma 4.8. Let σ : FPathS (n) ×Actn → [0, 1] be a scheduler in
S(n). Then it is the case that, for any path ρ̂ ∈ FPath

ˆS(m)
:

P
ˆS(m)σ̂

(ρ̂) =
∑

ρ ∈λ−1n,m (ρ̂)

PS(n)σ (ρ)

Proof sketch. By induction on the length of the path. The base

case is the unique length one path which always occurs with prob-

ability 1. The inductive case follows by unpacking the definitions,

then using the inductive hypothesis and Lemma 4.4 to get the de-

sired result.

□

This lemma is an extension of Lemma 4.4 stating that the proba-

bility of obtaining a certain path in the abstract model when follow-

ing the equivalent scheduler is precisely the sum of probabilities

of following an equivalent path in the concrete model. Notice that,

since as discussed in Section 2 the probability of infinite paths oc-

curring in a DTMC is uniquely defined by the probability of finite

paths occurring, this result on finite paths automatically carries

over to infinite paths.

We now give the main theorem of this paper, which will give us

a partial decision procedure for the verification problem.

Theorem 4.9. Suppose ˆS(m) |= Pmax
≤x [ψ ] for some m-indexed

formulaψ . Then, S(n) |= Pmax
≤x [ψ ] for all n ∈ Z+ with n > m.

Proof. We prove the contrapositive of this statement. Suppose

we have S(n) |= Pmax

>x [ψ ] for some n > m. Then, by definition, for

some scheduler σ in S(n) we have:

PS(n)σ ({ρ ∈ IPathS(n)σ : ρ |= ψ }) > x

Now, let σ̂ be the equivalent scheduler in
ˆS(m). Then, by Lemma 4.8:

P
ˆS(m)σ̂

({ρ̂ ∈ IPath
ˆS(m)σ̂

: ρ̂ |= ψ })

=
∑

ρ̂ ∈I Path ˆS(m)σ̂
:ρ̂ |=ψ

P
ˆS(m)σ̂

(ρ̂)

=
∑

ρ̂ ∈I Path ˆS(m)σ̂
:ρ̂ |=ψ

©­­«
∑

ρ ∈λ−1n,m (ρ̂)

PS(n)σ (ρ)
ª®®¬ > x

with the final inequality following from the observation that every

path in the concrete model has a corresponding path in the abstract

model where, by definition, the same atomic propositions hold at

each step and hence the same LTL formulas are satisfied. So, the

result follows by taking σ̂ as our scheduler. □

Notice this theorem gives us a partial decision procedure for

checking properties of the form Pmax

≤x [ψ ]. In particular, to check

anm-indexed formula we can construct the abstract model
ˆS(m)

and check whether it satisfies said formula. If this is the case, then

we know the property will be true in all concrete systems of size

n > m, so we only have to check the system of sizem to ensure the

formula holds in all systems.

Observe that, since the problem is undecidable, the procedure

highlighted above is not complete: if the property does not hold

in the abstract model, then no claims can be made as to whether

it holds in all systems. This is a consequence of the fact that the

abstract model is an over-approximation of all concrete systems

capturing additional paths not possible in any concrete system. In

particular, there are paths in the abstract model that could only be

achieved in a system with an unbounded number of agents. This

means that the present method cannot be used to verify protocols

such as opinion formation [39], that are correct only in systems

composed of finitely many agents.

5 IMPLEMENTATION AND EVALUATION
We implemented the method described in the previous section in a

Java toolkit called PSV-CA (Probabilistic SwarmVerifier byCounter
Abstraction), built on top of PRISM 4.0 [27], which provides the

underlying probabilistic model checking procedures and part of the

parsing. The source code for this and a number of models (including

the one we evaluate below) are released as open-source, along with

documentation describing the usage of the tool [34].

The modelling language we use is based on PRISM’s modelling

language for MDPs. Its key difference lies in the fact that precisely

two MDPs must be defined in each file (one for the agents, and one

for the environment) and each action must be declared of a specific

type (asynchronous, agent-environment or global-synchronous) in

order to define the communication pattern between these. Further

details on the modelling language are omitted and can be found in

the documentation within the software package [34].

Upon launch, the tool constructs (following Definition 3.6 and

Definition 4.1) either an abstract or a concrete model for a desired

number of agents depending on the options specified. Following

this PSV-CA checks the PLTL specifications on the resulting model

by calling PRISM.

In order to evaluate the approach, we modelled a swarm foraging

protocol [6, 29]. We modelled the agents by considering four differ-

ent possible states: resting in the nest, searching for food, reaching

some food that they have found, and returning to the nest with

food. When resting, a robot may decide with probability 0.5 to start

looking for food. At each step, a robot searching for food may find

it with probability 0.3. Then, it will move towards the food, which

may be up to d time-steps away
1
. Lastly, it will return to the nest

with the food and go back to its resting state. If the robot does

not find food within t time-steps, it will return to the nest and go

back to the resting state. The full model involves a combination

1
This distance is chosen uniformly at random.
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of asynchronous and agent-environment actions and can be found

in [34].

We used this formalisation to investigate the probability that two

units of food will be found and deposited within a certain number

of time-steps. In particular, we checked for different values of p and

k the 0-indexed property

Pmax

≤p [F<k (deposited
2
, 0)],

where deposited2 is an atomic proposition that holds when two

units of food have been deposited in the nest (by any agent). This

property expresses that, when the scheduler is behaving optimally

to maximise the probability that two units of food are found and

deposited within k time-steps, the probability of this event does

not exceed p. For this experiment, we fixed the two parameters of

the algorithm t and d to 3. Our results are recorded in Table 2.

Following the check on the abstract model, whenever the prop-

erty holds on it, given Theorem 4.9, we are guaranteed that the

specification holds on any concrete models of any size. For example,

we can conclude that no matter how many robots are present, the

probability of finding two units of food within 6 time-steps cannot

exceed 0.5. However, in cases where the property does not hold, we

cannot derive any conclusion on the validity of the specification

on the concrete models. Note that incompleteness of the procedure

is a necessary consequence of the general undecidability.

In order to assess the scalability of the method and implementa-

tion, we measured the time taken to construct the abstract model

when running OpenJDK 1.8 (64-bit version, 8GB heap size) on a

machine with Ubuntu 18.04 (Linux kernel 4.15.0-38) and an Intel

i7-7700HQ processor. The results are recorded in Table 1, along

with the number of states and transitions in the abstract model con-

structed. In a few cases the program timed out after 150 seconds;

however the performance of PSV-CA demonstrates that the tool

can successfully be used to verify small protocols in a reasonable

time. Once constructed, the actual checking of a specification on

the model is comparatively short, taking around 50ms. We do not

carry out timing of the model checking algorithm as this is the one

from PRISM and has already been extensively studied [18, 28].

We are unable to provide a full comparison of these results to

other implementations as, to the best of our knowledge, there is no

other tool that can be used to verify properties of unbounded prob-

abilistic swarm systems as we do here. By comparing the present

results to [24], which concern the non-probabilistic setting, we

find that the addition of probabilities makes, as expected, the corre-

sponding verification problem less tractable.

6 CONCLUSIONS
As we argued in the introduction, at present no method exists

for formally verifying arbitrarily large robotic swarms whose be-

haviour is described probabilistically. The lack of formal guarantees

on the evolution of swarm systems hinders the applicability of the

technology in safety-critical systems, in remote environments and

beyond.

Methods based on parameterised model checking have success-

fully been introduced for the formal analysis of non-probabilistic

swarms [20, 22, 24]. These have enabled the verification of determin-

istic variants of swarm protocols such as aggregation [21]. Some of

these have been extended to probabilistic protocols, such as opinion

d
1 2 3 4 5

1

0.1 sec

1,240

10,478

0.6 sec

7,599

89,700

1.5 sec

23,106

319,557

3.5 sec

52,588

817,747

8.3 sec

101,737

1,746,363

2

0.4 sec

4,793

57,184

2.4 sec

30,860

550,023

8.9 sec

92,183

1,991,641

24 sec

204,400

5,075,582

57 sec

386,856

10,749,914

3

1.2 sec

14,486

253,192

11 sec

94,209

2,477,958

48 sec

277,593

8,880,150

140 sec

604,125

22,251,457

timeout

4

3.2 sec

36,267

766,823

37 sec

234,620

7,598,501

timeout timeout timeout

5

8.4 sec

79,060

1,960,487

130 sec

506,092

19,340,746

timeout timeout timeout

Table 1: Time required to construct the abstractmodel (secs),
its corresponding number of states and transitions. t is the
maximum time a robot will unsuccessfully search before
resting and d is the maximum distance from the robot food
may appear.

k
6 8 10 12 14

0.25 False False False False False

0.50 True False False False False

0.75 True True False False False

0.90 True True True False False

0.95 True True True True False

p

0.99 True True True True True

Table 2: Result of checking Pmax
≤p [F<k deposited2] with t =

3 as the maximum time a robot will unsuccessfully search
before resting and d = 3 as the maximum distance from the
robot food may appear.

formation [23]; but in these cases the probabilistic aspects have not

been given prominence neither in the model nor in the specifica-

tions. More recently, [31] introduced an approach for reasoning

about probabilistic properties of swarms. However, as discussed in

the related work section, that approach has considerable limitations

including limitations in the modelling and specification language.

The present contribution takes a distinct approach in the modelling

and uses a more expressive specification language.

In future work, we plan to apply our method to further protocols

in swarm robotics. We will also investigate extending our procedure

to richer specification languages including notions of knowledge

and strategy [16]. Finally, we would like to combine our technique

with work on fault-tolerance of swarms [25] in order to verify

systems that are probabilistic and also need to be resistant to faults.
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