
Type Checking for Protocol Role Enactments via Commitments∗
JAAMAS Track

Matteo Baldoni
Università di Torino, Dip. Informatica

matteo.baldoni@unito.it

Cristina Baroglio
Università di Torino, Dip. Informatica

cristina.baroglio@unito.it

Federico Capuzzimati
Università di Torino, Dip. Informatica

federico.capuzzimati@unito.it

Roberto Micalizio
Università di Torino, Dip. Informatica

roberto.micalizio@unito.it

KEYWORDS
Agent Typing; Social Relationships; Static and dynamic type check-
ing; Commitments; Commitment-based Interaction Protocols.
ACM Reference Format:
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-
izio. 2019. Type Checking for Protocol Role Enactments via Commitments.
In Proc. of the 18th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
The major contribution of [8] is an agent-based, dynamic, and
declarative type checking system for agent interactions, which is
meant to support the implementation ofMulti-Agent Systems (MAS).
We observed that MAS abstractions and means (e.g., the possibil-
ity to encompass heterogeneous, autonomously developed agents,
which operate in a same environment, and contribute to goal achieve-
ment), suit well the characteristics of the present IT applications,
like the presence of global, pervasive software infrastructures,
where computing is ubiquitous, with embedded and distributed
devices interacting with each other. However, there is a lack of ef-
fective tools for reasoning on properties of the MAS which is being
realized. Our focus is on interaction [21]: How can an agent designer
verify that an agent has the means for carrying out the encoded in-
teraction? How to decide whether the agent is capable of behaving
in a certain way, or whether it shows specific skills/properties?

We claim that the answer is agent typing. Typing provides ab-
stractions to perform sophisticated forms of program analysis and
verification: compile-time/run-time error checking, modeling, doc-
umentation, verification of conformance and of compliance, rea-
soning about programs and components. It allows light forms of (a
priori/runtime) component verification [1–3, 6, 32, 34, 36]. Which
characteristics should the conceptualization and realization of a typ-
ing system for interacting agents consider? Briefly, we propose the
following: (a) natural to programmers: it should rely on notions that
are the basic building blocks of the agent paradigm, such as those
of behaviors and goals; (b) declarative: to accommodate the agents’
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autonomy by being the least prescriptive; (c) dynamic type check-
ing: because agents may acquire or lose capabilities along time; (d)
distributed: or local, it should rely on information possessed by the
agent. The agent typing we presented is the first in the literature to
show all such characteristics. It has the ultimate purpose of allowing
(at role-enactment time [13, 14, 16, 20]) the verification that agents
satisfy the requirements for the protocol roles they mean to enact.
Building upon a wide literature that considers relationships as one
of the basic building blocks of the humanway of interpreting reality,
the proposal is grounded on the social relationships which agents
may create along their interaction when playing protocol roles. We
represent such social relationships in terms of social commitments
[17, 35] and, thus, rely on commitment-based protocols.

The proposal is not bound to a specific agent programming
language; rather, it can be implemented in different frameworks. As
an exemplification, the typing system and the checking performed
at enactment-time were implemented in 2COMM4JADE [5].

2 TYPING AGENTS THROUGH SOCIAL
RELATIONSHIPS

An agent can deliberate to enact a protocol role at any time of its
execution. Thus, a type checking system should verify, dynamically,
that only an agent adequately equipped to play the selected role is
actually enabled to enact that role. In other words, the type checking
should prevent an agent from playing a role when it has not a proper
set of behaviors to carry out the duties associated with the role. Of
course, the type checking is grounded on the assumption that the
underlying protocol is “well-defined” (correct).

We focus on commitment protocols and, based on the defini-
tions of residuation and progression (see journal paper) we have
singled out the class of socially progressive protocols as adequate
for supporting the agent type checking at enactment time. These
protocols satisfy the following properties: (a) closeness: in a closed
protocol, for any relevant event, there is at least one role that can
make it occur, and all events generated by the protocol are rele-
vant to some commitment generated by the same protocol [9]; (b)
role-distinctness: for each commitment in the protocol, the events
occurring in the consequent condition amount to the powers of
the debtor, and similarly, the events occurring in the antecedent
condition amount to the powers of the creditor [30, 31]; (c) coor-
dinability: for any pair of commitments in the protocol there exists
at least one sequence of events that satisfies both commitments.

An important property, proved in [8], is that a socially-progressive
protocol puts the agents, playing its roles, in condition to discharge
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all the commitments that they may take along their interaction, i.e.,
to satisfy one such commitment without violating another. The key
problem, now, is verifying that when an agent tries to enact a role
in a socially-progressive protocol, that agent has the capabilities
for accomplishing the role’s duties. This is right the goal of our typ-
ing system, which aims at verifying that an agent implementation
produces the proper subset of the relevant events in response to
commitment progressions. An important consequence is that an
agent’s behavior can be programmed as a reaction to a change in the
social state. Another consequence is that, since socially-progressive
protocols are role-distinct, each agent can individually and locally
check its capacity to play a protocol role – by being able to make the
commitments, it may be involved into, progress. Of course, having
the capacity to satisfy a commitment does not mean that at run-
time agents will never violate their commitments. Their autonomy
in deliberating which actions to execute is not reduced in any way.

To type agents, we introduce the notion of behavioral type (b-
type) as a way to annotate each behavior that an agent exposes at
the role-enactment time. A b-type is a set of type expressions, each
consisting of a pair: a commitment c and a temporal expression
e⃗+e ′, meaning that, in a context where e⃗ has occurred, the typed be-
havior will bring about the event e ′ which will make commitment c
progress one step further towards either satisfaction or detachment.

Type checking at role-enactment time is as follows. When an
agent tries to enact role x from a socially-progressive protocol P ,
the agent declares the set of behaviors it will use while playing
x , together with their b-types. The checking system verifies the
suitability of the agent to play x by assessing whether the agent is
both debtor-compliant and creditor-compliant. An agent is debtor-
compliant if for each commitment c that may occur in P where x
appears as debtor, the set of behaviors offered by the agent is such to
generate an actualization for the consequent condition of c , meaning
that these behaviors can bring c to satisfaction. An agent is creditor-
compliant if for each commitment c that may occur in P where x
appears as creditor, the behaviors declared by the agent are either an
actualization of the antecedent condition of c (i.e., they detach c), or
they perform an explicit release of c , letting the commitment expire.
Intuitively, an agent, that is debtor compliant w.r.t. a commitment,
has a set of behaviors that, when executed in the proper order, will
allow it to make the commitment progress from the Detached to
the Discharged state. In other words, that agent is equipped with
an implementation to deal with its obligations [24]. For enacting
a protocol role, an agent must be debtor-compliant with all the
commitments where such a role appears as debtor.

In general, a commitment that can neither be detached nor re-
leased by an agent is a symptom that the agent program is incom-
plete [28, 29]. The proposed typing system allows devising the type
checking in such a way that it identifies such situations, that can,
thus, be raised to the attention of the programmer for they may
amount to some programming mistake. To avoid being too strict,
and in particular to force creditors to include implementations for
activating commitments, in which they are not interested, we ask
the programmer to include in the creditors programs at least a
behavior for releasing such commitments. We proved [8] that when
all roles of a socially-progressive protocol are plaid by debtor- and
creditor-compliant agents, the role players can produce at least one
course of events that satisfies any commitment they created.

3 DISCUSSION
The key characteristic of the proposed typing system is its being
based on notions that are typical of agents. Specifically, it relies on
the direct use of relationships among agents, intended as first-class
entities. As such, the proposal represents a novelty w.r.t. previous
work on agent typing that, by relying on functional types [19, 26, 27,
33], do not fully meet the needs of agent programmers. The paper
also describes an implementation in the context of the 2COMM
framework [5, 7] and Jade [15]. 2COMM enables programming
social relationships by exploiting a declarative, interaction-centric
approach. The social relationships that arise along the interaction
among agents are captured as social commitments while interaction
is mediated by protocol artifacts. The choice of commitments is
motivated by the desire of typing agents and roles in a way that
results minimally prescriptive, so to preserve the autonomy of the
agents as far as possible.

The type checking we have proposed can be generalized by lever-
aging the notions of accountability and responsiblity. Indeed, some
recent works [10, 18, 22] have started to address the problem of
designing and developing complex, distributed systems that ground
on the notions of responsibility and accountability. Accountability
relationships are promising tools for the design of a system where
control is distributed over a set of interacting agents because they
both (1) support checking that the agents altogether provide the
desired control skills over the situation to be managed, and (2)
“connect” the needed, distributed control over the goal in a way
that enables its achievement. In this, there is surely a similarity
between the proposed commitment-based typing system, on the
one hand, and accountabilities and responsibilities, on the other.
What makes approaches based on accountability and responsibility
go one step further is that not only they provide a structure for
coordinating responsibility assumption by the agents, but they also
introduce mechanisms for account giving. An accountable agent is
one that is devised in such a a way that it provides an account of
its conduct. Following [23], when the agent behaved correctly, the
account, or proof, is evident by way of how the agent has operated
in, and changed, the environment. Instead, when the agent did not
reach the agreed “standard of performance” [25], it will provide
an explicit account of what done. Account exchange, composition,
and management allows the system, made of interacting parties,
to redress failures, thus becoming more robust. ADOPT [11, 12]
is an example of how accountability can generalize agent type
checking. In ADOPT, each agent declares, at enactment time, the
powers it means to use within an organization to bring about its
commitments towards other members. This step is similar to a type
declaration of the agent. Further interaction between the agent
and the organization brings to an agreement about the goals the
agent may be asked to bring about. When a commitment is violated
it is possible to indentify which agent has to give an account. As
a concluding remark, it is worth noting that accountability and
responsibility can also be used as a means for the specification of
organizations. As shown in [4], the accountability property can be
a byproduct of the design process. Relying on such a specification,
it would be possible to develop agent programming patterns with
the goal of supporting the programmer in developing agents that,
by construction, pass the type checking while being accountable.
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