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ABSTRACT
Weighted argumentation offers a tool for decision support and

social media analysis. Arguments are evaluated by an iterative

procedure that takes initial weights and attack and support relations

into account. Mossakowski and Neuhaus recently unified different

approaches and proved first convergence results in cyclic graphs.

We build up on this work, simplify and generalize convergence

results and add runtime guarantees. As it turns out, there is a

tradeoff between convergence guarantees and the ability to move

strength values away from the initial weights. We demonstrate that

continuizing semantics can avoid divergence without this tradeoff.

Semantically, we extend the framework with a Duality property

that assures a symmetric impact of attack and support. We also

present a Java implementation of modular semantics and explain

the practical usefulness of the theoretical ideas.
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1 INTRODUCTION
Abstract argumentation [19] allows modeling arguments and their

relationships in order to decide which arguments can be accepted.

Weighted bipolar argumentation frameworks start with an initial

weight of arguments and adapt this weight based on the strength

of their attackers and supporters [5, 11, 26, 30, 34]. Applications

include decision support [10, 34], social media analysis [1, 24] and

information retrieval [38]. Initial weights can be defined manually

based on the reputation of arguments’ sources or computed au-

tomatically based on statistics like the success rate of a source in

decision support or the number of likes or retweets of an argu-

ment in social media analysis. Attack and support relations can be

extracted automatically by sentiment analysis tools [1].

Mossakowski and Neuhaus recently unified different approaches

by decomposing their semantics into an aggregation function that

aggregates the strength of attackers and supporters and an influence

function that adapts the initial weight based on the aggregate [26].

Different combinations of aggregation and influence functions yield

different semantics from the literature and semantical axioms [3–5]

can be related to elementary properties of these functions. They

also proved first convergence results in cyclic graphs. Note that

convergence is essential to obtain final strength values here. [26]
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Figure 1: Graph for Example 2.2.

gave convergence results for sum- and max-based aggregation

functions and influence functions with bounded derivatives.

We will show that all convergence results from [26] are spe-

cial cases of the Contraction Principle [37], generalize the results

in a uniform way and add runtime guarantees. However, we also

show that convergence guarantees derived from the contraction

principle are bought at the expense of open-mindedness. That is,

as semantics’ convergence guarantees get stronger, their ability

to change the initial weights gets weaker. We also give some new

divergence examples based on a family of graphs from [26]. In

order to avoid the tradeoff between convergence guarantees and

open-mindedness, we can continuize semantics as proposed in [30].

We demonstrate that the observed divergence problems can be

solved by continuization and, thus, give some additional empirical

evidence for the robustness of continuous models. Subsequently,

we integrate the recently introduced Duality property [30] into the

framework by Mossakowski and Neuhaus by relating it to elemen-

tary properties of aggregation and influence functions. Finally, we

present an implementation of Modular semantics in the Java library

Attractor
1
[31] and illustrate the practical usefulness of modular

semantics. All proofs can be found in the technical report [32].

2 BAGS AND MODULAR SEMANTICS
We consider weighted bipolar argumentation graphs (BAGs) as con-
sidered in [5] and [26].

Definition 2.1 (BAG). A BAG is a tuple A = (A,w,R,S), where
A is an n-dimensional vector of arguments, w ∈ [0, 1]n is a weight

vector that associates an initial weightwi with every argumentAi
and R and S are binary relations on A called attack and support.

The parent vector дi ∈ {−1, 0, 1}n of argument Ai is the vector

with entries дi , j = −1 (1) iff (Aj ,Ai ) ∈ R ((Aj ,Ai ) ∈ S). We

visualize BAGs by means of directed graphs as in Figure 1. Nodes

show the arguments with their initial weights, solid edges denote

attacks and dashed edges denote supports. We let indegree(Ai ) =∑n
j=1 |дi , j | be the number of attackers and supporters of Ai .

Example 2.2. Figure 1 shows the directed graph for the BAG(
(a,b, c), (0.6, 0.9, 0.4), {(a,b), (a, c)}, {(b, c), (c,b)}

)
. The parent vec-

tor of b is д2 = (−1, 0, 1) and shows that b is attacked by a and

supported by c . Hence, indegree(b) = 2.

1
https://sourceforge.net/projects/attractorproject
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Given a BAGA, we want to assign a strength value to every argu-

ment. This can be accomplished by means of different acceptability
semantics [5]. These semantics are usually based on an iterative

update procedure that may or may not converge. Therefore, we

follow [26] and regard acceptability semantics as partial functions.

Definition 2.3 (Acceptability Semantics). An acceptability seman-

tics is a partial function DegS that maps a BAG A = (A,w,R,S)
with n arguments to an n-dimensional vector DegS (A) ∈ [0, 1]

n

or to ⊥ (undefined). If DegS (A) , ⊥, we call the i-th component

DegS (A)i the final strength or acceptability degree of Ai .

A modular acceptability semantics as introduced in [26] is an

acceptability semantics that works by first aggregating the strength

of attackers and supporters and then adapting the initial weight

based on the aggregated value. This is accomplished by aggregation

and influence functions, which satisfy some additional properties

that guarantee that axioms from [5] are satisfied. Even though all

axioms are interesting semantically, we will restrict to a subset here

in order to keep the presentation simple and more general.

The aggregation and influence functions in [26] were supposed

to be continuous. We make a stronger assumption here and assume

that they are Lipschitz-continuous. Intuitively, this means that the

growth of these functions is bounded by a constant. Lipschitz-

continuity is also implied by the convergence conditions (bounded

derivatives) in [26], so we do not restrict the generality of our

convergence investigation. Formally, a function f : X → Y is called

Lipschitz-continuous with Lipschitz constant λ iff ∥ f (x)− f (y)∥Y ≤
λ∥x − y∥X . The sets X and Y will contain real numbers, vectors

or matrices here. We consider the maximum norm for matrices

defined by ∥A∥ = max{
∑m
j=1 |ai , j | | 1 ≤ i ≤ n} for anm ×n-matrix

A = (ai , j ). That is, ∥A∥ is the largest absolute row sum in A. For
the special case that x ∈ Rn is a vector (an n × 1-matrix), ∥x ∥ is
the largest absolute value in x . Notice that using the maximum

norm does not mean any loss of generality because all norms are

equivalent in Rn [37] (the difference between two norms can be

bounded by a constant factor).

The aggregation function requires information about the attack-

ers and supporters, the influence function requires information

about the initial weight. We regard this information as parame-

ters of the function. We also have to express that the aggregation

function depends only on the parents. As discussed in [26], this

demand corresponds to the directionality axiom from [5]. In or-

der to phrase directionality, we define an equivalence relation for

every parent vector v ∈ {−1, 0, 1}n . Two (strength) vectors s1, s2
are called equivalent with respect to a parent vector v , written as

s1 ≡v s2 iff s1,i = s2,i whenever vi , 0. That is, only the strength

values of parents matter, all other strength values are ignored.

In the following, for a function f , we let f k denote the func-

tion that is obtained by applying f k times, that is, f 1 = f and

f k+1 = f k ◦ f . Applying our update function repeatedly to the

initial weights yields a sequence of strength vectors. The final

strength values are defined as the limit of this sequence if it exists.

Thus, convergence guarantees of update functions correspond to

completeness guarantees of semantics. As usual, we say that an

n-dimensional sequence (sn )n∈N, sn ∈ R
n
, converges to s , denoted

as limn→∞ sn = s , iff the real sequence (∥sn − s ∥)n∈N converges to

0. That is, for every ϵ > 0, there is a N ∈ N such that ∥sm − s ∥ < ϵ

for allm > N . Intuitively, this means that the i-th component of

(sn ) converges to the i-th component of s .
We are now ready to define basic modular semantics.

Definition 2.4 (Basic Modular Semantics). A semantics DegS is

called a basic modular semantics if there exists

(1) an aggregation function αv : [0, 1]n → R such that for all

parent parameters v ∈ {−1, 0, 1}n and s, s1, s2 ∈ [0, 1]
n

• αv (s1) = αv (s2) whenever s1 ≡v s2, (Directionality)

• αv is Lipschitz-continuous, (Lipschitz-α )
• αv (s) = 0 whenever v = 0, (Stability-α )

(2) an influence function ιw : R→ [0, 1] such that for all weight
parameters w ∈ R
• ιw is Lipschitz-continuous, (Lipschitz-ι)
• ιw (0) = w (Stability-ι)

and for all BAGs A = (A,w,R,S), we have

DegS (A) = lim

k→∞
f kS (w).

where the i-th component of fS : [0, 1]n → [0, 1]n is defined by

ιwi ◦ αдi for i = 1, . . . ,n. fS is called the update function of DegS .

In practice, for the i-th argument Ai , its parent vector дi serves
as the parent parameter of αv and its initial weight wi serves as

the weight parameter for ιw . Stability-α and Stability-ι assure that
the final strength of an argument without parents will just be its

initial weight. This corresponds to the stability axiom from [5].

Intuitively, modular semantics compute strength values itera-

tively. They start with the initial strength vector s(0) = w. Then,

in the k-th step, the strength of argument i is computed by first

applying the aggregation function to s(k−1) and then applying the

influence function to αдi (s
(k−1)). That is, s

(k )
i = ιwi (αдi (s

(k−1))) for

k > 0.

Table 1 shows some examples of different aggregation and influ-

ence functions that can be found in the literature.

Proposition 2.5. The functions in Table 1 are aggregation and
influence functions as defined in Definition 2.4. In particular, they are
Lipschitz-continuous with the provided Lipschitz constants.

All aggregation functions that we consider here work by com-

puting an aggregated attack and support value independently and

subtracting these values. The sum-aggregation function has been

used for the Euler-based semantics in [5] and for the quadratic

energy model in [30]. It aggregates strength values by adding them.

The product-aggregation function is the aggregation function of

the DF-QuAD algorithm [34]. Intuitively, the aggregate for attack

and support is initially 1 and the aggregates are decreased by mul-

tiplying with (1 − s) for an attacker or supporter with strength

s . The top-aggregation function has been used for the top-based

semantics in [4] for support-only graphs and has been generalized

to bipolar graphs in [26]. It considers only the strongest attacker

and supporter.

We consider three influence functions. The linear(κ) influence
function has a parameter κ that we call its conservativeness for
reasons that will become clear later. The function linear(1) can

be seen as the influence function of the DF-QuAD algorithm in

[34]. It moves the strength to 0 or 1 directly proportional to the

aggregated strength values. This yields easily interpretable results,
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Aggregation Functions

Sum αΣ
v : [0, 1]n → R αΣ

v (s) =
∑n
i=1vi · si λΣv =

∑n
i=1 |vi |

Product αΠv : [0, 1]n → [−1, 1] αΠv (s) =
∏

i :vi=−1(1 − si ) −
∏

i :vi=1(1 − si ) λΠv =
∑n
i=1 |vi |

Top αmax
v : [0, 1]n → [−1, 1] αmax

v (s) = Mv (s) −M−v (s), λmax
v = min{2,

∑n
i=1 |vi |}

whereMv (s) = max{0,v1 · s1, . . . ,vn · sn },

Influence Functions

Linear(κ) ιlw : [−κ,κ] → [0, 1] ιlw (s) = w − w

κ ·max{0,−s} + 1−w
κ ·max{0, s} λlw =

1

κ max{w, 1 −w}

Euler-based ιew : R→ [w2, 1] ιew (s) = 1 − 1−w2

1+w ·es λew =
1

4

p-Max(κ) ι
p
w : R→ [0, 1] ι

p
w
= w −w · h(− s

κ ) +w · h(
s
κ ) λ

p
w =

p
κ max{w, 1 −w}

for p ∈ N where h(x) = max{0,x }p
1+max{0,x }p

Table 1: Some aggregation and influence functions with corresponding Lipschitz constants.

Semantics Aggregation Influence

DFQ(κ) Product Linear(κ)

Euler Sum Euler-based

QE(κ) Sum 2-Max(κ)

Table 2: Example semantics from the literature.

but requires that the aggregation function yields values between

−1 and 1. Hence, it cannot be combined with the sum-aggregation

function. More generally, linear(κ) requires that the aggregation
function yields values between −κ and κ. The Euler-based influence
function has been used for the Euler-based semantics in [5]. It has

some nice properties but causes an asymmetry between attack and

support as we discuss later. The p-Max influence function avoids

this asymmetry. The p-Max influence function with p = 2 is used

for the quadratic energy model in [30]. By increasing the parameter

p, we increase (decrease) the influence of aggregates larger (smaller)

than 1. We add again a parameter κ for the conservativeness.

Table 2 summarizes the building blocks of the DF-QuAD algo-

rithm (DFQ), the Euler-based semantics (Euler) and the quadratic

energy model (QE). We also add a conservativeness parameter to

DFQ and QE.

3 CONVERGENCE AND OPEN-MINDEDNESS
As shown in [26], modular acceptability semantics always converge

for acyclic graphs. The claim remains true for basic modular seman-

tics. In fact, the limit can be computed in linear time by a single

pass trough the graph as we explain in the following proposition.

Proposition 3.1 (Convergence and Complexity for Acyclic

BAGs). Let DegS be a basic modular semantics. For every acyclic
BAG A = (A,w,R,S) with n arguments, the limit

DegS (A) = lim

k→∞
f kS (w).

exists and can be computed by the following algorithm:

(1) Compute a topological ordering of the arguments and set
s(0) ← w and k ← 1.

(2) Pick the next argument Ai in the order and set

DegS (A)i = ιwi (αдi (s
(k−1))).

(3) Set k ← k + 1 and repeat step 2 until k > n.

Provided that αд and ιw can be computed in linear time, the algorithm
runs in linear time.

We will now apply the contraction principle to unify and to

generalize the convergence guarantees from [26]. A contraction

is a Lipschitz-continuous function with Lipschitz-constant strictly

smaller than 1. The contraction principle states intuitively that

every contraction has a unique fixed-point that can be reached by

applying the function repeatedly starting from an arbitrary point.

Lemma 3.2 (Contraction Principle). If S is a complete metric
space and if f : S → S is a contraction, then there exists one and only
one x∗ ∈ S such that f (x∗) = x∗. In particular, limn→∞ f n (x) = x∗

for all x ∈ S .

A proof of the contraction principle can be found, for example, in

[37]. The set [0, 1]n of strength vectors with distance d(x,y) = ∥x −
y∥ defined by the maximum norm is indeed a complete metric space.

Given a BAG with n arguments such that (ιwi ◦αдi ) is a contraction
for all i = 1, . . . ,n, the contraction principle guarantees that the

strength values converge. As we will explain soon, the convergence

results in [26] are special cases of the following result. In particular,

we can relate convergence time to the Lipschitz-constants.

Proposition 3.3 (Convergence and Complexity for Con-

tractive BAGs). Let A be a BAG, let DegS be a basic modular
semantics and let λA,S = max1≤i≤n λ

α
дi · λ

ι
wi

. If λA,S < 1, then the
update function fS of DegS is a contraction with unique fixed point
s∗ = DegS (A).

Furthermore, for all ϵ > 0, ∥ f kS (w) − s
∗∥ ≤ ϵ for all k > log ϵ

log λA,S
.

Note, in particular, that the convergence bound in the last line

implies ∥ f kS (w)−s
∗∥ ≤ 10

−n
for all k > C ·n, where C is a constant

that decreases with the Lipschitz constants of the aggregation and

influence functions. In this sense, the strength values converge in

linear time. In order to relate Proposition 3.3 to the convergence

results in [26], we briefly repeat them here.
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Proposition 3.4 (Convergence Guarantees from [26]). Con-
sider a BAG A and a modular semantics that uses

(1) Sum for aggregation and an influence function whose deriva-
tive is strictly bounded byM . If the indegree of every argument
in A is bounded by 1

M , then f n (x) converges.
(2) Top for aggregation and an influence function whose derivative

is strictly bounded by 1

2
. Then f n (x) converges.

Both results are special cases of Proposition 3.3. For the first

result, we can see from Table 1 that the Lipschitz-constant of sum-

aggregation, when applied to a particular argument, corresponds

to the indegree of the argument. That is, λΣдi = indegree(Ai ). Fur-

thermore, if the derivative of a function is B, it is also Lipschitz-

continuous with Lipschitz-constant B. Therefore, λιwi
< 1

M . Hence,

if the maximal indegree in A is bounded by M , the condition of

Proposition 3.3 becomes max1≤i≤n λ
Σ
дi · λ

ι
wi
< max1≤i≤n

M
M = 1

and is satisfied as well. For the second result, note from Table 1 that

the Lipschitz-constant of top-aggregation can never be larger than

2. Hence, if the derivative of the influence function is bounded by

1

2
, the condition of Proposition 3.3 is satisfied as before.

Hence, Proposition 3.3 unifies the results from [26]. It is also

more general and can immediately be applied to other aggrega-

tion functions like Product-aggregation. For the influence function,

it is also slightly more general in the sense that bounded deriva-

tives imply Lipschitz-continuity, but not the other way round. In

many cases, practical influence functions will only be pointwise

non-differentiable like Linear(κ) or 1-Max(κ). Proposition 3.3 still

simplifies the investigation in these cases because we do not have to

make any complicated case differentiations for such points. Propo-

sition 3.3 implies several new convergence guarantees. We sum-

marize some guarantees for product-aggregation in the following

corollary.

Corollary 3.5. Consider a BAG A with maximum indegree D =
max1≤i≤n indegree(Ai ). When using amodular semantics with Product-
aggregation, the strength values are guaranteed to converge

• if the Linear(κ) influence function is used and D < κ,
• if the Euler-based influence function is used and D < κ

4
,

• if the p-Max(κ) influence function is used and D < κ
p .

When all weights in A are strictly between 0 and 1, then < can be
replaced with ≤ for Linear(κ) and p-Max(κ).

When using Sum-aggregation and p-Max(κ), the strength values
are guaranteed to converge if D < κ

p . Again, < can be replaced with
≤ if all weights are strictly between 0 and 1.

In order to show that these bounds cannot be improved much

further, we give some tight examples based on a family of BAGs

from [26]. We denote the members of the family by A(k,va,vb ).
A(k,va,vb ) contains k nodes ai with weight va and k nodes bi
with weightvb . All ai attack all aj and all bi attack all bj (including
self-attacks). Furthermore, all ai support all bj and all bi support
all aj . Hence, the indegree of every argument in A(k,va,vb ) is 2k
(k supporters and k attackers).

Figure 2 illustrates the behaviour of DFQ(1) and QE(1) for the

BAGA(1, 0.9, 0.1), where the green and blue dots show the strength

of argument a1 and b1 over a number of iterations. Both models

start jumping between the same two states after a small number of

Figure 2: Divergence of QE(1) (left) and DFQ(1) (right) for
A(1, 0.9, 0.1).

Figure 3: Convergence of QE(2.1) (left) and DFQ(1.9) (right)
for A(1, 0.9, 0.1).

iterations. Since A(1, 0.9, 0.1) has indegree 2, this is a tight example

for DFQ(1) and QE(1) that shows that the general bounds given in

Corollary 3.5 cannot be improved significantly.

As we illustrate in Figure 3, we can solve the divergence prob-

lem by increasing the conservativeness parameter κ of the seman-

tics. Indeed, since increasing the conservativeness decreases the

Lipschitz-constant, we can see from Proposition 3.3 that the con-

vergence guarantees improve. However, of course, this also affects

the semantics as we discuss next.

Open-Mindedness
Proposition 3.4 implies that semantics that use top for aggregation

and an influence function with derivative bounded from above

strictly by
1

2
are guaranteed to converge. Hence, when using the

Euler-based influence function or influence functions that scale

the influence of the aggregated value down by a constant κ similar

to Linear(κ) and p-Max(κ), the semantics converges in general.

While this is a nice guarantee, it does not come without cost. The

bound imposed on the growth of the influence function limits the

semantics’ ability to adapt the initial weight as we illustrate in the

following example.

Example 3.6. Consider a BAG with one argument a and k argu-

ments bi that attack a. All arguments have initial weight 0.9. Table

3 shows final strength values of argument a for modular semantics

with different building blocks. Naturally, when using top for aggre-

gation, the final strength is independent of the number of attackers.

We can also see that increasing the conservativeness parameter lets

the final strength values keep closer to the initial weights. Note

also that the Euler-based semantics is extremely conservative.
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α ι k = 1 k = 10 k = 100

Sum Euler 0.862 0.811 0.811

Top Euler 0.862 0.862 0.862

Sum 2-Max(1) 0.498 0.012 0.001

Top 2-Max(1) 0.498 0.498 0.498

Sum 2-Max(5) 0.873 0.213 0.004

Top 2-Max(5) 0.873 0.873 0.873

Table 3: Strength values of a under different semantics and
increasing number of attackers k for BAG fromExample 3.6.

Arguably, a semantics should be able to move the strength values

arbitrarily close to the extreme values 0 or 1 if sufficient evidence

against or for the argument is given. We call such a semantics

open-minded.

Definition 3.7 (Open-Mindedness). We say that an influence func-

tion ι : [l,u] → [0, 1] is open-minded if lima→l ι(a) = 0 and

lima→u ι(a) = 1.

We call a basic modular semantics with aggregation function α :

[0, 1]n → [l,u] open-minded when its influence function restricted

to the domain [l,u] is open-minded.

Note that we do not demand that the influence function ever

yields the extreme values 0 or 1 (this would be in conflict with the

Resilience axiom from [5]), we only demand that it is possible to

get arbitrarily close to these bounds. For the Euler-based influence

function, we have lima→−∞ ιe
w
(a) = 1 − 1−w2

1+w·0 = w
2
. Hence, the

Euler-based semantics is not open-minded since it does not admit

final strength values smaller than w
2
. For example, in Table 3,

the Euler-based influence function cannot yield a final strength

value smaller than 0.92 = 0.81. Linear(κ) and p-Max(κ) are open-
minded influence functions and DFQ(1) and QE(κ) are open-minded

semantics. However, DFQ(κ) is not open-minded for κ > 1. Also,

none of the semantics with general convergence guarantees from

[26] are open-minded. These negative results are all special cases

of the following proposition.

Proposition 3.8. Consider a basic modular semantics with ag-
gregation function α : [0, 1]n → [−B,B] and influence function
ι whose Lipschitz constant is bounded by λι . Then for every BAG
A = (A,w,R,S) with n arguments, the following bound is true for
all i = 1, . . . ,n:

wi − B · λ
ι ≤ DegS (A)i ≤ wi + B · λ

ι .

For example, the Euler-based influence function has λe = 0.25.

For aggregation with top, we have B = 1. Hence, when combining

these two, no weight can change by more than 0.25.

It seems that when strong convergence guarantees can be de-

rived from the contraction principle, they are bought at the expense

of open-mindedness. The extreme case would be the constant in-

fluence function ιw(a) = w that just assigns the initial weight to

every aggregate. Its Lipschitz constant is 0 and every basic modular

semantics that uses this influence function is guaranteed to con-

verge trivially. As we let κ in DFQ(κ) and QE(κ) go to infinity, we

gradually increase our convergence guarantees, but simultaneously

approach the constant influence function that leaves all weights

unchanged. All currently known convergence guarantees for cyclic

BAGs seem to be of this kind: we buy convergence guarantees at

the expense of open-mindedness.

4 CONTINUOUS MODULAR SEMANTICS
We now look at another approach to improve convergence guaran-

tees. Instead of making semantics more conservative, we will adapt

the update approach. Roughly speaking, we will make updates more

fine-grained. We will show that this approach leaves the semantics

unchanged in cases where we have convergence guarantees. More

importantly, it can still converge to a fixed-point of the semantics

when the original updating approach diverges.

Roughly speaking, discrete update approaches work by apply-

ing an update formula to the initial weights repeatedly until the

process converges. In case of basic modular semantics, the up-

date formula is given by the function (ιwi ◦ αдi ). In [30], it has

been proposed to replace discrete models by continuous ones. Con-

tinuous models can be designed in a more descriptive way than

discrete models. To this end, the continuous change of arguments’

strength based on the strength of their attackers and supporters

is described by means of differential equations. If the system of

differential equations is designed carefully, it yields a unique so-

lution σA
: R+

0
→ Rn . Intuitively, the i-th component σA

i (t) tells
us the strength of the i-th argument at (continuous) time t and the

final strength values correspond to the limit limt→∞ σA(t). Just

like the limit limk→∞ f kS (w) for discrete basic modular semantics

may not exist, the limit limt→∞ σA(t) may not exist. However, if

we can continuize a discrete model, the discrete model can actually

be seen as a coarse approximation of the continuous model [30].

In particular, the continuous model may still converge when its

discrete counterpart diverges as we will demonstrate soon. While

there are currently no strong analytical guarantees for continuous

models in cyclic BAGs, no divergence examples have been found

either and experiments show that they can converge quickly for

large cyclic BAGs [30]. Furthermore, sufficient conditions have

been given under which discrete models can be continuized. As we

will show next, the results can be generalized to all basic modular

semantics.

Before stating the result, we add some explanations. The con-

tinuized model can be obtained as the unique solution of a system

of differential equations. The equations basically describe how the

strength evolves at each current point in time based on the current

strength. This is done by defining the derivatives of the function

σA
: R+

0
→ Rn . As it turns out, in order to continuize a basic modu-

lar semantics, we can just define the derivative for the i-th strength

value at time t as the difference (ιwi ◦ αдi )(σ (t)) − σi (t). That is, as
the difference between the result of applying the update function

to the current state and the state itself. Note that the difference is 0

if σ (t) is a fixed-point of the function (ιwi ◦ αдi ). In this case, the

strength value remains unchanged. If (ιwi ◦ αдi )(σ (t)) > σi (t), the
difference, and hence the slope, will be positive and the strength

value increases. This does again make intuitively sense because the

strength will be shifted towards the strength value that is desired

by the update formula. For the case (ιwi ◦ αдi )(σ (t)) < σi (t), the
strength decreases symmetrically. We are now ready to state the
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Figure 4: Convergence of Continuous QE(1) (left) and Con-
tinuous DFQ(1) (right) for A(1, 0.9, 0.1).

general result. As usual, we omit the function parameter t when
writing differential equations.

Proposition 4.1 (Continuizing Basic Modular Semantics).

Let DegS be a basic modular semantics with aggregation function αд
and influence function ιw .

(1) For all BAGs A, the system of differential equations

dσi
dt
= (ιwi ◦ αдi )(σ ) − σi (1)

with initial conditions σi (0) = w(i) for i = 1, . . . ,n has a
unique solution σA

: R+
0
→ Rn .

(2) If σA converges and s∗ = limt→∞ σA(t), then s∗ is a fixed-
point of the update function fS of DegS .

(3) If A is acyclic, the discrete and continuized models converge to
the same limit.

(4) If σA converges and fS is a contraction, then the discrete and
continuized models converge to the same limit.

As opposed to the continuization result in [30], the proposition

does not assume continuous differentiability of the update function

and therefore applies to more general acceptability semantics like

the DF-QuAD algorithm from [34] (DFQ(1) in Table 2).

We demonstrate in Figure 4 that continuizing discrete models can

solve divergence problems. Whereas QE(1) and DFQ(1) diverged for

A(1, 0.9, 0.1) (Figure 2), their continuized counterparts (Figure 4)

converge. The intuitive reason for this is best explained by numer-

ical solution techniques that approximate the continuous model

σA
: R+

0
→ Rn . The most naive technique is Euler’s method. In

our context, it initializes the strength values with the initial condi-

tions given by the initial weights. That is, σA(0) = w. In order to

compute σA(δ ) for some small δ > 0, Euler’s method uses a first-

order Taylor approximation. The first order Taylor approximation

of a differentiable function f : R → Rn about a point t is given

as fi (t + δ ) ≈ fi (t) + δ ·
dfi
dt (t). Since we know σA(0) = w and

dσA
i

dt (0) = (ιwi ◦ αдi )(w) −w, the first-order Taylor approximation

of σA
i (δ ) is w + δ ·

(
(ιwi ◦ αдi )(w) − w

)
. Having obtained our ap-

proximation for σA(δ ), we can move on approximating σA(2 · δ )
analogously. In this way, we can approximate σA(t) for all t > 0

until the strength values converge. δ is called the step-size of the

approximation and as δ → 0, the approximation error goes to 0 by

differentiability of σA
.

Interestingly, the discrete update scheme turns out to be a Taylor-

approximation with step size 1. To see this, just plug in δ = 1.

Then the approximation of σA(1) is w + 1 ·
(
(ιwi ◦ αдi )(w) −w

)
=

Figure 5: Approximating Continuous DFQ(1) with Euler’s
method for A(1, 0.9, 0.1)with δ = 1 (upper left), δ = 0.9 (upper
right), δ = 0.8 (lower left) and δ = 0.5 (lower right)

(ιwi ◦ αдi )(w). Notice that this is just our update formula applied

to the initial weights once. Hence, applying the update formula

once can be seen as a very coarse approximation of the continuous

model at time 1 and, more generally, applying the update formula

k times can be seen as a coarse approximation of the continuous

model at time k . Due to this coarseness, we may actually jump from

the function graph of the true solution to the function graph of a

solution for different initial conditions. This may cause divergence

when the algorithm starts jumping back and forth between two

function graphs. We can avoid these jumps by decreasing δ . We

illustrate this in Figure 5 for DFQ(1) and the BAG A(1, 0.9, 0.1). As
we decrease δ from 1 to 0.8, the oscillations already become weaker,

but the step size is not sufficiently small to avoid divergence. For

δ = 0.5, the oscillations die out and the true limit shown in Figure

4 is eventually reached.

Note that we refer to Euler’s method only for didactic reasons.

The results in Figure 4 were computed using the classical Runge-

Kutta method RK4 that provides much stronger approximation

guarantees [29].

5 DUALITY PROPERTY
In order to complement the semantical properties of basic modular

semantics, we now generalize a symmetry property introduced in

[30] to the setting from [26]. Intuitively, our symmetry property

should assure that attackers move the strength from the initial

weight towards 0 in the same way as supporters move the strength

from the initial weight towards 1. This can be described by con-

straints on the aggregation and influence functions as follows.

Definition 5.1 (Duality). A basic modular semantics with aggre-

gation function αд and influence function ιw satisfies Duality iff

(1) αд(s) = −α−д(s) for all s ∈ [0, 1]
n
and

(2) 1 − ι(1−w)(a) = ιw(−a) for all w ∈ [0, 1].

The aggregation condition says that when we switch the role

of attackers and supporters (replace д with −д), the aggregated

strength value should just switch sign. For the special case w = 0.5,

the influence condition says that a positive aggregate must yield the
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a1 : 0.5 a2 : 0.7 a3 : 0.2

x1 : 0.8

OO

��

x2 : 0.6

OO

��

x3 : 0.4

OO

��

b1 : 0.5 b2 : 0.3 b3 : 0.8

Figure 6: Duality Example.

a1 b1 a2 b2 a3 b3

Weight w 0.50 0.50 0.70 0.30 0.20 0.80

Euler 0.39 0.65 0.63 0.41 0.15 0.84

DFQ(1) 0.10 0.90 0.28 0.72 0.12 0.88

QE(1) 0.30 0.70 0.51 0.49 0.17 0.83

Table 4: Initial weight and strength values for arguments in
Figure 6 under semantics from Table 2.

same distance to 1 as the negative aggregate yields to 0. If w , 0.5,

there is a natural asymmetry because the initial weight is now

either closer to 0 or 1. However, a negative aggregate for weightw
should still yield the same distance to 0 as the positive aggregate

yields to 1 for weight 1−w . In the following proposition, we give a

more intuitive interpretation of Duality.

Proposition 5.2. Let DegS be a basic modular semantics that
satisfies Duality and let A = (A,w,R,S) be a BAG such that
DegS (A) = s

∗ , ⊥. If there are Ai ,Aj such that
(1) дi = −дj or, more generally, αдi (s

∗) = −αдj (s
∗),

(2) wi = 1 −wj ,
then DegS (A)i = 1 − DegS (A)j .

The basic case of the first condition says that Ai ’s attackers are

Aj ’s supporters and vice versa. This is intuitive, but somewhat

restrictive. The more general version says that the magnitude of the

aggregated strength at Ai and Aj is equal, but it acts in different

directions. The second condition says that the initial weights ofAi
andAj are complementary. Intuitively, we should then expect that

their final strength values will also be complementary. We illustrate

this in the following example.

Example 5.3. Consider the BAG in Figure 6. Table 4 shows the

strength values for the three semantics from Table 2. The asym-

metry of the Euler-based semantics can already be seen from the

subgraph with indices 1. Whereas the support of x1 increases the
strength of b1 by 0.15, its attack decreases the strength of a1 only
by 0.11. Both the DF-QuAD algorithm and the quadratic energy

model induce a symmetrical impact for attacks and supports.

As we move the initial weight away from 0.5, there is a natural

asymmetry caused by the fact that the distance from the initial

weight to 0 and 1 is now different. However, attack and support

should still behave in a dual manner. For the subgraph with indices

2, the initial weight of a2 and b2 is moved away from 0.5 by 0.2 in

different directions. Again, the increase caused by a support should

equal the decrease caused by an attack. For the DF-QuAD algorithm,

the change is 0.42, for the quadratic energy model 0.19. Similarly,

for the subgraph with indices 3, the DF-QuAD algorithm causes a

change of 0.08, the quadratic energy model causes a change of 0.03.

In Table 1, all building blocks other than the Euler-based influ-

ence functions can be selected in order to satisfy duality as we show

in the following proposition.

Proposition 5.4. The Sum-, Product- and Top-aggregation func-
tions satisfy condition 1 in Definition 5.1. The Linear(κ) and p-Max(κ)
influence functions satisfy condition 2 in Definition 5.1.

Since the DF-QuAD algorithm and the quadratic energy model

are constructed from these building blocks, an immediate conse-

quence is that they satisfy duality.

6 IMPLEMENTING MODULAR SEMANTICS
WITH ATTRACTOR

The framework of modular semantics and has been implemented

in the Java library Attractor
2
[31]. The user can initialize modular

semantics with different combinations of aggregation and influence

functions and can use existing implementations of algorithms to

compute strength values using discrete (by using Euler’s method

with step size 1) or continuous semantics. Implementations of the

aggregation and influence functions discussed here already exist,

but new functions can be added easily by implementing existing

interfaces. For example, the semantics of the DF-QuAD algorithm

can be initialized with the following three lines of code:

AggregationFunction agg = new ProductAggregation();

InfluenceFunction inf = new LinearInfluence(1);

ContinuousModularModel mod =

new ContinuousModularModel(agg, inf);

Attractor contains implementations of RK4 (for reliable computa-

tions) and Euler’s method (for simulating discrete semantics and

illustration purposes). Both implementations have a printing vari-

ant that automatically generates plots like in Figure 4 (RK4) and

Figure 2 (Euler) while computing the solution. The plots are gen-

erated by JFreeChart
3
. For example, in order to use the plotting

variant of RK4, we can add the following code:

AbstractIterativeApproximator approximator =

new PlottingRK4(mod);

mod.setApproximator(approximator);

Finally, the strength values for a BAG can be computed. Attractor

provides a simple syntax to define BAGs in text files. The file format

is inspired by the format used in ConArg
4
[14], but adds weights

and support relations. BAGs can also be defined programmatically

if more flexibility is required. We refer to [31] for details on creating

BAGs. Assuming that a BAG file is given, the strength values can

2
https://sourceforge.net/projects/attractorproject

3
http://www.jfree.org/jfreechart/

4
http://www.dmi.unipg.it/conarg/
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be computed by adding the following lines of code:

BAGFileUtils fileUtils = new BAGFileUtils();

BAG bag = fileUtils.readBAGFromFile(file);

mod.setBag(bag);

mod.approximateSolution(10e-2, 10e-4, true);

The two numerical parameters correspond to the step size and the

termination condition, respectively. Mathematically, the algorithms

converge to a fixed-point at which all derivatives will be 0. How-

ever, even mathematically, the fixed-point may not be reached in

finite time. In practice, we also have to think about numerical accu-

racy, and so we usually stop when the derivatives are sufficiently

small. Let us emphasize that the user does not have to think about

derivatives. The derivatives are given by the differential equations.

When adding new aggregation or influence functions, the differen-

tial equations are automatically derived as explained in Proposition

4.1. The logic is already implemented in the class ContinuousModu-
larModel. So when implementing a new aggregation or influence

function, only the logic for aggregating strength values or adapting

the initial weight needs to be implemented.

7 RELATEDWORK
In the original abstract argumentation framework [19], arguments

can only be attacked by other arguments. Bipolar argumentation
frameworks [6, 16, 27] add a support relation. Classical semantics

can only accept or reject arguments [8], but various proposals have

been made to allow for a more fine-grained evaluation. Among

others, it has been suggested to apply tools from probabilistic rea-

soning [18, 20–23, 25, 28, 33, 35, 36] or to rank arguments based on

fixed-point equations [12, 13, 17, 24] or the graph structure [2, 15].

In recent years, several weighted bipolar argumentation frame-

works as considered here have been presented [5, 11, 26, 30, 34]. The

QuAD algorithm from [11] was designed to evaluate the strength of

answers in decision-support systems. However, it can show discon-

tinuous behaviour that is undesirable in some cases. The DF-QuAD

algorithm (Discontinuity-free QuAD) [34] was proposed as an al-

ternative that avoids this behaviour. Some additional interesting

semantical guarantees are given by the Euler-based semantics that

was introduced in [5]. The QuAD algorithms mainly lack these

properties due to the fact that their aggregated strength values

saturate. That is, as soon, as an attacker (supporter) with strength 1

exists, the other attackers (supporters) become irrelevant for the ag-

gregated value. The Euler-based semantics avoids many problems,

but has some other drawbacks that can be undesirable. Arguments

initialized with strength 0 or 1 remain necessarily unchanged un-

der Euler-based semantics and, as we saw, attacks and supports

have an asymmetrical impact. The quadratic energy model intro-
duced in [30] avoids these problems. In [26], some other related

models have been studied that use initial weights, an aggregation

and an influence function as well, but the final strength values can

also take values from the interval [−1, 1] or general real numbers.

Other aggregation and influence functions for these cases have

been discussed in [26] as well.

A first collection of general axioms for weighted bipolar frame-

works has been presented in [5]. Several authors noted recently

that the axioms can be simplified by using more elementary prop-

erties [7, 9, 26]. The idea of modular semantics from [26] seems

particularly useful because it allows creating new semantics with

interesting guarantees by simply combining suitable aggregation

and influence functions. This approach bears some resemblance

to representation theorems considered in other fields that relate

semantical properties of operators to elementary properties of func-

tions that can be used to create these operators. Some ideas similar

to modular semantics have been invented independently for the

special case where only attack relations are present in [7].

8 DISCUSSION AND FUTUREWORK
We extended the framework of modular semantics from [26] in

several directions. Our main focus was on convergence guarantees.

We generalized the convergence guarantees from [26] to Lipschitz-

continuous aggregation and influence functions. This allowed us, in

particular, to derive convergence guarantees for semantics based on

product-aggregation like the DF-QuAD algorithm. We also comple-

mented the results from [26] with runtime guarantees based on the

approximation accuracy and the Lipschitz constants. The Lipschitz

constants provided in Table 1 can be used to derive further conver-

gence guarantees in combination with Proposition 3.3. There are

many other interesting candidates for aggregation and influence

functions and, provided that they are Lipschitz-continuous, Propo-

sition 3.3 can be applied to derive convergence guarantees easily.

For example, truncated sums like the Lukasiewicz T-conorm could

be interesting. In combination with the linear influence function

they can guarantee that the extreme values 0 and 1 are taken in

desirable cases (e.g., if there is only one attacker/supporter with

strength 1) while avoiding the saturation property of the QUAD

algorithms.

As we discussed, convergence guarantees for discrete models

are often bought at the expense of open-mindedness. We demon-

strated that we can avoid divergence problems without giving up

open-mindedness by continuizing discrete models as proposed in

[30]. It is currently an open question if and under which conditions

continuous models converge for general cyclic BAGs, but until now,

no divergence examples have been found. The continuization of all

basic modular semantics yields a well-defined continuous model

as Proposition 4.1 explains. The limits of discrete and continuized

models are guaranteed to be equal for acyclic BAGs and for cyclic

BAGs that induce a contractive update function. Further investiga-

tions are necessary, but it currently seems that whenever a discrete

model converges, the continuized model converges to the same

solution.

Semantically, we complemented modular semantics with the Du-

ality property. After relating this property to elementary properties

of aggregation and influence functions, it can be checked more

easily. We showed, in particular, that it is satisfied by DF-QuAD.

Finally, we explained howweighted argumentation problems can

be solved with the Java library Attractor. Modular semantics allow

for very convenient abstractions. Dependent on the user’s expertise,

new semantics can be implemented completely from scratch, can

be constructed from self-implemented aggregation and influence

functions or by just combining pre-implemented aggregation and

influence functions. A graphical user interface is work in progress.
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