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ABSTRACT
The optimal coalition structure determination problem is in general

computationally hard. In this article, we identify some problem

instances for which the space of possible coalition structures has a

certain form and constructively prove that the problem is polyno-

mial time solvable. Specifically, we consider games with an ordering

over the players and introduce a distance metric for measuring the

distance between any two structures. In terms of this metric, we de-

fine the property ofmonotonicity, meaning that coalition structures

closer to the optimal, as measured by the metric, have higher value

than those further away. Similarly, quasi-monotonicity means that

part of the space of coalition structures is monotonic, while part of

it is non-monotonic. (Quasi)-monotonicity is a property that can be

satisfied by coalition games in characteristic function form and also

those in partition function form. For a setting with a monotonic

value function and a known player ordering, we prove that the op-

timal coalition structure determination problem is polynomial time

solvable and devise such an algorithm using a greedy approach.

We extend this algorithm to quasi-monotonic value functions and

demonstrate how its time complexity improves from exponential

to polynomial as the degree of monotonicity of the value function

increases. We go further and consider a setting in which the value

function is monotonic and an ordering over the players is known to

exist but ordering itself is unknown. For this setting too, we prove

that the coalition structure determination problem is polynomial

time solvable and devise such an algorithm.
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1 INTRODUCTION
We address the problem of determining an optimal coalition struc-

ture, i.e., a partition of a set of n plasyers into disjoint coalitions so

as to optimize the value of the partition. It is assumed that players

are ordered by their priorities; the higher a player’s priority, the

more important it is to place it correctly. We introduce a distance
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metric for measuring how close any two partitions are. In terms

of this metric, we define a property of value functions that we call

monotonicity. Intuitively, monotonicity means that coalition struc-

tures that are closer to the optimum (when measured using the

distance metric) have higher value than those further away.

For games with a known player ordering we show how to de-

termine optimal coalition structure in polynomial time. Then we

consider games in which player ordering is unknown and show how

the optimal coalition structure can still be determined in polynomial

time.

Placing our contribution in the context of existing literature,

we note that existing research has been devoted to the coalition

structure generation problem, but most of it has focused on the

complete set partitioning problem, with even the best solutions

having exponential time complexity. As for PFGs, the search space

is considerably larger relative to CFGs. Some recent literature has

dealt with restricted cases of PFGs: in [4] either positive only or

negative only externalities are allowed but not both, while in [1]

mixed externalities are considered but only for one specific value

function. In other research [6], the computational complexity is

overcome by imposing restrictions on the size of coalitions that

can form. Apart from these, some heuristic methods have also been

studied [5].

The key distinctive features of the proposed methods in this

paper are:

i) Unlike existing methods, they are suitable for any kind of value

function (i.e., non-separable, CFGs, and PFGs with positive only,

negative only, and mixed externalities) that satisfies monotonicity.

ii) Unlike existing methods, they require only an ordering on the

values of partitions to be known but not their actual values. The

methods in literature require the actual value of each coalition to

be known, and assume that the value function is separable in that

the value of each partition is simply the sum of the values of the

coalitions in it. The proposed methods are therefore practically

more relevant because it is easier to know an ordering over the

values of partitions but much harder to know their exact values,

especially for large games.

2 THE MODEL
We assume a finite, non-empty set of players N = {1, . . . ,n}. A
coalition, C , is simply a subset of N , i.e., C ⊆ N . We will denote the

set {1, . . . , i} by [i].
A central concept in our work is the notion of a coalition structure.

Intuitively, a coalition structure captures the idea of the players N
dividing into separate coalitions, and conventionally, a coalition

structure is therefore simply defined as a partition ofN [2]. Without

any loss of generality, assume that the coalitions in a structure π
are ordered by the following principle:
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coalition Ci will precede a coalition Cj in π if the

smallest element ofCi is less than the smallest element

of Cj .

Note that since coalitions in a coalition structure are assumed to

be mutually disjoint, then this ordering is guaranteed to be strict.

Formally, we have:

Definition 2.1. A coalition structure π = (C1,C2, . . . ,CM ) over

N is a sequence of coalitions Ci ⊆ N such that:

(1)

⋃
1≤i≤M Ci = N ,

(2) Ci ∩Cj = ∅ for 1 ≤ i ≤ M , 1 ≤ j ≤ M s.t. i , j, and
(3) for 1 ≤ i ≤ M and 1 ≤ j ≤ M , if i < j then minCi < minCj .

with the convention min ∅ = ∞.

Let ΠN denote the set of all coalition structures over N . We will

use the terms coalition structure, sequence, and partition synony-

mously. Observe that, defined in this way, coalition structures have

the following property. In any coalition structure, player 1 must

belong to the first coalition, player 2 must belong to one of the

first two coalitions, and so on. In general, if the players 1, . . . , i
(1 ≤ i < n) belong to the first 1 ≤ m ≤ i non-empty coalitions of

any sequence, then player i + 1 must belong to one of the firstm+ 1
coalitions in it.

We find it useful to work with a functional representation of

coalition structures, which we call the sequence form. A sequence

form representation is simply a function that maps a given player i
to the index of the coalition of which i is a member. More generally,

it is useful to work with sequence form functions that only define

coalition membership for some subset of the overall set of agents:

Definition 2.2. For 1 ≤ k ≤ n, a sequence form

SFk : [k] → N

maps each player i ∈ [k] to the index of a coalition in a sequence.

An instance of SFk is any coalition structure π of N that satisfies

the condition

∀i i ∈ [k] ⇒ player i belongs to the coalition SFk (i) in π .□

Each coalition structure has a value given by a function v :

v : ΠN → R

A pair (N ,v) constitutes a coalition game. Given a coalition game,

the problem is to find an optimal sequence πopt
such that:

πopt ∈ arд max
π ∈ΠN

v(π ).

This problem is, in general, computationally hard because of the

huge search space. For a game of n players, the number of all possi-

ble coalition structures is given by Bell(n). Since Bell(n) ∼ Θ(nn ),
it is, in general, infeasible to compute an optimal coalition structure

by exhaustive search over the space of all coalition structures.

The aim is to identify value functions that are practically relevant

and for which the coalition structure generation problem can be

solved in polynomial time. We consider value functions that are

quasi-monotonic. Monotonicity is defined in terms of a distance

metric on the space ΠN of possible coalition structures.

The metric we consider is defined in terms of the notion of

restriction of a partition to a coalition.

Definition 2.3. The restriction π |[i] of a coalition structure π =
(C1,C2, . . .) to coalition [i] is defined as

π |[i] = (C1 ∩ [i],C2 ∩ [i], . . .).

For readability, any empty sets will not be shown in π |[i].

For any two coalition structures over N , we have the following

readily established property.

Lemma 2.4. Let π 1 ∈ ΠN and π 2 ∈ ΠN be any two coalition

structures over N = {1, . . . ,n}. Then ∃u ∈ N such that π 1

|[u] = π 2

|[u].

Lemma 2.4 can be proved easily by letting u = 1. Intuitively, the

larger the value of u, then the “closer” π 1
and π 2

are together. This

motivates the introduction of the following distance metric d , which
gives a measure of the distance between any two elements in ΠN :

d(π 1,π 2) =
1

∆(π 1,π 2)
(1)

where ∆(π 1,π 2) = max{i ∈ N : π 1

|[i] = π 2

|[i]}.

For the case of unique optimum, we assume monotonicity: the

functionv : ΠN → R is monotonically decreasing in the distance of

a sequence from the optimum πopt
, i.e., for two arbitrary sequences

π 1
and π 2 , π 1

, we have the following implication:

d(πopt,π 1) < d(πopt,π 2) ⇒ v(π 1) > v(π 2) (2)

Lemma 2.5. For 1 ≤ i < n, any sequence in which the first mis-

placed player is i + 1 (i.e., the players 1, . . . , i are correctly placed in

their respective optimal coalitions but not player i + 1) has a higher
value than any sequence in which the first mis-placed player is i (i.e.,
the players 1, . . . , i − 1 are correctly placed in their respective optimal

coalitions but not player i).

Lemma 2.5 leads to the definition of player priority.

Definition 2.6. Each player has a priority: player 1 has the highest

priority and the priority of any 1 ≤ i < n is higher than that of

player i + 1, i.e., 1 ≻ 2, . . . ,≻ n.

We consider games with known player priorities and show how

to determine optimal coalition structure in polynomial time. Then

we consider games in which the priorities are unknown and show

how the optimal coalition structure can still be determined in poly-

nomial time.
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