
Type Checking for Protocol Role Enactments via Commitments∗
JAAMAS Track

Matteo Baldoni
Università di Torino, Dip. Informatica

matteo.baldoni@unito.it

Cristina Baroglio
Università di Torino, Dip. Informatica

cristina.baroglio@unito.it

Federico Capuzzimati
Università di Torino, Dip. Informatica

federico.capuzzimati@unito.it

Roberto Micalizio
Università di Torino, Dip. Informatica

roberto.micalizio@unito.it

KEYWORDS
Agent Typing; Social Relationships; Static and dynamic type check-
ing; Commitments; Commitment-based Interaction Protocols.
ACM Reference Format:
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-
izio. 2019. Type Checking for Protocol Role Enactments via Commitments.
In Proc. of the 18th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
The major contribution of [8] is an agent-based, dynamic, and
declarative type checking system for agent interactions, which is
meant to support the implementation ofMulti-Agent Systems (MAS).
We observed that MAS abstractions and means (e.g., the possibil-
ity to encompass heterogeneous, autonomously developed agents,
which operate in a same environment, and contribute to goal achieve-
ment), suit well the characteristics of the present IT applications,
like the presence of global, pervasive software infrastructures,
where computing is ubiquitous, with embedded and distributed
devices interacting with each other. However, there is a lack of ef-
fective tools for reasoning on properties of the MAS which is being
realized. Our focus is on interaction [21]: How can an agent designer
verify that an agent has the means for carrying out the encoded in-
teraction? How to decide whether the agent is capable of behaving
in a certain way, or whether it shows specific skills/properties?

We claim that the answer is agent typing. Typing provides ab-
stractions to perform sophisticated forms of program analysis and
verification: compile-time/run-time error checking, modeling, doc-
umentation, verification of conformance and of compliance, rea-
soning about programs and components. It allows light forms of (a
priori/runtime) component verification [1–3, 6, 32, 34, 36]. Which
characteristics should the conceptualization and realization of a typ-
ing system for interacting agents consider? Briefly, we propose the
following: (a) natural to programmers: it should rely on notions that
are the basic building blocks of the agent paradigm, such as those
of behaviors and goals; (b) declarative: to accommodate the agents’

∗This paper is an extended abstract of an article published in Autonomous Agents and
Multi-Agent System [8].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

autonomy by being the least prescriptive; (c) dynamic type check-
ing: because agents may acquire or lose capabilities along time; (d)
distributed: or local, it should rely on information possessed by the
agent. The agent typing we presented is the first in the literature to
show all such characteristics. It has the ultimate purpose of allowing
(at role-enactment time [13, 14, 16, 20]) the verification that agents
satisfy the requirements for the protocol roles they mean to enact.
Building upon a wide literature that considers relationships as one
of the basic building blocks of the humanway of interpreting reality,
the proposal is grounded on the social relationships which agents
may create along their interaction when playing protocol roles. We
represent such social relationships in terms of social commitments
[17, 35] and, thus, rely on commitment-based protocols.

The proposal is not bound to a specific agent programming
language; rather, it can be implemented in different frameworks. As
an exemplification, the typing system and the checking performed
at enactment-time were implemented in 2COMM4JADE [5].

2 TYPING AGENTS THROUGH SOCIAL
RELATIONSHIPS

An agent can deliberate to enact a protocol role at any time of its
execution. Thus, a type checking system should verify, dynamically,
that only an agent adequately equipped to play the selected role is
actually enabled to enact that role. In other words, the type checking
should prevent an agent from playing a role when it has not a proper
set of behaviors to carry out the duties associated with the role. Of
course, the type checking is grounded on the assumption that the
underlying protocol is “well-defined” (correct).

We focus on commitment protocols and, based on the defini-
tions of residuation and progression (see journal paper) we have
singled out the class of socially progressive protocols as adequate
for supporting the agent type checking at enactment time. These
protocols satisfy the following properties: (a) closeness: in a closed
protocol, for any relevant event, there is at least one role that can
make it occur, and all events generated by the protocol are rele-
vant to some commitment generated by the same protocol [9]; (b)
role-distinctness: for each commitment in the protocol, the events
occurring in the consequent condition amount to the powers of
the debtor, and similarly, the events occurring in the antecedent
condition amount to the powers of the creditor [30, 31]; (c) coor-
dinability: for any pair of commitments in the protocol there exists
at least one sequence of events that satisfies both commitments.

An important property, proved in [8], is that a socially-progressive
protocol puts the agents, playing its roles, in condition to discharge

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1690



all the commitments that they may take along their interaction, i.e.,
to satisfy one such commitment without violating another. The key
problem, now, is verifying that when an agent tries to enact a role
in a socially-progressive protocol, that agent has the capabilities
for accomplishing the role’s duties. This is right the goal of our typ-
ing system, which aims at verifying that an agent implementation
produces the proper subset of the relevant events in response to
commitment progressions. An important consequence is that an
agent’s behavior can be programmed as a reaction to a change in the
social state. Another consequence is that, since socially-progressive
protocols are role-distinct, each agent can individually and locally
check its capacity to play a protocol role – by being able to make the
commitments, it may be involved into, progress. Of course, having
the capacity to satisfy a commitment does not mean that at run-
time agents will never violate their commitments. Their autonomy
in deliberating which actions to execute is not reduced in any way.

To type agents, we introduce the notion of behavioral type (b-
type) as a way to annotate each behavior that an agent exposes at
the role-enactment time. A b-type is a set of type expressions, each
consisting of a pair: a commitment c and a temporal expression
e⃗+e ′, meaning that, in a context where e⃗ has occurred, the typed be-
havior will bring about the event e ′ which will make commitment c
progress one step further towards either satisfaction or detachment.

Type checking at role-enactment time is as follows. When an
agent tries to enact role x from a socially-progressive protocol P ,
the agent declares the set of behaviors it will use while playing
x , together with their b-types. The checking system verifies the
suitability of the agent to play x by assessing whether the agent is
both debtor-compliant and creditor-compliant. An agent is debtor-
compliant if for each commitment c that may occur in P where x
appears as debtor, the set of behaviors offered by the agent is such to
generate an actualization for the consequent condition of c , meaning
that these behaviors can bring c to satisfaction. An agent is creditor-
compliant if for each commitment c that may occur in P where x
appears as creditor, the behaviors declared by the agent are either an
actualization of the antecedent condition of c (i.e., they detach c), or
they perform an explicit release of c , letting the commitment expire.
Intuitively, an agent, that is debtor compliant w.r.t. a commitment,
has a set of behaviors that, when executed in the proper order, will
allow it to make the commitment progress from the Detached to
the Discharged state. In other words, that agent is equipped with
an implementation to deal with its obligations [24]. For enacting
a protocol role, an agent must be debtor-compliant with all the
commitments where such a role appears as debtor.

In general, a commitment that can neither be detached nor re-
leased by an agent is a symptom that the agent program is incom-
plete [28, 29]. The proposed typing system allows devising the type
checking in such a way that it identifies such situations, that can,
thus, be raised to the attention of the programmer for they may
amount to some programming mistake. To avoid being too strict,
and in particular to force creditors to include implementations for
activating commitments, in which they are not interested, we ask
the programmer to include in the creditors programs at least a
behavior for releasing such commitments. We proved [8] that when
all roles of a socially-progressive protocol are plaid by debtor- and
creditor-compliant agents, the role players can produce at least one
course of events that satisfies any commitment they created.

3 DISCUSSION
The key characteristic of the proposed typing system is its being
based on notions that are typical of agents. Specifically, it relies on
the direct use of relationships among agents, intended as first-class
entities. As such, the proposal represents a novelty w.r.t. previous
work on agent typing that, by relying on functional types [19, 26, 27,
33], do not fully meet the needs of agent programmers. The paper
also describes an implementation in the context of the 2COMM
framework [5, 7] and Jade [15]. 2COMM enables programming
social relationships by exploiting a declarative, interaction-centric
approach. The social relationships that arise along the interaction
among agents are captured as social commitments while interaction
is mediated by protocol artifacts. The choice of commitments is
motivated by the desire of typing agents and roles in a way that
results minimally prescriptive, so to preserve the autonomy of the
agents as far as possible.

The type checking we have proposed can be generalized by lever-
aging the notions of accountability and responsiblity. Indeed, some
recent works [10, 18, 22] have started to address the problem of
designing and developing complex, distributed systems that ground
on the notions of responsibility and accountability. Accountability
relationships are promising tools for the design of a system where
control is distributed over a set of interacting agents because they
both (1) support checking that the agents altogether provide the
desired control skills over the situation to be managed, and (2)
“connect” the needed, distributed control over the goal in a way
that enables its achievement. In this, there is surely a similarity
between the proposed commitment-based typing system, on the
one hand, and accountabilities and responsibilities, on the other.
What makes approaches based on accountability and responsibility
go one step further is that not only they provide a structure for
coordinating responsibility assumption by the agents, but they also
introduce mechanisms for account giving. An accountable agent is
one that is devised in such a a way that it provides an account of
its conduct. Following [23], when the agent behaved correctly, the
account, or proof, is evident by way of how the agent has operated
in, and changed, the environment. Instead, when the agent did not
reach the agreed “standard of performance” [25], it will provide
an explicit account of what done. Account exchange, composition,
and management allows the system, made of interacting parties,
to redress failures, thus becoming more robust. ADOPT [11, 12]
is an example of how accountability can generalize agent type
checking. In ADOPT, each agent declares, at enactment time, the
powers it means to use within an organization to bring about its
commitments towards other members. This step is similar to a type
declaration of the agent. Further interaction between the agent
and the organization brings to an agreement about the goals the
agent may be asked to bring about. When a commitment is violated
it is possible to indentify which agent has to give an account. As
a concluding remark, it is worth noting that accountability and
responsibility can also be used as a means for the specification of
organizations. As shown in [4], the accountability property can be
a byproduct of the design process. Relying on such a specification,
it would be possible to develop agent programming patterns with
the goal of supporting the programmer in developing agents that,
by construction, pass the type checking while being accountable.

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1691



REFERENCES
[1] Davide Ancona, Daniela Briola, Amal El Fallah-Seghrouchni, Viviana Mascardi,

and Patrick Taillibert. 2014. Efficient Verification of MASs with Projections. In
Engineering Multi-Agent Systems - Second International Workshop, EMAS 2014,
Paris, France, May 5-6, 2014, Revised Selected Papers (Lecture Notes in Computer
Science), Fabiano Dalpiaz, Jürgen Dix, andM. Birna van Riemsdijk (Eds.), Vol. 8758.
Springer, 246–270. https://doi.org/10.1007/978-3-319-14484-9_13

[2] Davide Ancona, Daniela Briola, Angelo Ferrando, and Viviana Mascardi. 2015.
Global Protocols as First Class Entities for Self-Adaptive Agents. In Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, Gerhard Weiss,
Pinar Yolum, Rafael H. Bordini, and Edith Elkind (Eds.). ACM, 1019–1029.
http://dl.acm.org/citation.cfm?id=2773282

[3] Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi. 2013. Automatic
Generation of Self-monitoring MASs from Multiparty Global Session Types
in Jason. In Declarative Agent Languages and Technologies X, Matteo Baldoni,
Louise Dennis, Viviana Mascardi, and Wamberto Vasconcelos (Eds.). Lecture
Notes in Computer Science, Vol. 7784. Springer Berlin Heidelberg, 76–95. https:
//doi.org/10.1007/978-3-642-37890-4_5

[4] Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Katherine M. May, Roberto
Micalizio, and Stefano Tedeschi. 2018. Accountability and Responsibility in
Agents Organizations. In PRIMA 2018: Principles and Practice of Multi-Agent
Systems, 21st International Conference (Lecture Notes in Computer Science), T. Miller,
N. Oren, Y. Sakurai, I. Noda, T. Savarimuthu, and Tran Cao Son (Eds.). Springer,
Tokyo, Japan, 403–419. http://dx.doi.org/10.1007/978-3-030-03098-8_16

[5] Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2014. A
Commitment-Based Infrastructure for Programming Socio-Technical Systems.
ACM Transactions on Internet Technology 14, 4, Article 23 (Dec. 2014), 23 pages.
https://doi.org/10.1145/2677206

[6] Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2014. Typing
Multi-Agent Systems via Commitments. In Post-Proc. of the 2nd International
Workshop on Engineering Multi-Agent Systems, EMAS 2014, Revised Selected and
Invited Papers (LNAI), F. Dalpiaz, J. Dix, and M. B. van Riemsdijk (Eds.). Springer,
388–405.

[7] M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. 2018. Commitment-
based Agent Interaction in JaCaMo+. Fundamenta Informaticae 157 (2018), 1–33.

[8] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
2018. Type Checking for Protocol Role Enactments via Commitments. Journal of
Autonomous Agents and Multi-Agent Systems 32, 3 (May 2018), 349–386.

[9] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, and Munindar P. Singh.
2015. Composing and Verifying Commitment-Based Multiagent Protocols. In
Proc. of 24th International Joint Conference on Artificial Intelligence, IJCAI 2015,
M. Wooldridge and Q. Yang (Eds.). Buenos Aires, Argentina. http://ijcai-15.org/

[10] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and
Stefano Tedeschi. 2016. Computational Accountability. In Deep Understand-
ing and Reasoning: A challenge for Next-generation Intelligent Agents, URANIA
2016, F. Chesani, P. Mello, and M. Milano (Eds.), Vol. 1802. CEUR, Workshop
Proceedings, Genoa, Italy, 56–62. http://ceur-ws.org/Vol-1802/

[11] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and
Stefano Tedeschi. 2017. ADOPT JaCaMo: Accountability-Driven Organization
Programming Technique for JaCaMo. In PRIMA 2017: Principles and Practice of
Multi-Agent Systems, 20th Int. Conf. (LNCS), A. Bo, A. Bazzan, J. Leite, L. van der
Torre, and S. Villata (Eds.). Springer, Nice, France, 295–312.

[12] Matteo Baldoni, Cristina Baroglio, Katherine M. May, Roberto Micalizio, and
Stefano Tedeschi. 2018. Computational Accountability in MAS Organizations
with ADOPT. Journal of Applied Sciences, special issue “Multi-Agent Systems” 8, 4
(March 2018), 489. http://www.mdpi.com/2076-3417/8/4/489/html

[13] M. Baldoni, G. Boella, and L. van der Torre. 2006. powerJava: Ontologically
Founded Roles in Object Oriented Programming Languages. In Proc. of 21st ACM
Symposium on Applied Computing, SAC 2006, Special Track on Object-Oriented
Programming Languages and Systems, OOPS 2006, D. Ancona and M. Viroli (Eds.).
ACM, Dijon, France, 1414–1418.

[14] Matteo Baldoni, Guido Boella, and Leon van der Torre. 2007. Interaction between
Objects in powerJava. Journal of Object Technology, Special Issue OOPS Track at
SAC 2006 6, 2 (2007).

[15] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. 2005.
JADE - A Java Agent Development Framework. In Multi-Agent Programming:

Languages, Platforms and Applications, R. H. Bordini, M. Dastani, J. JDix, and
A. El Fallah-Seghrouchni (Eds.). Multiagent Systems, Artificial Societies, and
Simulated Organizations, Vol. 15. Springer, 125–147.

[16] Guido Boella and Leendert W. N. van der Torre. 2007. The Ontological Properties
of Social Roles in Multi-Agent Systems: Definitional Dependence, Powers and
Roles playing Roles. Artificial Intelligence and Law Journal (AILaw) 15, 3 (2007),
201–221.

[17] Cristiano Castelfranchi. 1997. Principles of Individual Social Action. In Con-
temporary Action Theory: Social Action, G. Holmstrom-Hintikka and R. Tuomela
(Eds.), Vol. 2. Kluwer, Dordrecht, 163–192.

[18] Amit K. Chopra and Munindar P. Singh. 2016. From social machines to social
protocols: Software engineering foundations for sociotechnical systems. In Proc.
of the 25th Int. Conf. on WWW.

[19] Ferruccio Damiani, Paola Giannini, Alessandro Ricci, and Mirko Viroli. 2012.
Standard Type Soundness for Agents and Artifacts. Scientific Annals of Computer
Science 22, 2 (2012), 267–326.

[20] Mehdi Dastani, M. Birna van Riemsdijk, Joris Hulstijn, Frank Dignum, and John-
Jules Ch. Meyer. 2005. Enacting and Deacting Roles in Agent Programming.
In Agent-Oriented Software Engineering V (Lecture Notes in Computer Science),
James Odell, Paolo Giorgini, and Jörg P. Müller (Eds.), Vol. 3382. Springer Berlin
Heidelberg, 189–204. https://doi.org/10.1007/978-3-540-30578-1_13

[21] Yves Demazeau. 1995. From interactions to collective behaviour in agent-based
systems. In Proc. of the 1st. European Conference on Cognitive Science. Saint-Malo.

[22] Christophe Feltus. 2014. Aligning Access Rights to Governance Needs with the
Responsability MetaModel (ReMMo) in the Frame of Enterprise Architecture. Ph.D.
Dissertation. University of Namur, Belgium.

[23] Harold Garfinkel. 1967. Studies in ethnomethodology. Prentice-Hall Inc., Engle-
wood Cliffs, New Jersey.

[24] Guido Governatori. 2010. Law, logic and business processes. In Third International
Workshop on Requirements Engineering and Law, RELAW 2010, Sydney, NSW,
Australia, September 28, 2010. IEEE, 1–10. https://doi.org/10.1109/RELAW.2010.
5625356

[25] RuthW. Grant and Robert O. Keohane. 2005. Accountability and Abuses of Power
in World Politics. The American Political Science Review 99, 1 (2005).

[26] Claudia Grigore and RemCollier. 2011. Supporting Agent Systems in the Program-
ming Language. InWeb Intelligence/IAT Workshops, Jomi Fred Hübner, Jean-Marc
Petit, and Einoshin Suzuki (Eds.). IEEE Computer Society, 9–12.

[27] Claudia Grigore and Rem W. Collier. 2011. AF-Raf: an Agent-Oriented Program-
ming Language with Algebraic Data Types. In SPLASH Workshops. 195–200.

[28] Özgür Kafali, Nirav Ajmeri, and Munindar P. Singh. 2016. Revani: Revising and
Verifying Normative Specifications for Privacy. IEEE Intelligent Systems 31, 5
(2016), 8–15. https://doi.org/10.1109/MIS.2016.89

[29] Özgür Kafali, Munindar P. Singh, and Laurie A.Williams. 2016. NANE: Identifying
Misuse Cases Using Temporal Norm Enactments. In 24th IEEE International
Requirements Engineering Conference, RE 2016, Beijing, China, September 12-16,
2016. 136–145. https://doi.org/10.1109/RE.2016.34

[30] Nadin Kökciyan and Pinar Yolum. 2016. PriGuard: A Semantic Approach to
Detect Privacy Violations in Online Social Networks. IEEE Trans. Knowl. Data
Eng. 28, 10 (2016), 2724–2737. https://doi.org/10.1109/TKDE.2016.2583425

[31] Nadin Kökciyan and Pinar Yolum. 2016. PriGuardTool: A Tool for Monitoring Pri-
vacy Violations in Online Social Networks (Demonstration). In Proceedings of the
2016 International Conference on Autonomous Agents & Multiagent Systems, Singa-
pore, May 9-13, 2016, Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and
Karl Tuyls (Eds.). ACM, 1496–1497. http://dl.acm.org/citation.cfm?id=2937225

[32] Oscar Nierstrasz and Dennis Tsichritzis (Eds.). 1995. Object-Oriented Software
Composition. Prentice Hall, Chapter 6, 99–121.

[33] Alessandro Ricci andAndrea Santi. 2012. TypingMulti-agent Programs in simpAL.
In Programming Multi-Agent System (Lecture Notes in Computer Science), Mehdi
Dastani, Jomi Fred Hübner, and Brian Logan (Eds.), Vol. 7837. Springer, 138–157.

[34] Andrea Santi and Alessandro Ricci. 2012. An Eclipse-based IDE for Agent-
Oriented Programming in simpAL. In Proc. of The Seventh Workshop of the Italian
Eclipse Community.

[35] Munindar P. Singh. 1999. An Ontology for Commitments in Multiagent Systems.
Artificial Intelligence and Law Journal (AILaw) 7, 1 (1999), 97–113.

[36] Michael Zapf and Kurt Geihs. 2000. What Type Is It? A Type System For Mobile
Agents. In 15th European Meeting on Cybernetics and Systems Research (EMCSR).

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1692

https://doi.org/10.1007/978-3-319-14484-9_13
http://dl.acm.org/citation.cfm?id=2773282
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
http://dx.doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1145/2677206
http://ijcai-15.org/
http://ceur-ws.org/Vol-1802/
http://www.mdpi.com/2076-3417/8/4/489/html
https://doi.org/10.1007/978-3-540-30578-1_13
https://doi.org/10.1109/RELAW.2010.5625356
https://doi.org/10.1109/RELAW.2010.5625356
https://doi.org/10.1109/MIS.2016.89
https://doi.org/10.1109/RE.2016.34
https://doi.org/10.1109/TKDE.2016.2583425
http://dl.acm.org/citation.cfm?id=2937225

	1 Introduction
	2 Typing Agents through Social Relationships
	3 Discussion
	References



