
Comparative Criteria for Partially
Observable Contingent Planning

JAAMAS Track

Dorin Shmaryahu
Ben Gurion University of the Negev

Israel

Jörg Hoffmann
Saarland University

Germany

Guy Shani
Ben Gurion University of the Negev

Israel

ABSTRACT
In contingent planning under partial observability with sensing
actions, the solution can be represented as a plan tree, branching on
various possible observations. Typically, one seeks a satisfying plan
leading to a goal state at each leaf. In many applications, however,
one may prefer some satisfying plans to others. We focus on the
problem of providing valid comparative criteria for contingent plan
trees and graphs, allowing us to compare two plans and decide
which one is preferable. We suggest a set of such comparison cri-
teria — plan simplicity, dominance, and best and worst plan costs.
In some cases certain branches of the plan correspond to an un-
likely combination of mishaps, and can be ignored, and we provide
methods for pruning such unlikely branches before comparing the
plan graphs. We explain these criteria, and discuss their validity,
correlations, and application to real world problems. We suggest
efficient algorithms for computing the comparative criteria. We pro-
vide experimental results, showing that plans computed by existing
contingent planners can be compared using the suggested criteria.

KEYWORDS
Contingent Planning; Empirical Evaluation

ACM Reference Format:
Dorin Shmaryahu, Jörg Hoffmann, and Guy Shani. 2019. Comparative Cri-
teria for Partially Observable Contingent Planning. In Proc. of the 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Agents operating in a partially observable environment gain im-
portant information using sensing actions. For example, a robot
navigating in a hallway [13] may use its proximity sensors to alert
it about nearby walls, and long range cameras to remotely sense ob-
stacles blocking some hallways. When the agent must achieve some
goal, it often takes different actions given the different observations
it senses. For example, the robot may choose which hallway to
traverse based on the output of its long range sensors. Perhaps the
most standard model for such problems is the stochastic partially
observable Markov decision process (POMDP) [4, 9, 11]. However,
POMDPs require the specification of the probabilities of all observa-
tions and action outcomes. In many applications it is unclear how
these probabilities can be obtained.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

When the probabilities are unknown, the problem can be mod-
eled as contingent planning under partial observability with sensing
actions, specifying only which outcomes and observations are pos-
sible [2]. The solution to the contingent problem can be represented
as a plan tree, where nodes are labeled by actions, and outgoing
edges are labeled by possible observations resulting from the action.

Different solvers may generate a variety of different satisfy-
ing plans. In many cases some satisfying plans may be intuitively
preferable to others, e.g., plans that incur a lower overall cost. One
may compare plan trees by calculating the expected utility from
executing each plan, but calculating the expected utility requires
a probability distribution over the possible states. However, this
distribution may be difficult to obtained in many cases. Thus, re-
searchers that suggest new algorithms for computing plans often
report the average number of steps to the goal, making a uniform
distribution assumption, which is inapplicable in many cases.

We compare complete plan trees or graphs, suggesting a number
of comparison criteria. First, when a plan will be executed by people,
it may be desirable to generate simpler plans. One can also consider
the plan cost. Given two plan trees τ1 and τ2, the cost of reaching
the goal for each possible initial state s using τ1 may be lower than
the cost using τ2. However, this is a very strong criterion, and often
τ1 is better for a state s1 while τ2 is better for another state s2.

Although we assume that the agent does not know the exact
stochastic dynamics of the world, it may have some information
concerning the likelihood of events. Given this knowledge, we offer
weaker variants of dominance, limiting our attention only to the
best or worst case over τ1 and τ2. We also consider a case where one
can make assumption concerning the probability of undesirable
observations, which we callmishaps. When mishaps are unlikely to
happen, the likelihood of observing more than k mishaps may be
sufficiently low to ignore. Symmetrically, when mishaps are very
likely, sensing k serendipitous non-mishaps is unlikely and can be
ignored. We suggest pruning branches in τ1 and τ2 where a certain
amount of mishaps was observed.

In our journal paper, we provide efficient algorithms, where
needed, to compute the various criteria, and experiments, demon-
strating that different planners produce different plans that can be
ranked using our methods. We also discuss the applicability of the
criteria for various applications.

2 ALTERNATIVE COMPARATIVE CRITERIA
We now provide a high level description of our criteria and how
they may apply in different applications, domains and scenarios.
In the journal paper we provide formal descriptions, as well as
algorithms for computing these criteria.

Session 6G: Planning & Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1740



(a) The Doors problem. The agent must pass through a door.
Doors 1 and 2 may be locked, Door 3 is always open.

(b) τ1 (c) τ2 (d) τ3 (e) τ4

Figure 1: The doors problem and all possible plan trees. L denotesmove-left, O-D denotes observe-door, andW-T denotes walk-
through-door. τ1 ≺

best
τ4, τ4 ≺

worst
τ1, τ4 ≺

dom
τ3.

Simplicity: In some cases, a planner produces a plan that must
be executed by people. Consider for example the cave diving [1]
where several divers collaborate to explore a remote underwater
cave. The planner issues a set of directives for each diver, such
as to swim to a certain location and leave an air tank, and the
diver must then follow the instructions to ensure the success of the
mission. In such cases, it may be important that the plan would be
simple to understand and follow. For example, we may prefer a plan
with less conditions to be checked [7]. In human navigation, a plan
that checks at each crossroad which direction has less congestion,
may be inferior to a longer route, that can be followed without the
person constantly checking the congestion levels.

In some cases a plan is designed to be executed by an autonomous
agent, but must be reviewed by a person first. For example, in
navigation on remote environments, such as the Mars rover, experts
may review plans to verify the correctness of the model and reduce
the risk of bugs that cannot be overcome on the deployed system.

We can measure simplicity through the number of actions in a
plan, or by the number of branching points in the plan.
Worst Case: The coming criteria that we suggest rely on the as-
sumption that the environment is probabilistic, but the probabilities
are unknown. Still, we may assume that the agent has a crude es-
timate as for the likelihood of certain outcomes. The agent must
plan for all outcomes, but optimize for the likely outcomes.

The worst case criterion focuses only on the longest path to
the goal, always making pessimistic assumptions about action out-
comes and observations [3]. The longest route is generally impor-
tant in cases where a critical mission must be accomplished, and the
plan cannot exceed a given threshold. In the cave diving domain,
e.g., when a diver plans his route, she must ensure that under every
possible execution there is sufficient air to return to the surface.

It is possible that although the probabilities are unknown, the
agent may know that the problem is hard, in that succeeding in ac-
complishing subtasks is difficult, and may require many retries. For
example, in a penetration testing problem, the number of machines
with vulnerabilities is relatively low, and identifying a vulnerable
machine may require many attempts. In this case, the worst case is
highly likely to occur, and optimizing for it can be useful.
Best Case: The best case criterion compares plans based on the
shortest (or least costly) path to the goal, when good outcomes are
much more likely than bad outcomes.

For example, in the cave diving domain, it might be that the
probability for air tanks left for future divers to become faulty is
very low. Although we must ensure that the worst case is below
the threshold allowing us to return to the surface, we can still
prefer plans with better best case behavior. We make the optimistic
assumption that the air tanks will remain functional, and given the
high likelihood for this, the mission will be accomplished faster.

In a logistics domain, consider two delivery companies, bidding
for the same contract, with a given maximal allowed bid. Gathering
statistical knowledge about, e.g., road conditions, which is needed
for computing a bid requires time and resource. A company may,
as a first step, optimize for the best case scenario, seeing if the net
gain under the most optimistic conditions is sufficiently profitable
to warrant the required resources for collecting statistical data.
Robustness to Mishaps: Motivated by fault tolerance planning
[6], we define a mishap to be an undesirable observation, leading
to a longer plan. Mishaps are often easy to identify using domain
knowledge. For example, in pentesting [8, 12] a mishap for the
attacker is when a machine does not contain a vulnerability.

We can assume that a set of events is extremely unlikely. That is,
perhaps a set of more than k mishaps in a single run is extremely
unlikely, or a set of less than k mishaps is extremely unlikely, de-
pending on the domain. For example, in a recommendation scenario
[5, 10], we may assume that finding a good item for a user in less
than 3 suggestions is very unlikely. On the other hand, during hall-
way navigation, we may assume that the likelihood that more than
2 corridors are blocked concurrently is low.

When comparing, we can avoid considering unlikely branches,
effectively pruning these branches from the plan tree. Then, we can
apply other criteria, such as the best and worst case, on the pruned
tree. For example, in the pentesting scenario, we can ignore during
plan comparison branches where a vulnerability was found in less
than 3 pings, optimizing for the case where the first 3 pings allowed
us to discover enough information about the machine to succeed at
the next attempt. In hallway navigation, we may ignore the unlikely
branches where more than 2 corridors are blocked, comparing plans
based only on their behavior when at most 2 corridors are blocked.

Acknowledgments
Supported by the ISF fund, under grant number 1210/18.

Session 6G: Planning & Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1741



REFERENCES
[1] International planning competition 2014. https://helios.hud.ac.uk/scommv/

IPC-14/domains_sequential.html. 2014.
[2] Alexandre Albore, Héctor Palacios, and Hector Geffner. A translation-based

approach to contingent planning. In IJCAI, pages 1623–1628, 2009.
[3] Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic

search in belief space. In AIPS, pages 52–61, 2000.
[4] Blai Bonet and Héctor Geffner. Solving pomdps: RTDP-Bel vs. point-based

algorithms. In IJCAI, pages 1641–1646, 2009.
[5] Darius Braziunas and Craig Boutilier. Assessing regret-based preference elici-

tation with the utpref recommendation system. In Proceedings of the 11th ACM
conference on Electronic commerce, pages 219–228. ACM, 2010.

[6] Carmel Domshlak. Fault tolerant planning: Complexity and compilation. In
ICAPS, 2013.

[7] Ellen C Garbarino and Julie A Edell. Cognitive effort, affect, and choice. Journal
of consumer research, 24(2):147–158, 1997.

[8] Jörg Hoffmann. Simulated penetration testing: From "Dijkstra" to "Turing Test++".
In ICAPS, pages 364–372, 2015.

[9] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Machine learning, 22(1-3):159–195, 1996.

[10] Guy Shani, David Heckerman, and Ronen I Brafman. An MDP-based recom-
mender system. Journal of Machine Learning Research, 6(Sep):1265–1295, 2005.

[11] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP
solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[12] Dorin Shmaryahu, Joerg Hoffmann, Guy Shani, and Marcel Steinmetz. Construct-
ing plan trees for simulated penetration testing. In Proceedings of the Scheduling
and Planning Applications woRKshop (SPARK), ICAPS 2016, 2016.

[13] Jian Yang, Zhihua Qu, Jing Wang, and Kevin Conrad. Comparison of optimal
solutions to real-time path planning for a mobile vehicle. IEEE SMC-A: Systems
and Humans, 40(4):721–731, 2010.

Session 6G: Planning & Learning AAMAS 2019, May 13-17, 2019, Montréal, Canada

1742

https://helios.hud.ac.uk/scommv/IPC-14/domains_sequential.html
https://helios.hud.ac.uk/scommv/IPC-14/domains_sequential.html

	Abstract
	1 Introduction
	2 Alternative Comparative Criteria
	References



