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ABSTRACT
The logic of strategic ability Resource-Bounded Alternating Time

Syntactic Epistemic Logic (RB±ATSEL) has a decidable model-

checking problem for coalition uniform strategies. A strategy is

coalition uniform if agents in a coalition select the same joint action

in all states where the knowledge of the coalition is the same. How-

ever, this presupposes free and unbounded communication between

the agents in the coalition before every action selection. In this pa-

per we present a modified version of RB±ATSEL, RB±ATSELc , with

explicit (and explicitly costed) communication actions. RB±ATSELc
is interpreted on communication models which have an explicit

communication step before every action selection. We show that,

unlike standard ATL under imperfect information, the model check-

ing problem for RB±ATSELc is decidable under perfect recall uni-

form strategies. Our decidability result also applies to ATL with

imperfect information and perfect recall when interpreted on com-

munication models.

ACM Reference Format:
Natasha Alechina, Mehdi Dastani, and Brian Logan. 2019. Decidable Model

Checking with Uniform Strategies. In Proc. of the 18th International Confer-
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1 INTRODUCTION
We consider the problem of verifying the existence of uniform

strategies in multi-agent systems where the agents act under re-

source constraints and imperfect information. Uniform strategies
are strategies where agents select the same actions in all states

where they have the same information available to them. Uniform

strategies are important because real agents can only select actions

based on the information they have. However the model-checking

problem for Alternating-Time Temporal Logic (ATL) under imper-

fect information and with uniform perfect recall strategies is known

to be undecidable [9–11].

In previous work [3], we introduced Resource-Bounded Alternat-

ing Time Syntactic Epistemic Logic (RB±ATSEL). RB±ATSEL has a

decidable model-checking problem for so-called coalition-uniform

strategies, and an algorithm for verifying existence of coalition-

uniform (rather than uniform) strategies for RB±ATSEL is given in

[3]. A strategy is coalition-uniform if agents in a coalition select the

same joint action in all states where the knowledge of the coalition
is the same. The decidability result holds for any notion of coalition

knowledge, where coalition-indistinguishability between states is

decidable. In particular, the result in [3] applies for uniformity with
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respect to the distributed knowledge of a coalition, which is the

notion we use in this paper.

However, the notion that a coalition can select actions based on,

say, its distributed knowledge, presupposes free and unbounded

communication between the agents in the coalition before every

action selection. This rather goes against the grain of the resource-

bounded setting in [3]. In this paper, we present a variant of RB±AT-

SEL, RB±ATSELc , with explicit communication strategies and in-

terpreted on communication models that have an explicit (and ex-

plicitly costed) communication step before each action selection.

We show that RB±ATSELc model checking is decidable for uni-

form strategies. Our decidability result also applies to ATLiR (ATL

with imperfect information and perfect recall) when interpreted

on communication models. ATL is a sublogic of RB±ATSELc that

can be obtained by considering only infinite resource bounds and

omitting the knowledge modality. While the decidability of the

model-checking problem for ATLiR for strategies uniform with

respect to distributed knowledge is known [9, 11], to the best of our

knowledge, there has been no work on showing how to convert

such strategies to uniform strategies while preserving decidability.

The remainder of the paper is organised as follows. In Section

2 we introduce the syntax and semantics of RB±ATSELc , and in

Section 3 we illustrate RB±ATSELc using a simple example. In

Section 4 we show that the model checking problem for RB±ATSELc
is decidable by providing correct and terminating model-checking

algorithms. In Section 5 we present an approach to generating less

costly bounded communication strategies. In Section 6, we survey

related work, focussing on other approaches to making ATLiR
model checking decidable, and conclude in Section 7.

2 SYNTAX AND SEMANTICS OF RB±ATSELc
In this section, we introduce Resource-Bounded Alternating Time

Syntactic Epistemic Logic With Communication, RB±ATSELc .

The language of RB±ATSELc is parameterised by a finite set

Aдt = {a1, . . . ,an } of n agents, a finite set Res = {res1, . . . , resr }
of r resources, and a finite set Π of propositional variables. The set

of possible resource bounds or resource allocations is B = NRes∞
Aдt

,

where N∞ = N ∪ {∞} (B consists of tuples of resource values of

length r , one for each agent in Aдt ), and we denote by BA the set

of projections of tuples in B on a set of agents (coalition) A ⊆ Aдt .
Formulas of the language L of RB±ATSELc are defined by the

following syntax

φ ::= p | ¬φ | φ ∨ψ | ⟨⟨Ab ⟩⟩⃝φ | ⟨⟨Ab ⟩⟩φUψ | ⟨⟨Ab ⟩⟩2φ | Kaφ

where p ∈ Π is a proposition, A ⊆ Aдt , b ∈ BA is a resource bound,

and a ∈ Aдt . We denote by LEL
the language without coalition

modalities.

⟨⟨Ab ⟩⟩ ⃝ φ means that coalition A has a strategy executable

within resource bound b to ensure that the next state satisfies φ;
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⟨⟨Ab ⟩⟩φUψ means thatA has a strategy executable within resource

bound b to ensure ψ while maintaining the truth of φ; ⟨⟨Ab ⟩⟩2φ
means that A has a strategy executable within resource bound b to

ensure that φ is always true, and Kaφ is interpreted relative to the

contents of agent a’s knowledge base. a’s knowledge base sa is a

finite set of formulas of LEL
, all of the form Kaψ or Kbψ , where

b , a. Note that this definition of the agent’s knowledge base is

different from the one in [3], where it was assumed to be an arbi-

trary finite set of formulas, not necessarily prefixed by knowledge

modalities. We refer to the subset of sa containing only formulas

of the form Kaψ as k(sa ) = {Kaψ | Kaψ ∈ sa }. The formulas in

k(sa ) represent the knowledge of a ‘proper’; the rest of the knowl-

edge base is a’s representation of the knowledge of other agents

obtained by communication. If a formula of the form Kaφ is in

k(sa ), then a knows that φ (and the formula Kaφ in the language

of L of RB±ATSELc is true in the corresponding state). Formulas

of the form KaKbψ in the language of L of RB±ATSELc are true

if Kbψ is in sa \ k(sa ). Note that this is a syntactic definition of

knowledge. Representing knowledge this way allows us to model

updating knowledge in a more straightforward way than for stan-

dard epistemic logic, and fits well with communicating syntactic

objects (formulas). In the interests of brevity, we do not introduce

any procedure for closing states under inference or checking for

and restoring consistency here. We sketch an example of such a

procedure in Section 5.

Definition 2.1. A communication model of RB±ATSELc is a tuple

M = (Φ,Aдt ,Res,Π, S,Act ,d, c,δ ) where:

• Φ is a finite set of formulas of LEL
(possible contents of the

local states of the agents) of the form Kaϕ, a ∈ Aдt .
• Aдt is a non-empty set of n agents, Res is a non-empty set

of r resources.
• Π is a finite set of propositional variables.

• S = Scom∪Sact where Scom and Sact are disjoint non-empty

sets of tuples (sa1 , . . . , san , se ) where se ⊆ Π (se is the state

of the environment) and for each a ∈ Aдt , sa ⊆ Φ ∪ {pact }.
For every a ∈ Aдt and q ∈ Sact , pact ∈ qa , and for every

s ∈ Scom , pact < sa .
• Act = Act ′ ∪CA is the union of two disjoint non-empty sets

of actions.Act ′ is a set of ontic (non-communication) actions

which contains a special action idle . CA = {com(k(sa ),A) |
a ∈ A ⊆ Aдt}, where k(sa ) = {Kaψ | Kaψ ∈ sa }, is a set of
communication actions.

• d : S × Aдt → ℘(Act) \ {∅} is a function that assigns to

each s ∈ S a non-empty set of actions available to each

agent a ∈ Aдt . For s ∈ Scom , d(s,a) = CA. For q ∈ Sact ,
d(q,a) ⊆ Act ′.
For every s, s ′ ∈ S,a ∈ Aдt , d(s,a) = d(s ′,a) if sa = s

′
a .

• c : Act → ZRes is function which models consumption and

production of resources by actions (a positive integer means

consumption, a negative one production). We stipulate that

c(idle) = (0)i ∈Res and c(com(k(sa ),A)) = (|k(sa )|, 0, . . . , 0).
• δ : S ×Actn → S is a partial function which, for every s ∈ S
and joint action σ ∈ d(s,a1) × · · · ×d(s,an ), returns the state
resulting from executing σ in s . For q ∈ Sact , δ (q,σ ) ∈ Scom ,

and for s ∈ Scom , δ (s,σ ) ∈ Sact . Additional constraints on δ
are given in Definition 2.2 below.

Before giving a definition of the effect of a communication action,

we first explain the intuitions underlying the two different kinds of

states and two different kinds of actions in communication models.

Communication models are intended to make explicit the assump-

tion that agents in a coalition may share their knowledge through

communication before selecting a joint action. Intuitively, Scom
is the set of states which are initial states or states resulting from

the execution of an ontic (non-communication) action. In Scom
states, agents execute communication actions in CA. Sact is the
set of states resulting from communication actions. In Sact states,
agents execute ontic actions in Act ′. Computations are therefore

sequences of alternating states from Scom and Sact . For technical
reasons, we require that for each a ∈ Aдt and q ∈ Sact , a distin-
guished propositional variable pact ∈ qa . This distinguishes agents’
states in Sact from agents’ states in Scom and allows them to select

different actions in states which would otherwise be epistemically

indistinguishable. Executing any action in a Sact state removes

pact from the agent’s state.

The effect of a communication action com(k(sa ),A) is to add

the formulas in k(sa ) to the local state of each agent a′ ∈ A that

executes a corresponding communication action com(k(sa′),A), i.e.,
only agents that communicate with exactly the same set of agents

exchange information. This is an important restriction on commu-

nication: if agents A execute communication actions of the form

com(k(sa ),A), and an agent b in Aдt \A sends its formulas to some

agent a inA, these formulas will not be added to a’s state. We denote

the joint communication action by a coalition A in which all agents

a ∈ A execute com(k(sa ),A) by comA(s) = (com(k(sa ),A))a∈A.
As explained above, the state of a may contain formulas of the

form Kbψ in addition to formulas of the form Kaψ . Formulas of

the form Kbψ represent results of previous communication actions

by other agents; they are not communicated by a to other agents,

and are forgotten by a at the next communication step. We made

this modelling choice to avoid explicitly updating the state of a
to remove the formulas about b’s knowledge that are inconsistent
with a new communication from b.

Definition 2.2. For every s = (sa1 , . . . , san , se ) ∈ Scom and joint

communication action σ = ((com(k(sa1 ),A1), . . . , com (k(san ),An )),
δ (s,σ ) = (qa1 , . . . ,qan , se ), whereqa = k(sa )∪{pact }∪

⋃
a′∈A k(sa′)

if a ∈ A and each a′ ∈ A executes com(k(sa′),A), otherwise qa =
k(sa ) ∪ {pact }. For every s ∈ Scom , and every a ∈ Aдt , k(sa ) = sa
and pact < sa .

We introduce some standard terminology and notational con-

ventions. We denote by D(s) the set of joint actions by all agents

in s: D(s) = d(s,a1) × · · · × d(s,an ). A computation is an infinite

sequence s0,q0, s1,q1, . . . of alternating states from Scom and Sact ,
such that for every si ,qi , si+1, qi = δ (si ,σ ) for some σ ∈ D(si ), and
si+1 = δ (qi ,σ ) for some σ ∈ D(qi ). We denote by DA(s) the set of
all joint actions by agents in A at s . For σ ∈ D(s), we denote by
σA the restriction of σ to A, and we set c(σA) = (c(σa ))a∈A. The
outcomes of σ ∈ DA(s) is the set of states reached whenA executes

σ : out(s,σ ) = {s ′ ∈ S | ∃σ ′ ∈ D(s) : σ = σ ′A ∧ s ′ = δ (s,σ ′)}.
A (perfect recall) strategy for a coalition A ⊆ Aдt is a mapping

FA : S+ → Act |A | (from finite non-empty sequences of states to

joint actions by A) such that, for every λs ∈ S+, (a finite sequence
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consisting of a sequence λ followed by s), FA(λs) ∈ DA(s). A com-

putation λ ∈ Sω is consistent with a strategy FA iff, for all i ≥ 0,

the i + 1st state of λ, λ[i + 1], is in out(λ[i], FA(λ[0, i])) (where λ[i, j]
is the subsequence of λ between indices i and j). Overloading no-
tation, we denote the set of all computations λ consistent with FA
that start from s by out(s, FA). Given a bound b ∈ B, a computation

λ ∈ out(s, FA) is b-consistent with FA iff, for every i ≥ 0, for every

a ∈ A,

ba −

j=i−1∑
j=0

c(Fa (λ[0, j])) ≥ c(Fa (λ[0, i]))

where ba is a’s allocation of resources from b and Fa (λ[0, j]) is the
action by a in the joint action returned by FA for the sequence of

states λ[0, j]. This condition requires that the resources accumulated

by a on the path so far, plus the original bound, is greater than or

equal to the cost of executing the next action by a in the strategy.

It is equivalent to the condition that the resource values are never

negative.

FA is a b-strategy if all λ ∈ out(s, FA) are b-consistent. We need

this notion for evaluating ⟨⟨Ab ⟩⟩2ϕ modalities: for formulas of this

form to be true, there should be a strategy of A where on all com-

putations A never runs out of resources. For formulas of the form

⟨⟨Ab ⟩⟩⃝ϕ and ⟨⟨Ab ⟩⟩ϕUψ we only need to ensure that there exists

a strategy where every computation satisfies ϕ in the next state

(respectively, satisfiesψ after finitely many steps) before possibly

running out of resources. A computation λ is b-maximal for a strat-

egy FA if it cannot be extended further without losingb-consistency
(the next action prescribed by FA would violate b-consistency). The
set of all b-maximal computations starting from state s that are b-
consistent with FA is denoted byout(s, FA,b). Note thatout(s, FA,b)
is always non-empty since it includes a computation consisting of

just s itself. The resulting semantics is essentially the same as the

semantics in terms of maximal resource-extended paths defined in

[7].

In the presence of imperfect information, it makes sense to con-

sider only uniform strategies rather than arbitrary ones. A strategy

is uniform if, after epistemically indistinguishable histories, agents

select the same actions. Two states s and t are epistemically indis-

tinguishable by agent a, denoted by s ∼a t , if a has the same local

state (knows the same formulas) in s and t : s ∼a t iff sa = ta . Two
histories s0, . . . , sk and t0, . . . , tk are indistinguishable by a (also

denoted by ∼a ) if, and only if, for all j ∈ [0,k], sj ∼a tj . An agent’s

strategy is uniform iff Fa (λ) = Fa (λ
′) for all λ ∼a λ

′
.

We can now give the truth definition for RB±ATSELc .

• M, s |= p iff p ∈ se
• boolean connectives have standard truth definitions

• M, s ∈ Scom |= ⟨⟨A
b ⟩⟩⃝ϕ iff ∃ a uniform strategy FA such

that for all λ ∈ out(s, FA,b):M, λ[2] |= ϕ

• M, s ∈ Sact |= ⟨⟨A
b ⟩⟩⃝ϕ iff ∃ a uniform strategy FA such

that for all λ ∈ out(s, FA,b):M, λ[1] |= ϕ

• M, s |= ⟨⟨Ab ⟩⟩ϕUψ iff ∃ a uniform strategy FA such that for

all λ ∈ out(s, FA,b), ∃i ≥ 0:M, λ[i] |= ψ andM, λ[j] |= ϕ for

all j ∈ {0, . . . , i − 1}
• M, s |= ⟨⟨Ab ⟩⟩2ϕ iff ∃ a uniform b-strategy FA such that for

all λ ∈ out(s, FA) and i ≥ 0:M, λ[i] |= ϕ
• M, s |= Kaϕ iff Kaϕ ∈ k(sa ) or ϕ ∈ sa for Kaϕ < k(sa )

3 EXAMPLE
In this section, we illustrate RB±ATSELc using a simple example

based on that given in [3]. In the scenario, two robotic agents 1 and

2 monitor a space for something bad happening. In [3], the space

was an art gallery, and ‘something bad’ could be a fire. If some-

thing bad happens, both robots should clear the space of visitors.

Whether something bad happens is determined by the environment

agent e . Monitoring the space requires energy, and the robots must

periodically return to a charging station to recharge. We assume

that is not possible to observe the space from the charging station,

and that a single (charged) robot is sufficient to detect something

bad happening.

At each timestep, the environment can perform an idle action or

cause something bad to happen, bad . Agents 1 and 2 can perform

an idle action, an observation action, obs (which, for simplicity,

implicitly moves the agent from the charging station to the space

before performing the observation), clear the space of visitors clr ,
recharge their battery дen, or communicate com. The agents re-

quire a single resource, energy. The дen action produces five units

of energy; obs and clr consume one unit of energy; com(k(sa ),A)
consumes |k(sa )| units of energy; and idle consumes no energy.

We use propositionb to denote that something bad has happened,

ci (i ∈ {1, 2}) to denote that agent i has just charged their battery,

and r to denote that the space has been cleared of visitors. The global
system state is represented by s = (s1, s2, se ), where si (i = {1, 2})
is the local state of i , and se is the state of the environment. The set

of formulas Φ which constitute possible contents of agents’ states

includes information on whether the agents have (just) charged,

whether something bad has happened, and whether the space has

been cleared.

The scenario can be modelled by a communication model where

Φ = {K1b,K2b,K1c1,K2c2,K1r ,K2r },Aдt = {1, 2, e},Res = {enerдy},

Π = {b, c1, c2, r }, Scom = 2
Φ × 2

Φ × 2
Π
, Sact = 2

Φ∪{pact } ×

2
Φ∪{pact } × 2Π , Act = {idle, bad,obs, clr ,дen} ∪CA.

d contains communication actions and idle for s ∈ Scom and is

defined for q ∈ Sact as follows:

(1) idle ∈ d(q, i) for all i ∈ {1, 2, e}
(2) bad ∈ d(q, e) iff b < qe
(3) obs ∈ d(q, i) for all i ∈ {1, 2}
(4) дen ∈ d(q, i) for all i ∈ {1, 2}
(5) clr ∈ d(q, i) for all i ∈ {1, 2} iff b ∈ qi (the space is only

cleared if something bad has happened)

c(idle) = 0, c(дen) = −5, c(obs) = c(clr ) = 1, c(com(k(sa ),A)) =
|k(sa )|.

δ is defined based on the following post conditions of actions:

(1) idle performed by agent i ∈ {1, 2} removes Kici from si and
ci from se ; idle performed by e removes b from se ;

(2) bad performed by e adds b to se ;
(3) obs performed by agent i ∈ {1, 2} removes Kici from si and

ci from se , and, if performed in a state where b is true (false),

adds (removes) Kib to (from) si ;
(4) clr , if performed by both agents 1 and 2, removes Kici from

si and ci from se , and adds Kir to si and r to se ; otherwise
(if only performed by one agent i) it removes Kici from si
and ci from se .
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(5) дen performed by agent i ∈ {1, 2} adds Kici to si and ci to
se ;

(6) com(k(sa ),A) adds the formulas in k(sa ) to the state of each

agent in A if each a′ ∈ A executes a corresponding commu-

nication action com(k(sa′),A).

Intuitively, if agents 1 and 2 have the goal of clearing the space

if something bad happens, they should take turns charging and

observing. If one of the agents is always observing, then that agent

will observe that the bad thing happened (will come to know b),
and if the agents communicate their states to each other before

selecting the next action, the other agent will acquire Kib where i
is the observing agent; then the agents can synchronise and both

execute clr action and achieve their goal of clearing the space.

The following property states that if something bad happens,

then this will be known by the observing agent in the next state,

and in the next state after that, the space will be cleared (which

requires both agents to cooperate)

b → ⟨⟨{1, 2}(2,0) ⟩⟩ ⃝((K1b ∨ K2b) ∧ ⟨⟨{1, 2}(1,1) ⟩⟩ ⃝r )

4 MODEL CHECKING RB±ATSELc
In this section prove the following theorem:

Theorem 4.1. The model checking problem for RB±ATSELc is
decidable.

To prove decidability, we give an algorithm that, given a commu-

nication modelM and formula ϕ0, returns the set of states [ϕ0]M
satisfying ϕ0.

1

4.1 Coalition Uniform Strategies
The algorithm (and proof) relies on the notion of a coalition uniform
(with respect to distributed knowledge of the coalition) strategy in-

troduced in [3]. We first recall the definition of coalition uniformity

from [3] and explain its relationship to uniform strategies.

For a coalition A, the indistinguishability of two states s and t ,
s ∼A t , means that A as a whole has the same knowledge in s and
t ; for distributed knowledge, it means

⋃
a∈A sa =

⋃
a∈A ta . ∼A can

be lifted to histories in the same way as ∼a : s0, . . . , sk ∼A t0, . . . , tk
iff for all j ∈ [0,k], sj ∼A tj .

Definition 4.2. A strategy FA for A is coalition-uniform with

respect to ∼A if for all λ, λ′ ∈ S+, if λ ∼A λ′, then FA(λ) = FA(λ
′).

It is known that the model-checking problem for ATL with im-

perfect information and perfect recall is decidable for coalition

uniformity with respect to distributed knowledge of the coalition

[9, 11]. In [3], it was shown that for RB±ATSEL this also holds, for

any decidable notion of coalition uniformity (not just distributed

knowledge).

Coalition uniform strategies do not have to be uniform, and vice

versa. As an example of a coalition uniform strategy that is not

uniform, let A be a coalition of two agents, 1 and 2. The strategy

requires that in a state where agent 1 knows p, the coalition should

perform a joint action (α ,α), while if neither agent knows p, they
should perform (β, β). The distributed knowledge of the coalition is

1
The model checking algorithm for RB±ATSEL given in [3] does not consider commu-

nication models, or the cost of communication actions.

p in the first case and empty in the second, so the situations are coali-

tionally distinguishable and the strategy is coalition uniform for A.
For agent 2 however the two states are not distinguishable; so this

strategy requires 2 to perform different actions in indistinguishable

states and is not a uniform strategy for 2.

Uniform strategies also do not have to be coalition uniform.

Consider the following strategy that is uniform for 1 and for 2.

Agent i ∈ {1, 2} performs α if i knows p, and β otherwise. Then

in a state where 1 knows p and 2 does not, the agents will execute

(α , β) and in a state where 1 does not know p and 2 does, they will

execute (β ,α). However this strategy is not coalition uniform, since

the knowledge of the coalition is the same in both cases, i.e., {p},
while the joint action chosen by the coalition is different.

In RB±ATSELc , we add a communication step to make each

agent’s knowledge the same as the distributed knowledge of the

coalition. To ensure that coalition uniform and uniform strategies

coincide in RB±ATSELc , formulas in the agents’s states are ‘labelled’

with the name of the agent. That is, instead of saying that agent 1’s

state contains p, we say that agent 1’s state contains K1p. When

the agent communicates the contents of its state, it communicates

K1p. When the distributed knowledge of the coalition consists of

such labelled formulas, the example above of a uniform strategy

that is not coalition uniform cannot be constructed. The distributed

knowledge of the coalition is {K1p} when only agent 1 knows p,
and {K2p} when only agent 2 knows p. A strategy that selects (α , β)
in the first case and (β,α) in the second is coalition uniform.

Theorem 4.3. In communicationmodels, if at each communication
step all agents inA execute com(k(sa ),A), then a strategy for coalition
A is coalition uniform if and only if it is uniform for all a ∈ A.

Proof. Clearly action selection at each communication step (in

a state s ∈ Scom ) is both coalition uniform and uniform. In fact,

action selection in Scom only depends on the last state in the history

(is memoryless), since each agent inA sends the contents of its state

to A.
Next we show that action selection in histories that end in a

state s ∈ Sact is coalition uniform if and only if it is uniform.

In order to do this, we show that, under the assumption that at

each communication step all agents inA execute com(k(sa ),A), two
states in s, t ∈ Sact are indistinguishable for A if and only if they

are indistinguishable for each a ∈ A.
Let ∀a ∈ A, sa = ta . Then clearly

⋃
a∈A sa =

⋃
a∈A ta . Let⋃

a∈A sa =
⋃
a∈A ta . By Definition 2.2,

⋃
a∈A sa =

⋃
a∈A k(sa ) ∪

{pact } and
⋃
a∈A ta =

⋃
a∈A k(ta ) ∪ {pact }. Observe also that for

all a ∈ A and all ϕ, Kaϕ ∈
⋃
a∈A sa iff Kaϕ ∈ k(sa ) (the only way

a formula prefixed with Ka can appear in any agent’s state is if it

was in the state of a at the previous step, and hence is still in k(sa )).
The same applies to t .

Assume by contradiction that for some a ∈ A, sa , ta . Then
either for some ϕ, Kaϕ ∈ sa and Kaϕ < ta , or for some ψ , and
b ∈ A, b , a, Kbψ ∈ sa and Kbψ < ta . The second case implies that

also Kbψ is in k(sb ) and not in k(tb ) (since b communicates all its

formulas to a), so it suffices to consider the first case. IfKaϕ ∈ k(sa ),
then Kaϕ ∈

⋃
a∈A sa =

⋃
a∈A k(sa ) ∪ {pact }. If Kaϕ < ta , then

Kaϕ <
⋃
a∈A k(ta ) ∪ {pact }. But then contrary to assumption,⋃

a∈A sa ,
⋃
a∈A ta .
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This implies that two sequences of states are indistinguishable

forA if and only if they are indistinguishable for each a ∈ A. Hence
a strategy is coalition uniform if and only if it is uniform. □

4.2 Model Checking Algorithms
We now give the model checking algorithm for RB±ATSELc , which

is shown in Algorithm 1. Given ϕ0, we produce a set of subformulas

Sub(ϕ0) of ϕ0 in the usual way (but excluding subformulas in the

scope of a knowledge modality), ordered in increasing order of

complexity. We then proceed by cases. For all formulas in Sub(ϕ)

apart fromKaϕ, ⟨⟨A
b ⟩⟩⃝ϕ, ⟨⟨Ab ⟩⟩ϕUψ and ⟨⟨Ab ⟩⟩2ϕ we essentially

run the standard ATL model-checking algorithm [5]. For formulas

of the form Kaϕ, we simply check whether Kaϕ is in k(sa ) or ϕ is

in sa \ k(sa ).

Algorithm 1 Labelling ϕ0

1: function rb±atselc -label(M, ϕ0)
2: for ϕ′ ∈ Sub(ϕ0) do
3: case ϕ′ = p, ¬ϕ, ϕ ∨ψ standard, see [5]

4: case ϕ′ = Kaϕ
5: [ϕ′]M ← { s ∈ S | Kaϕ ∈ k (sa ) ∨ ϕ ∈ sa \ k (sa )}
6: case ϕ′ = ⟨⟨Ab ⟩⟩ ⃝ϕ
7: [ϕ′]M ← { s ∈ S |

next([node0(s, b)], { }, ⟨⟨Ab ⟩⟩ ⃝ϕ)}
8: case ϕ′ = ⟨⟨Ab ⟩⟩ϕ Uψ
9: [ϕ′]M ← { s ∈ S |

until([node0(s, b)], { }, ⟨⟨Ab ⟩⟩ϕ Uψ )}
10: case ϕ′ = ⟨⟨Ab ⟩⟩2ϕ
11: [ϕ′]M ← { s ∈ S |

box([node0(s, b)], { }, ⟨⟨Ab ⟩⟩2ϕ)}
12: return [ϕ0]M

Labelling states with formulas of the form ⟨⟨Ab ⟩⟩⃝ψ , ⟨⟨Ab ⟩⟩ϕUψ

and ⟨⟨Ab ⟩⟩2ϕ is done by the functions next, until and box respec-

tively. Each algorithm proceeds by depth-first and-or search ofM ,

and takes a stack (list) of ‘open’ nodes B, a set of ‘closed’ nodes

C , and a formula of the appropriate form in Sub(ϕ0) as input. The
set of ‘closed’ nodes C is used to check for uniformity of strategies

with respect to the coalition indistinguishability relation ∼A. As

shown by Theorem 4.3, this is necessary and sufficient to ensure

uniformity. Information about the state of the search is recorded

in a tree of nodes. A node consists of a state of M , the resources

available to the agents A in that state, and the finite path of nodes

from the root node to this node. Edges in the tree correspond to

joint actions by agents in A and are labelled with the action taken.

For each node n, the function s(n) returns the state represented

by n, p(n) returns the nodes on the path to n, and a(n) returns the
joint action taken by A to reach s(n). We use p(n)[i] to denote the

i-th node in the path p(n), and p(n)[0, j − 1] to denote the prefix

of p(n) up to the j-th node. The function e(n) returns the resource
availability of agents, and ei,k is the i-th resource for agent k ∈ A in

s(n). The function node0(s,b) returns the root node, i.e., a node n0
such that s(n0) = s , p(n0) = [ ], a(n0) = no-op, and ei,k (n0) = bi,k
for all resources i and agents k ∈ A. The function node(n,σ , s ′)
returns a node n′ where s(n′) = s ′, p(n′) = [p(n) · n], a(n′) = σ ,
and for all resources i and agents k ∈ A, ei,k (n

′) = ei,k (n) − c(σk ).

Functions hd(u), tl(u) return the head and tail of a list u, and u ◦ v
concatenates the lists u and v .

Algorithm 2 Labelling ⟨⟨Ab ⟩⟩⃝ψ

1: function next(B, C, ⟨⟨Ab ⟩⟩ ⃝ψ )

2: if B = [ ] then
3: return true
4: n ← hd(B)
5: if s(n) ∈ Scom then
6: if |p(n) | < 1 then
7: σ ← comA(s(n))
8: if c(σ ) ≤ e(n) then
9: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
10: return next(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ ⃝ψ )
11: else
12: if s(n) ∈ [ψ ]M then
13: return next(tl(B), C ∪ {n }, ⟨⟨Ab ⟩⟩ ⃝ψ )
14: else
15: if ∃n′ ∈ C then
16: σ ← a(n′)
17: if σ ∈ DA(s(n)) then
18: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
19: return next(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ ⃝ψ )
20: else
21: ActA← {σ ∈ DA(s(n)) | c(σ ) ≤ e(n)}
22: for σ ∈ ActA do
23: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
24: if next(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ ⃝ψ ) then
25: return true
26: return false

The function next for ⟨⟨Ab ⟩⟩⃝ψ formulas is shown in Algorithm

2. If B = [ ] there are no more open nodes to consider, and next

returns true, indicating that a strategy exists to enforce ⟨⟨Ab ⟩⟩⃝ψ
(lines 2–3). Otherwise there are two cases. The first case, s(n) ∈
Scom (line 5), breaks down into two sub-cases. In the first sub-case,

s(n) is the initial state (λ[0]), sowe choose the communication action

comA(λ[0]). If the cost of the communication action is less than the

resource availability in s(n), we call next recursively to continue

the search, pushing the nodes corresponding to the successor states

onto the stack of open nodes. The second sub-case is where we

are in a state where we have performed a communication and a

non-communication action (i.e., we are in λ[2]). If the state satisfies
ψ , we terminate the current branch of the search by adding the

current node n to the set of closed nodes, and return the result of

calling next recursively on the remaining open branches. Note that

this means that the closed list contains only two-step strategies.

In the second case s(n) ∈ Sact (line 14), and we must choose a

non-communication action. Again there are two sub-cases. If there

is a node n′ in the closed set C , we must choose the action a(n′).
For all n′ ∈ C , the state s(p(n′)[1]) ∼A s(n) is in Sact (since in each

s(p(n′)[1]), the knowledge of each a ∈ Aдt has changed in the same

way as a result of communication), so, for a uniform strategy, we

must choose the same action. We generate a new node for each

possible outcome state of the action, and call next recursively

to continue the search, pushing the nodes corresponding to the

successor states onto the stack of open nodes. In the second sub-case

(line 20) no action is required at the current state for uniformity. For

Session 1D: Verification and Validation AAMAS 2019, May 13-17, 2019, Montréal, Canada

174



each action that is possible in the current state given the current

resource availability, we attempt to find a strategy for each of the

outcome states of that action, again calling next recursively to

continue the search. If the current open branch is 1 or 2 steps

long and s(n) does not satisfyψ , or the communication action or a

non-communication action necessary for uniformity requires more

resources than are available in the current state, or there is no joint

action σ ∈ ActA whereψ can be enforced in all outcome states, we

‘fall through’ and return false (line 26).

Algorithm 3 Labelling ⟨⟨Ab ⟩⟩ϕUψ

1: function until(B, C, ⟨⟨Ab ⟩⟩ϕ Uψ )

2: if B = [ ] then
3: return true
4: n ← hd(B)
5: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧

(∀i, k : ei,k (n′) ≥ ei,k (n)) then
6: return false
7: for (i, k ) ∈ {(i, k ) | i ∈Res,k ∈A, ∃n′ ∈ p(n) :s(n′) =

s(n) ∧ (∀j,m : ej,m (n′) ≤ ej,m (n)) ∧
ei,k (n′) < ei,k (n)} do

8: ei,k (n) ← ∞

9: if s(n) ∈ [ψ ]M then
10: return until(tl(B), C ∪ {n }, ⟨⟨Ab ⟩⟩ϕ Uψ )
11: if s(n) < [ϕ]M then
12: return false
13: if s(n) ∈ Scom then
14: σ ← comA(s(n))
15: if c(σ ) ≤ e(n) then
16: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
17: return until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ )
18: else
19: if ∃n′ ∈ C : p(n) · n ∼A p(n′)[0, |p(n) |] ∧

|p(n′) | > |p(n) | then
20: σ ← a(p(n′)[ |p(n) | + 1])
21: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
22: return until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ )
23: else
24: ActA← {σ ∈ DA(s(n)) | c(σ ) ≤ e(n)}
25: for σ ∈ ActA do
26: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
27: if until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ ) then
28: return true
29: return false

The function until for ϕ ′ = ⟨⟨Ab ⟩⟩ϕUψ formulas is shown in

Algorithm 3. As in next, if there are nomore open nodes to consider,

until returns true. Otherwise we check whether the state s(n) has
been encountered before on p(n), i.e., p(n) ends in a loop. If the loop

is unproductive (i.e., resource availability has not increased since

the previous occurrence of s(n) on the path p(n)), then the loop is

not necessary for a successful strategy, and search on this branch

is terminated (lines 5–6). However, if the loop strictly increases the

availability of at least one resource i for some agent k and does not

decrease the availability of other resources, then ei,k (n) is replaced
with ∞ as a shorthand denoting that any finite amount of i can
be produced by repeating the loop sufficiently many times (lines

7–8). We then check if the second argumentψ of ϕ ′ is true in s(n).

If so, search terminates on the current branch, the current node

n is added to the set of closed nodes and search continues on a

different branch by expanding the next open node in B (lines 9–10).

If the current branch is not closed (i.e.,ψ is not true in s(n), but ϕ
is true in s(n), (lines 11–12)), search continues on this branch. As

for next, there are two cases. The first case is when s(n) ∈ Scom ,

and the agents must execute a communication action. If the cost

of the communication action is less than the resource availability

in s(n), we generate a new node for each possible outcome state of

communication, and call until recursively to continue the search,

pushing the nodes corresponding to the successor states onto the

stack of open nodes (lines 13–17). In the second case s(n) ∈ Sact
(line 18), and we must choose a non-communication action. As in

next, there are two sub-cases. In the first sub-case, the current path

(including the current node) is epistemically indistinguishable from

a (prefix of) a path to a closed node n′ (line 19), and the same action,

σ , must be selected in the current state as in the corresponding

state in n′ (line 20). We generate a new node for each possible

outcome state of the action, and call until recursively to continue

the search, pushing the nodes corresponding to the successor states

onto the stack of open nodes (lines 21–22). In the second sub-case,

no action is required at the current state for uniformity, and, for

each action that is possible in the current state given the current

resource availability, we attempt to find a strategy for each of the

outcome states of that action (lines 24–28). If a strategy cannot be

found for any action possible in s(n), until returns false (line 29).

The function box for ϕ ′ = ⟨⟨Ab ⟩⟩2ϕ formulas is shown in Algo-

rithm 4. As for next and until, if there are no more open nodes

to consider, box returns true (lines 2–3). If ϕ is false in the state

represented by node n, s(n), it returns false, terminating search of

the current branch of the search tree (lines 5–6). Otherwise we

check whether p(n) ends in a loop. If the loop decreases the amount

of at least one resource for one agent without increasing the avail-

ability of any other resource, it cannot form part of a successful

strategy, and the search terminates returning false (lines 7–8). If

a non-decreasing loop is found, then it is possible to maintain the

invariant formula ϕ forever without expending any resources, and

the search terminates on the current branch, the current node n is

added to the set of closed nodes, and search continues on a different

branch by expanding the next open node in B (lines 9-10). The

remaining cases are similar to until. If the current branch is not

closed, search continues on the branch. The first case is when a

communication action must be performed in the current state (lines

12–15). If a non-communication action must be performed in s(n),
we check if an action is required for the strategy to be uniform

(lines 17–20), and, if not, we consider each action that is possible

in the current state given the current resource availability (lines

22–26).

Next, we prove Theorem 4.1.

Proof. The proof of termination and correctness of Algorithm 1 with

respect to coalition uniform strategies is similar to the proof in [3].

In particular, it also works for the ATL case (infinite bounds). By

Theorem 4.3, a coalition uniform strategy exists if and only if a

uniform strategy exists, where all agents in a coalition communicate

their knowledge to each other. No cheaper uniform strategy exists,

since the cost of a communication action is always proportional
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Algorithm 4 Labelling ⟨⟨Ab ⟩⟩2ϕ

1: function box(B, C, ⟨⟨Ab ⟩⟩2ϕ)
2: if B = [ ] then
3: return true
4: n ← hd(B)
5: if s(n) < [ϕ]M then
6: return false
7: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧

(∀j, k : ej,k (n′) ≥ ej,k (n)) ∧
(∃j, k : ej,k (n′) > ej,k (n)) then

8: return false
9: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧

(∀j, k : ej,k (n′) ≤ ej,k (n)) then
10: return box(tl(B), C ∪ {n }, ⟨⟨Ab ⟩⟩2ϕ)
11: if s(n) ∈ Scom then
12: σ ← comA(s(n))
13: if c(σ ) ≤ e(n) then
14: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
15: return box(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ )
16: else
17: if ∃n′ ∈ C : p(n) · n ∼A p(n′)[0, |p(n) |] ∧

|p(n′) | > |p(n) | then
18: σ ← a(p(n′)[ |p(n) | + 1])
19: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
20: return box(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩2ϕ)
21: else
22: ActA← {σ ∈ DA(s(n)) | c(σ ) ≤ e(n)}
23: for σ ∈ ActA do
24: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
25: if box(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩2ϕ) then
26: return true
27: return false

to the size of the agent’s state, and communicating with agents

outside the current coalition is just as expensive and results in more

indistinguishable states. 2

4.3 Complexity
The lower bound on the complexity of the model checking problem

is provided by the complexity of model checking RB±ATL [2]:

Theorem 4.4. The model checking problem for RB±ATSELc is
2EXPTIME hard.

We conjecture that the upper bound is 3EXPTIME.

5 REDUCING COMMUNICATION COST
In this section, we briefly introduce a variant type of communica-

tion models called flexible communication models, where the whole
content of the agent’s state does not have to be communicated. We

use flexible communication models to illustrate a simple form of

agent reasoning (closure of the state). As a motivating example,

consider a variant of the museum guards scenario where the guards

are both watching the same security monitor; if something bad hap-

pens, not only do they both know this, but they also know that each

other knows, without the need for communication. In other words,

agent 1 can derive K2b in addition to K1b. This means that agent 2

does not have to communicate K2b to agent 1 (and vice versa). We

assume that agents’ inferences about each other’s knowledge are

correct: if Kiϕ ∈ sj , then Kiϕ ∈ si .

Definition 5.1. A flexible communication model of RB±ATSELc
is a tupleM = (Φ,Aдt ,Res,Π, S,Act ,d, c,δ , cl) where:

• Φ,Aдt ,Res,Π, S are as in Definition 2.1;

• in Scom , the set of available actions is

CA = {com(Xa ,Ba ) | Xa = {(a1, s1), . . . , (ak , sk )},

si ⊆ k(sa ),ai ∈ Aдt ,Ba ⊆ Aдt}

that is, agent a can send different subsets of its state to dif-

ferent agents in Ba ⊆ Aдt .
• cl (closure) is an operation on sa for a ∈ Aдt that adds to
sa formulas of the form Kbϕ, b , a, so that for every s ∈ S ,
Kbϕ ∈ cl(sa ) ⇒ Kbϕ ∈ sb .
• δ is defined as: for every s ∈ Scom and joint communica-

tion action σ = ((com(X1,B1), . . . , com(Xn , Bn )) ∈ D(s), δ
returns the resulting state in Sact : δ (s,σ ) = (ta1 , . . . , tan , se ),
where

tai = cl(k(sai )) ∪ {pact }
⋃

(ai ,s ′a )∈Xa such that a∈Bi

s ′a

For a coalition uniform strategy to be a uniform strategy, we

need to ensure that each agent’s knowledge is the same as the

distributed knowledge of the coalition. Now it is not necessary for

agents to communicate their entire state to achieve this, since some

formulas can be added by reasoning (closure).

Our approach to reducing the number of communicated formu-

las is as follows. In a state s ∈ Scom , for a coalition A, we know
what the state of each agent a ∈ A should contain after communica-

tion to make selection of ontic actions uniform: it is the distributed

knowledge of A, ∪a∈Ak(sa ). Given that Φ is finite, and sa for each

a ∈ A is finite, there is a finite number of communication actions a
can perform to try to make each agent’s state to be ∪a∈Ak(sa ): it
can do some com(Xa ,Ba ) where for each (ai , si ) ∈ Xa , si ⊆ k(sa )
and Ba ⊆ A. The only thing we need to ensure is that this commu-

nication action selection is uniform: every time the agent is in an

indistinguishable history, it performs the same communication ac-

tion. We cannot do this for perfect recall communication strategies

but we can do this for bounded or memoryless strategies since the

model checking problem for those strategies is decidable [19]. That

is, using a closed list of bounded histories including communication

actions, we check all possible communication actions the agents

in A can perform that result in cl(qb ) = ∪a∈Ak(sa ) for every b ∈ A,
while remaining uniform.

In the interests of brevity, we give only the modified algorithm

for formulas of the form ⟨⟨Ab ⟩⟩ϕUψ ; the algorithms for ⟨⟨Ab ⟩⟩⃝ψ

and ⟨⟨Ab ⟩⟩2ϕ are similar.

The modified algorithm is shown in Algorithm 5. The only

change required is to the selection of communication actions (lines

14–18); the remainder of the algorithm is identical to Algorithm

3. Rather than a single comA(s(n)) communication action, we now

generate all possible communication actions ComA that (a) result

in the knowledge of each agent being the same as the distributed

knowledge of the coalition, (b) are uniform under bounded recall

for histories of length k , and (c) cost less than the current resources

of the coalition (line 14). The function pk (n) returns the last k nodes
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Algorithm 5 Labelling ⟨⟨Ab ⟩⟩ϕUψ for flexible communication

models

1: function until(B, C, ⟨⟨Ab ⟩⟩ϕ Uψ )

2: if B = [ ] then
3: return true
4: n ← hd(B)
5: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧

(∀i, k : ei,k (n′) ≥ ei,k (n)) then
6: return false
7: for (i, k ) ∈ {(i, k ) | i ∈Res,k ∈A, ∃n′ ∈ p(n) :s(n′) =

s(n) ∧ (∀j,m : ej,m (n′) ≤ ej,m (n)) ∧
ei,k (n′) < ei,k (n)} do

8: ei,k (n) ← ∞

9: if s(n) ∈ [ψ ]M then
10: return until(tl(B), C ∪ {n }, ⟨⟨Ab ⟩⟩ϕ Uψ )
11: if s(n) < [ϕ]M then
12: return false
13: if s(n) ∈ Scom then
14: ComA← {σ ∈ DA(s(n)) |

∀s′ ∈ out (s(n), σ ) cl (s′a∈A) =
⋃
a′∈A k (s′a′ ) ∧∃n′ ∈ C : pk−1(n) · n ∼a∈A pk (n′) →

σa = aa (n′) ∧
c(σ ) ≤ e(n)}

15: for σ ∈ ComA do
16: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
17: if until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ ) then
18: return true
19: else
20: if ∃n′ ∈ C : p(n) · n ∼A p(n′)[0, |p(n) |] ∧

|p(n′) | > |p(n) | then
21: σ ← a(p(n′)[ |p(n) | + 1])
22: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
23: return until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ )
24: else
25: ActA← {σ ∈ DA(s(n)) | c(σ ) ≤ e(n)}
26: for σ ∈ ActA do
27: P ← {node(n, σ , s′) | s′ ∈ out (s(n), σ )}
28: if until(P ◦ tl(B), C, ⟨⟨Ab ⟩⟩ϕ Uψ ) then
29: return true
30: return false

on the path to n (not including n), and pk−1(n) returns the last k − 1
nodes. σa is the action performed by agent a in the joint action

σ and aa (n) is the action taken by a in the joint action to reach n.
Line 14 constructs a set of joint communication actions such that

each agent a for which pk−1(n) · n ∼a pk (n
′) for some n′ (where k

is the bound on recall), chooses communication action aa (n
′). That

is, if the last k states on the current history (including s(n)) are ∼a
to the last k states on the path to a node n′, then a must choose the

same communication action as it did in a(n′) (the joint action taken

by A to reach s(n′)). Otherwise agents in A choose communication

actions constrained only by cost. For each such joint communica-

tion action, we generate a new node for each possible outcome

state of communication, and call until recursively to continue the

search, pushing the nodes corresponding to the successor states

onto the stack of open nodes (lines 13–17). This makes the choice

of communication action a strategic decision similar to that for

ontic actions (lines 26–29) and the algorithm could be refactored

accordingly.
2

Theorem 5.2. If Algorithm 5 returns true, then the Until formula
is true.

The proof is straightforward; since any bounded uniform strat-

egy is a uniform strategy, the formula is satisfied under the RB±

ATSELc semantics. However if the algorithm returns false, this does

not mean that a perfect recall uniform strategy does not exist. It

may simply be that the bound k is not sufficient to realise such a

strategy, or that it is not necessary for uniformity to achieve dis-

tributed knowledge (there is a cheaper, in terms of communication

cost, uniform strategy).

6 RELATEDWORK
There is a large body of work on ATL with imperfect information,

e.g., [1, 9–13, 15–18], and extensions of ATL with resources are

considered in e.g., [4, 7, 8].

We build on the work of [3] where model checking algorithms

were proposed for RB±ATSEL with coalition uniform strategies. It

is known that the model checking problem for ATL with imperfect

information and perfect recall is decidable for uniformity with

respect to distributed knowledge [9, 11], which is a special case

of coalition uniformity. We are not aware of any work which uses

this result in combination with explicit communication to make

the model checking problem decidable for perfect recall uniform

strategies, as we do in this paper.

There are other approaches to making the model-checking prob-

lem decidable in the presence of imperfect information and perfect

recall. In [14], coalitions with a single indistinguishability relation

are shown to behave as a single agent, and the model checking

problem for the resulting variant of ATL is decidable as a conse-

quence. Another approach considers a class of models with only

‘public actions’ (every agent can distinguish the states resulting

from the execution of two different joint actions) [6]. In commu-

nication models, communication actions are public actions for the

coalition, but ontic actions are not.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a modification of the logic RB±ATSEL

defined in [3] where model checking is decidable for uniform strate-
gies. Our approach works only for a special kind of models which

we call communication models. In communication models, agents

always perform a communication step before selecting and execut-

ing actions, and follow a specific communication strategy (sending

their entire knowledge to all other agents in the coalition). We

sketch a sound but incomplete approach to generating a potentially

reduced cost communication strategy.
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