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ABSTRACT
We study open multi-agent systems in which countably many

agents may leave and join the system at run-time. We introduce a

semantics, based on interpreted systems, to capture the openness of

the system and show how an indexed variant of temporal-epistemic

logic can be used to express specifications on them. We define the

verification problem and show it is undecidable. We isolate one de-

cidable class of open multi-agent systems and give a partial decision

procedure for another one. We introduce MCMAS-OP, an open-source
toolkit implementing the verification procedures. We present the

results obtained using our tool on two examples.
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1 INTRODUCTION
Given the increasing calls for AI to be trustworthy and explainable

there has been growing attention to issues of safety and reliability

in the context of AI systems. Indeed, over the past 10 years several

methods have been put forward to give guarantees that multi-agent

systems (MAS) meet their intended specifications.

These have taken the form of verification techniques based both

on model checking [16, 18, 25] and theorem proving [1, 31]. A focus

of attention has been the development of verification methods

that support agent-based specifications, including the temporal

evolution of the knowledge of the agents, their desires, intentions,

and strategic abilities.

This work has been proven useful in a variety of application

areas, including autonomous systems [14], but also services [26],

communication protocols [36], and beyond, thereby enabling de-

signs to be validated or bugs to be discovered and rectified.

A limitation of this line of work has traditionally been that the

number of agents needs to be known at design-time for the models

to be built and verified. However, in several application areas this

is an unrealistic assumption. For example, in robotic swarms we

are interested in global properties of the MAS irrespective of the
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actual number of robots occurring in a given execution, which may

not be known until run-time. Approaches based on parameterised

model checking have provided methods to give guarantees on a

MAS with an arbitrary number of components [21]. While these

approaches have been used to study safety in swarm protocols and

their resilience to faults [22, 23], they rely on the assumption that

every system run has a fixed, even if arbitrarily large, number of

agents. Clearly, open systems do not meet this assumption.

Open MAS, or OMAS, are multi-agent systems in which agents

may enter or leave the system at run-time. Noteworthy examples

of OMAS include auctions where participants may join or leave the

bidding scene, robotic swarms where agents may leave the group

or malfunction, emerging decentralised applications such as IoT

and blockchain, and in general any system in which the number of

agents is unbounded and varies at run-time. The aim of this paper is

to contribute both to our understanding of the verification problem

for OMAS and to the practical challenges of verifying OMAS.

The rest of the paper is organised as follows. After discussing

related work, in Section 2 we propose a semantics for OMAS, show

how expressive temporal-epistemic specifications can be evaluated

on them, define the verification problem and show its undecidability.

In Sections 3 and 4 we identify classes of synchronous and asyn-

chronous OMAS and present decision procedures that address the

verification problem against the specifications defined in Section 2.

In Section 5 we present an open-source toolkit implementing the

procedures of Sections 3 and 4, and apply it to scenarios from MAS.

We conclude in Section 6.

Related Work. Much of the work in verification of MAS as-

sumes a fixed number of agents given at design-time [1, 9, 25, 36].

This makes it unsuitable for verifying systems where the number

of agents is not known until run-time.

This limitation is overcome in work on parameterised verifica-

tion for MAS [21], which aims to determine whether a property

is satisfied irrespective of the number of components in the sys-

tem. However, this line of work assumes that, while the number

of agents in the system can be arbitrarily large, it remains fixed

during each execution of the system. Thus, while arbitrarily large

systems may be considered, open systems where the number of

agents varies at run-time cannot be analysed in that framework.

One of the very few formal approaches to open MAS where

this assumption is not made is [3], where a formal semantics and

a first-order temporal-epistemic specification language to reason

about open MAS was given. While their semantics is different from
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ours, the verification problem they consider is also undecidable.

The class of decidable systems identified in their work relies on

active domains semantics from database theory. This has corre-

spondences to our approach as we also assume that no run exists

with an unbounded number of agents along the run. Indeed, this

is likely to be a requirement for any decidability result. However,

while [3] focuses on theoretical results only, we here provide con-

crete procedures and an implementation. Moreover, [3] does not

identify the decidable classes of open interpreted systems which,

as we will see in later sections, are useful in applications.

Formal approaches to open distributed systems have been ex-

plored more broadly in theoretical computer science. For example,

variants of the PI calculus target open systems [34] and model

checking approaches tackle dynamic networks of processes [30].

However, the emphasis of this work is quite different from ours.

Our specifications include aspects such as epistemic modalities that

are tailored to the verification of AI systems, and our approach is

focused on the semantics of MAS, rather than a calculus for the

interactions between the processes.

Finally, from an epistemic logic angle, quantification over the

epistemic modalities, as we do here, was put forward in a number of

papers, including [5]. However, these treatments are focused on the

resulting axiomatisations and are not concerned with verification.

A related line of work deals with MAS that manipulate un-

bounded data during systems runs [2, 4, 6, 7, 11]. While there are

some similarities between these works and the present contribu-

tion, particularly in the study of the decidability of the verification

problem, these approaches are all centred on issues pertaining to

the unbounded nature of relational data, sometimes combined with

an unbounded number of agents. Instead, the aim here is to study

systems where agents enter and leave the system at run-time.

2 OPEN MULTI-AGENT SYSTEMS
In this section we present and exemplify a formal semantics for

Open Multi-Agent Systems (OMAS), and a specification language

for expressing their properties.

Semantics.We begin by definingOpen Interpreted Systems (OIS),
a semantics for reasoning about OMAS that is based on interpreted

systems, the standard framework for modelling multi-agent sys-

tems [15]. An OIS consists of agents, which capture the behaviours

of the individuals that are joining and leaving the system, and an

environment capturing the rest of the state of the system.

Definition 2.1 (Agent). An agent is defined by a tuple A = ⟨L, ι,
Act , P , t⟩ consisting of a set of local states L, a unique initial state
ι ∈ L, a non-empty set of actions Act , a protocol P : L → P(Act)
that selects which actions may be performed at a given state, and a

transition function t : L ×Act × P(Act) ×ActE → L that gives the

agent’s next state given its current state, the action performed by

the agent, the set of actions performed by the other agents, and the

action performed by the environment.

Notice that unlike in interpreted systems where every agent

can have a unique behaviour, we here assume that the agents are

homogeneous. It is possible to extend the semantics up to a fi-

nite number of different agent behaviours while preserving all our

results. However, for simplicity we do not pursue this here.

Notice also that the agents’ transition function depends on the

projection of the joint action into a set rather than the joint action

itself. Formalising it via the latter would imply having to consider

arbitrarily large joint actions thereby limiting the possibility of

implementing it. In many scenarios, it may be desirable to count

how many copies of each action are performed. This is possible,

provided we only count up to some fixed number. Again, we do not

pursue this extension here for simplicity.

Having defined agents, we now proceed to define the environ-

ment. The environment is defined similarly to the agents and is

intended to model the context that the agents are acting in.

Definition 2.2 (Environment). The environment is given by a tuple
E = ⟨LE , ιE ,ActE , PE , tE ⟩ that defines a non-empty set of local

states LE , a unique initial state ιE ∈ LE , a non-empty set of actions

ActE , a protocol PE : LE → P(ActE ) that defines which actions

are enabled at each local state, and a transition function tE : LE ×
ActE × P(Act) → LE that gives the environment’s next state given

its current state, the action it performed and the set of actions

performed by the agents.

Having defined the agents and environment, we now define an

open interpreted system.

Definition 2.3 (OIS). An open interpreted system (OIS) is a tuple

O = ⟨A,E,V ⟩, where V : L→ P(AP) is a labelling function for the

agents’ local states.

Hereafter we associate with each agent an integer giving it an

identity. The identity of an agent is uniquely assigned to it when it

first joins the system, and never changes for as long as the agent

remains in the system. This will allow us to express properties that

track the evolution of a specific agent.

We now proceed to describe the behaviour of an OIS over time.

Towards this we introduce some notation. We use [n] to denote

the set {1, . . . ,n}. We denote by Gn the set of tuples that describe

the system at a particular instance of time when precisely n agents

are present in the system. In other words, Gn is the set of (n + 1)-

tuples of the form (L × Z+) × · · · × (L × Z+) × LE giving the local

state and identity for each of the agents, and the local state of the

environment. We call such a tuple a global state. For a global state д
we write д.i and id(д.i) to denote the local state and identity of the

i-th agent in д, si (д) to represent the local state of the agent with
identity i in д, and д.E to represent the state of the environment in

д. We use G ≜ ∪n∈NGn for the set of all global states of any size.

Similarly, for a joint action a, we use a.i to denote the action of

agent i and a.E to denote the action of the environment. We use

Ûa to denote the projection of a into a set, i.e., Ûa ≜ {a.1, . . . ,a.n}.
We also use Ûa−i to denote the set of actions in a performed by

the agents excluding i: Ûa−i ≜ {a.1, . . . ,a.(i − 1),a.(i + 1), . . . ,a.n}.
Finally, we write ACTn for the set of all possible joint actions for

n agents and the environment, i.e., the set of (n + 1)-tuples of the

form Act × · · · ×Act ×ActE .
We now define how the global states evolve over time. The

evolution is in compliance with a global transition relation. As a
stepping stone, we first define a family of subsets of this relation

defining how the MAS of a fixed size n evolves. We will then extend

this to add transitions for agents joining or leaving the system.
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Definition 2.4 (Global transition relation of size n). For each n ∈ N,
we define the global transition relation of size n, Rn ⊆ Gn ×Gn on a

setGn of global states by (д,д′) ∈ Rn iff there is some a ∈ ACTn s.t.

the following hold:

(i) a.E ∈ PE (д.E) and for all i ∈ [n], a.i ∈ Pi (д.i);
(ii) д′.E = tE (д.E,a.E, Ûa);
(iii) for all i ∈ [n] it is the case that id(д′.i) = id(д.i) and д′.i =

t(д.i,д.E, Ûa−i ,a.E).

Condition (i) ensures that the action is possible, in the sense

that it respects the protocol function of both the environment and

all the agents. Condition (ii) ensures that the transition respects

the transition function of the environment, whilst condition (iii)

ensures that no agents change their identity and the transition

function of all agents is respected.

Having defined this family of relations which describe how sys-

tems of a fixed size would evolve, we extend this to a global transi-

tion relation for open systems. This will include all transitions for

systems of a fixed size, and also additional transitions for agents

joining or leaving the system.

Definition 2.5 (Global transition relation). The global transition
relation R ⊆ G×G on a setG of global states is defined by (д,д′) ∈ R
iff one of the following holds:

• (Joint action). There is n ∈ N s.t. (д,д′) ∈ Rn . This rep-
resents a transition of the system of size n, as defined in

Definition 2.4.

• (Agent joining). (i) There is n ∈ N s.t. д ∈ Gn and д′ ∈ Gn+1;

(ii) For all i ∈ [n]∪{E} it is the case thatд.i = д′.i; (iii)д′.(n+
1) = ι; id(д′.(n + 1)) is a freshly generated natural number

(i.e., a number that has not at any point in the execution of

the system been used as an identity for an agent).

• (Agent leaving). (i) There is n ∈ N s.t. д ∈ Gn and д′ ∈ Gn−1;

(ii) There is k ∈ [n] s.t. д′ = д−k , where д−k denotes the

tuple resulting from removing the k-th component from д.

Notice that in the above we assume that agents may join and

leave at any moment in the execution of the system. This is a

reasonable assumption in many cases such as IOT applications

where it may be possible for a device to lose or gain connectivity at

any point. In applications where it is not a reasonable assumption,

we can still model agents not immediately being able to join in

certain states by requiring agents in the initial state to perform

some “special” joint action with the rest of the system before they

can actively participate in the system.

We now associate a model to each OIS, which we will use to

interpret temporal-epistemic formulae.

Definition 2.6 (Model). The associated model of an OIS O =

⟨A,E,V ⟩ is a tuple O = ⟨G,д0,R,V⟩, where G is the set of global

states reachable via R from the initial global state д0 = (ιE ), and
V : G → P×Z+ is the labelling function defined for a set of atomic

propositions P as (p, i) ∈ V(д) iff there is j with id(д.j) = i and
p ∈ V (д.j).

The atomic propositions are indexed by the agents’ identities

so that (p, i) is true in a state iff there is an agent with identity i in
the state whose local state is labelled with p. This will enable us
to express specifications irrespectively of how many agents will

eventually join the system by quantifying over the agents. Note

that our specifications will only express properties of the state of

agents, and not of the global state of the system or the environment.

A path π is an infinite sequence π = д0д1д2 . . . of states such

that (дi ,дi+1) ∈ R for every i ≥ 0. We write π (i) for the i-th state

in π and Π(д) for the set of all paths originating from a state д.
Following the typical treatment for closed unbounded systems

whereby an unbounded but finite number of agents are participating

in the system [8, 21], we here consider their open variant to adhere

to the same condition. In particular, we assume that along any path

there is a finite but unbounded number of agents participating in the

system. We thus exclude from Π(д) all paths with infinitely many

agent joining transitions. Note the restriction does not prevent the

description of agents exhibiting infinite alternations between active

and inactive states (indeed, an agent template can be constructed to

represent this), but it only prohibits the participation of an infinite

set of pairwise distinct individuals in the system. This is in line

with any physical system, such as drone swarms or automatic

auctions, which will necessarily have at most as many distinct

agents participating in the protocol as those that were constructed.

We similarly define the model O(n) =
〈
Gn ,дn,0,Rn ,V

〉
for the

closed system with a constant n agents present and initial global

state дn,0 = ((ι, 1), . . . , (ι,n), ιE ).

Example 2.7 (Train-gate controller). To illustrate the semantics

we describe the OIS of the train-gate controller [17]. In this problem,

a number of trains wish to enter a tunnel and a controller has to

ensure that at most one train is in the tunnel at any time. We will

encode our trains as agents and our controller as the environment.

The agent has statesL ≜ {enterinд, tunnel ,outside}, withoutside
initial. It has actions Act ≜ {enter , exit ,approach,wait} and pro-

tocol P : L→ P(Act) given by P(enterinд) = {enter }, P(tunnel) =
{wait , exit}, and P(outside) = {wait ,approach}. Finally, we define
the transition function t : L ×Act × P(Act) ×ActE → L by:

(l ,a,X ,aE ) 7→
tunnel if a = enter

outside if a = exit

enterinд if a = approach,aE = дo and X = {wait}

l otherwise

The environment has two states LE ≜ {дreen, red}, with дreen
initial. It has actions ActE ≜ {дo, stop} and protocol P : LE →
P(ActE ) given by P(дreen) = {дo} and P(red) = {stop}. Its transi-
tion function tE : LE ×ActE × P(Act) → LE is given by:

(lE ,aE ,X ) 7→


red if enter ∈ X

дreen if exit ∈ X

lE otherwise

Specifications.We express specifications in the indexed logic

IACTLK\X . The logic extends ACTLK\X (the universal fragment of

the temporal-epistemic logic CTLK without the next time operator)

by introducing indexed atomic propositions and indexed epistemic

modalities that are quantified over the agents. Excluding the next

time operator and the restriction to the universal fragment are

typical in parameterised verification and necessary in order to

obtain decidability [21]. Given a set IND of indices, and a set AP

Session 1D: Verification and Validation AAMAS 2019, May 13-17, 2019, Montréal, Canada

181



of atomic propositions, IACTLK\X formulae are defined by the

following BNF grammar:

ϕ ::= ∀v : ϕ | ψ

ψ ::= (p,v) | ¬(p,v) | ψ ∧ψ | ψ ∨ψ | A(ψUψ )

| A(ψRψ ) | Kvψ

where p ∈ AP ∪ {alv}, and v ∈ IND. We introduce a fresh atomic

proposition alv (for alive) that is true in a state if the agent that it

is indexed by is present in the state. The epistemic modality Kvψ
is read as “agent v knows thatψ ”. The temporal modality A(ϕUψ )
stands for “for all paths, at some pointψ holds and before then ϕ
is true along the path”; and A(ϕRψ ) denotes “for all paths,ψ holds

along the path up to and including the point whenϕ becomes true in

the path”. Notice we assume that universal quantifiers only appear

at the beginning of a formula. We further assume that formulas

are sentences, i.e., every variable appearing in the formula is in the

scope of a universal quantifier. We will abbreviate ∀v1 : . . . ∀vn : ψ
to ∀v1, ...,vn : ψ . We now define the satisfaction relation.

Definition 2.8 (Satisfaction of IACTLK\X ). The satisfaction re-

lation |= is inductively defined for an OIS O, a global state д and

an IACTLK\X sentence ϕ as follows (connectives are clear and

omitted):

O,д |= ∀v1, ...,vn : ψ iff O,д |= ψ [v1 7→ a1] . . . [vn 7→
an ] for all pairwise disjoint

choices of a1, . . . ,an ∈ N.
O,д |= (alv, i) iff ∃j : id(д.j) = i
O,д |= (p, i) iff O,д |= (alv, i) and p ∈ V(si (д));
O,д |= ¬(p, i) iff O,д ̸ |= (p, i);
O,д |= A(ψ1Uψ2) iff for every π ∈ Π(д), for some i ≥ 0

O,π (i) |= ψ2 and for all 0 ≤ j < i ,
O,π (j) |= ψ1;

O,д |= A(ψ1Rψ2) iff for every π ∈ Π(д), for all i ≥ 0,

if O,π (j) ̸|= ψ1, for all 0 ≤ j < i ,
then O,π (i) |= ψ2;

O,д |= Kiψ iff O,д |= alv(i) andO,д′ |= ψ for all

д′ with O,д′ |= alv(i) and si (д) =
si (д
′);

We say that an OIS O satisfies an IACTLK\X sentence ϕ if

O,д0 |= ϕ and we denote this by O |= ϕ. We further define ⊤ ≜
(p, i) ∨ ¬(p, i), ⊥ ≜ (p, i) ∧ ¬(p, i), AFϕ ≜ A(⊤Uϕ) with the usual

meaning of “for all paths, ϕ eventually holds” and AGϕ ≜ A(⊥,ϕ)
standing for “for all paths, ϕ always holds”. Above we define univer-

sal quantification only over pairwise disjoint choices of agents, so

that each variable is mapped to a different concrete agent when eval-

uating the formula. Note this does not restrict the expressive power

of the language; for instance, any formula ϕ(i, j) for which the as-

sumption is lifted, can be expressed in our language byϕ(i, i)∧ϕ(i, j).
Nevertheless, it enables the formalisation of properties of interest

in a concise manner, as the following examples show.

For the train-gate controller we would like to check that when-

ever an agent is alive and in the tunnel, it knows that no other agent

is also alive and in the tunnel. This is expressed by the following

IACTLK\X formula:

ϕ1 ≜ ∀i, j : AG((in_tunnel , i) → Ki (¬(in_tunnel , j)))

where in_tunnel is an atomic proposition that holds in the states

where the trains are in a tunnel.

We could also consider a pattern formation protocol [32, 35],

where a swarm of drones aims to collaborate to form a pattern. If

we assume a label in_position on the agent’s states that expresses

when the agent has reached its desired position then we can write

the following sentence:

ϕ2 ≜ ∀i : AG((alv, i) → Ki (AF ((in_position, i))))

This property expresses that when an agent is alive, then it knows

that it will eventually reach its desired position.

We can now define the decision problem which will constitute

the focus of this paper, i.e., determining whether an open system

satisfies a given specification. We formalise this below.

Definition 2.9 (OMCP). Given an OIS O and an IACTLK\X for-

mula ϕ, the open model checking problem (OMCP) is the decision

problem of determining whether O |= ϕ.

As typical of decision problems considered in parameterised

verification [8], this problem is undecidable. We show this below.

Theorem 2.10. The OMCP is undecidable.

Proof sketch. A lossy counter machine [33] can be encoded as

an OIS, by using the agents to store the values of the lossy counters

and the environment to capture the state of the machine. Counters

can be incremented by the environment by jointly performing an

action with an agent that is not yet storing a value (if no such agent

is available, the environment waits for one to join). The spontaneous

decreasing of a counter is captured by agents leaving the system.

We can add an initialisation phase to our environment that starts

the system off from an arbitrary state by first performing an arbi-

trary number of increment events on any of the counters and then

transitioning non-deterministically to any of the machine states.

Finally, we can label halting states. This means that we can write a

specification that encodes the uniform termination problem (from

an arbitrary state, the lossy counter machine will always reach a

halting state) in IACTLK\X . Thus, since this problem is known to be

undecidable [27], it follows that the OMCP is also undecidable. □

3 VERIFICATION OF COLLECTIVE OMAS
In the previous section we showed that the verification of OMAS

is undecidable in general. The aim of this and the next section is

to identify noteworthy classes of OMAS which admit verification

procedures.

We begin by studying a class of OMAS called collective open

multi-agent systems. The term collective refers to decentralised

systems whereby the identity of an agent as well as the precise

number of agents participating in a joint action does not affect the

outcome of the action on the agent’s local state. Several applications

in robot swarms operate in this manner [10]. For instance, a number

of opinion formation protocols [13] involve robots communicating

with neighbourhoods of bounded size in order to agree on the best

choice of action. In these scenarios, it is sufficient to only consider a

bounded number of actions in the transition rather than the entire

(arbitrarily large) joint action.

To model this class of systems we introduce collective open in-
terpreted systems (COIS). Informally, agents’ local transitions in
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collective open interpreted systems depend on the state of the agent

and the collective action performed by the system at the round. A

collective action at a given round is the set of action identifiers

performed at the round. For example if for a system of 3 agents

the joint action at a given round is the tuple (a,b,a) the collective
action in that round is {a,b}. Formally we define COIS as follows.

Definition 3.1 (COIS). A collective open interpreted system (COIS)

is an OIS O = ⟨A,E,V⟩ where the transition function of A satisfies

the condition

t(l ,a,X ∪ {a},aE ) = t(l ,a,X ,aE )

for all values of l , a, X and aE .

It should be clear that not all OIS are COIS. For example models

of mutual exclusion protocols cannot be COIS as the execution

depends on handshaking between more than one agent.

We now proceed to show that COIS, differently from OIS, have a

decidable open model checking problem. To do so we translate this

problem to the parameterised model checking problem from [20].

We first define the parameterised model checking problem in the

context of open interpreted systems.

Definition 3.2 (PMCP). Given an OIS O and an IACTLK\X for-

mula ϕ, the parameterised model checking problem (PMCP) is the

decision problem of determining whether the following holds for

all values of n ∈ N:

O(n) |= ϕ .

If this holds, then ϕ is said to be satisfied by the closed multi-agent

system O; this is denoted by O |=c ϕ.

Note that if we omit the transitions corresponding to agents

joining and leaving the system, COIS can be recast in the semantics

of swarm systems defined in [20] from which we omit the notion

of neighbourhoods. Since the PMCP for swarm systems is decid-

able [20], it follows from this mapping that the PMCP for COIS is

also decidable. We will take advantage of this observation to define

a procedure that solves the OMCP for COIS. To do this, we first

define a translation of the OMCP into the PMCP.

Definition 3.3 (Transformed agent template). LetA = ⟨L, ι,Act , P , t⟩
be an agent template for a COIS. We define the transformed agent
template Ā = ⟨L̄, ῑ, Āct , P̄ , t̄⟩ by:

• L̄ ≜ L ∪ {wait ,dead} where wait and dead are two new

states encoding, respectively, that the agent has not joined

the system yet, and that the agent has exited the system;

• ῑ ≜ wait representing that initial state of the agent.

• Āct ≜ Act ∪ {join, leave,null} where join and leave are

new actions that represent an agent joining and leaving the

system, and null is a new action representing an agent that

is not part of the system not doing anything;

• P̄ : L̄→ P(Āct) is given by:

l 7→


{null , join} if l = wait

{null} if l = dead

P(l) ∪ {leave} otherwise

• t : L̄ × Āct × P(Āct) ×ActE → L̄ is given by:

(l ,a,X ,aE ) 7→
t(l ,a,X ,aE ) if l ∈ L,a ∈ Act and X ⊆ Act

ι if l = wait and a = join

dead if l = dead or a = leave

l otherwise

Note that as in Definition 2.5 agents that have left cannot rejoin.

We will denote by
¯O the transformed COIS obtained by replacing

A by Ā in O. We now show that the PMCP for
¯O is equivalent to

the OMCP for O.

Theorem 3.4. Let O be a COIS and ϕ an IACTLK\X formula.
Then, ¯O |=c ϕ iff O |= ϕ.

Proof sketch. (⇒) Suppose
¯O |=c ϕ and assume for a contra-

diction that O ̸|= ϕ. So, there is some path ρ in the open system

falsifying ϕ. By our restriction on Π(д), this path has a finite num-

ber n of agents joining the system in it. Now, consider a path ρ̄ in

¯O(n) that performs all the same actions as ρ, with join and leave
actions being used to replace the transitions of agents joining and

leaving the system. This path satisfies at each state the same atomic

propositions as ρ and thus also falsifies ϕ. But then ¯O(n) ̸|=c ϕ,
giving a contradiction as desired.

(⇐) Suppose O |= ϕ and assume for a contradiction that
¯O ̸|=c ϕ.

Then, there is a path ρ̄ in
¯O(n) that falsifies ϕ. Similarly to before,

we can define an equivalent path ρ in the open system O, by using

an agent joining transition to simulate the join action and an agent

leaving transition to simulate the leave action. Then O ̸|= ϕ, giving
a contradiction as desired. □

Having proved this equivalence, we use this to show that the

OMCP for COIS is decidable.

Theorem 3.5. The OMCP for COIS is decidable.

Proof sketch. Notice that by Theorem 3.4, if we want to check

O |= ϕ, we can instead construct
¯O according to Definition 3.3

and check
¯O |=c ϕ. This can be done using the decision procedure

described in [20]. □

4 VERIFICATION OF INTERLEAVED OMAS
In this section we introduce and study interleaved open interpreted
systems (IOIS) to model and reason about asynchronous open MAS.

IOIS are inspired by Interleaved Interpreted Systems, a semantics

for asynchronous MAS [24], where only one local action is per-

formed in a global transition at each time step. In particular, IOIS

is a fragment of OIS in which only one action label appears in any

single joint action. The agents that participate in the transition

perform that same action, whereas the ones not participating in the

transition perform a null ε action. Following [21], where communi-

cation patterns for interleaved interpreted systems with arbitrarily

many agents were put forward, each action label pertains to one of

three synchronisation schemes: asynchronous evolution, pairwise

synchronisation between an agent and the environment, or global

synchronisation between all the agents and the environment.
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We now formally describe IOIS. We assume that the agents’

action set can be partitioned into three types of actions: asynchro-
nous, agent-environment and global synchronous. We write this as

Act = A∪AE ∪AE ′ ∪GS , where actions from AE ′ ≜ {a′ | a ∈ AE}
will be used to model agent-environment synchronisations (see

below). Further, we assume that there is a null asynchronous action
ε ∈ A that is enabled at all the states where an agent-environment

action is not. Any transition for this action does not result in a state

change, i.e., t(l , ε,X ,aE ) = l for all values of l , X , and aE . Similarly,

we assume a set of agent-environment actions AE, a set of global
synchronous actions GS, and a null environment action εE .

Given the above we now define the agents’ and environment’s

transition functions so that exactly one action is performed at a

time. The conditions we impose below ensure that the state of the

system can only change when precisely one action is performed

and, depending on the type of action and in correspondence with

the synchronisation patterns described above, only certain parts of

the system can change state.

Asynchronous. If the action is an asynchronous action, then

the action is performed by precisely one agent and only this agent

can change state. To encode this we require that the transition

function satisfies the following condition:

C1 If a ∈ A, t(l ,a,X ,aE ) = l
′
and either X , {ε} or ae , εE , then

l = l ′.

So, by (C1), an agent cannot transition to another state via an

asynchronous action unless it is the only agent performing a non-

null action. Recall that the null action never results in a state change,

so as a result of this restriction only the agent performing the

asynchronous action can change state.

Agent-environment. If the action is an agent-environment

action, then the action is performed by exactly one agent in con-

junction with the environment. The representation of this is given

in two steps. In the first step the agent that will perform the action

moves to a state enabling the action by performing the action’s

corresponding copy. As we explain below, this ensures that only

one agent participates in the transition. It is expressed by the two

conditions below.

C2 If a ∈ P(l) ∩ AE then for all t(l ′,x ,X ,aE ) = l we have that
x = a′.

C3 If a′ ∈ AE′, t(l ,a′,X ,aE ) = l ′, and either X , {ε} or aE , a,
then l = l ′.

By (C2) a state enabling an agent-environment action a can only

be reached via its corresponding a′ action. By (C3) this transition

can only occur if the environment is willing to perform a, and no

other agent decides it wants to perform a. After transitioning to

this intermediate state then the agent will insist on completing the

action a. We encode this in the condition below.

C4 If a′ ∈ AE′ and t(l ,a′, {ε},a) = l ′ then P(l ′) = {a}.

The (C4) condition forces the agent to perform the agent-environment

action after transitioning to the intermediate state enabling it. How-

ever, we still need to enforce that if any other agents try to perform

another action while an agent is in the intermediate state then the

state of the system does not change state. This is captured by the

two conditions below.

C5 If a ∈ AE, t(l ,a,X ,aE ) = l ′ and eitherX , {ε} or aE , a, then
l = l ′.

C6 If a ∈ AE, tE (lE ,a,X ) = l ′E , X , {a, ε}, and X , {a}, then
lE = l

′
E .

Here, (C5) enforces that the agent can only transition if the en-

vironment performs the same agent-environment action, and no

other agent performs an action. In addition, (C6) enforces that the

environment can only transition if an agent performs the same

agent-environment action and no agents perform a different action.

Notice that the agent-environment action can only be performed

from the intermediate state. So, as by the previous conditions at

most one agent can be in this state at a given time, the action can

only be performed by exactly one agent.

We now introduce the final condition for agent-environment

actions, which will ensure the environment cannot know howmany

agents are in the system.

C7 For all lE and a ∈ AE, tE (lE ,a, {a, ε}) = tE (lE ,a, {a}).

Here, (C7) enforces that the environment cannot transition dif-

ferently upon performing an agent-environment action based on

whether there is exactly one or several agents in the system.

Global synchronous. If the action is a global synchronous ac-

tion, then the action is performed by all the agents and the envi-

ronment (with every participant being able to change its state). We

encode this by means of the following conditions.

C9 If t(l ,a,X ,aE ) = l
′
, a ∈ GS and eitherX , {a} or aE , a, then

l = l ′.
C10 If tE (lE ,a,X ) = l

′
E , a ∈ GS, and X , {a}, then lE = l

′
E .

Here, (C9) enforces that the agents can only change state if a
was selected by all agents in the system. Similarly, (C10) enforces

that the environment can only change state if this was the case.

Definition 4.1 (IOIS). An interleaved open interleaved system (IOIS)

is an OIS that satisfies conditions (C1) - (C10).

Decisionprocedure.Despite the restrictions imposed, the proof

for Theorem 2.10 still holds for IOIS. Thus, the OMCP for IOIS is in

general undecidable. We will nonetheless explore a partial decision

procedure for it in the rest of this section.

We begin by noting that IOIS extend parameterised interleaved

interpreted systems (PIIS) [21] with the addition of transitions cap-

turing agents joining and leaving the system. The PMCP for PIIS is

undecidable. Nevertheless, decidable fragments have been exploited

in a variety of AI-based applications [20, 21] via the development of

sound albeit incomplete verification methods. We leverage on these

ideas to introduce a verification procedure for IOIS. Specifically, we

reduce the OMCP for IOIS to the PMCP for IOIS, and then solve

this via existing decision procedures for the PMCP on PIIS [19, 21].

Formally, as in Definition 3.3, given an agent template A we define

Ā by adding two additional states representing agents that have

not yet joined the system and agents that have left the system, and

introduce asynchronous actions join and leave for the agents to
join and leave the system. We denote by

¯O the IOIS obtained by

replacing A by Ā in an IOIS O.

Theorem 4.2. Let O be an IOIS and ϕ be an IACTLK\X formula.
Then, ¯O |=c ϕ iff O |= ϕ.
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Proof Sketch. The proof is similar to that of Theorem 3.4. Once

again, for any path inO we first observe that this has a finite number

n of agents joining transitions by our assumption. Then we can

define an equivalent path in
¯O(n) by using the new join and leave

asynchronous actions to simulate an agent joining and leaving.

Also, we observe that for any path in
¯O(n) we can construct an

equivalent path inO by simulating the asynchronous join and leave
actions via agent joining and leaving transitions. The result follows

from these observations. □

It follows that we can solve the OMCP by using existing tech-

niques for solving the PMCP on PIIS. A useful notion for solving

this decision problem is that of a cutoff. Informally, this is a number

of agents that is sufficient to exhibit every possible behaviour of

the system. We use a definition similar to that in [19].

Definition 4.3 (Cutoff). An integer c ∈ Z+ is said to be a cutoff
for an OIS O if for all IACTLK\X formulas ϕ we have that O(c) |= ϕ
iff O(n) |= ϕ for all n ≥ c .

Cutoffs have been extensively studied and, while it is known

that they do not exist in general, cutoff identification procedures

exist for some classes of systems [19, 21]. In the classes for which a

cutoff c can be identified, the PMCP can be solved by checking all

concrete instances of the system of size up to c .
The above cutoff procedures can be applied to solve the OMCP

for the transformed IOIS. However, even if the original IOIS O

admits a cutoff, its transformed version
¯O may not have a cutoff in

general. To this endwe identify a fragment of IOIS, whichwe call GS-

compliant, for which cutoffs are preserved in the transformation.

Definition 4.4 (GS-compliant). We say an IOIS O is GS-compliant
if it is the case that P(ι) = GS and for every д ∈ GS , there is some

s ∈ L \ {ι} such that {s ∈ L|д ∈ P(s)} = {ι, s} and t(ι,д, {д},д) =
t(s,д, {д},д).

So, in a GS-compliant IOIS precisely the global synchronous ac-

tions are enabled at the initial state and every global synchronous

action is enabled in exactly two states with the two corresponding

transitions sharing the same target. This restriction arises quite

naturally in a number of scenarios. This is because global synchro-

nous actions are most often used to encode different phases of a

protocol [20]; this restriction corresponds precisely to new agents

joining in at the correct phase.

We can now present a key result of this section.

Theorem 4.5. Suppose c ∈ Z+ is a cutoff for an IOIS O, and that
O is GS-compliant. Then c is also a cutoff for ¯O.

Proof sketch. Notice that when an agent first joins a system

with an agent already present, it cannot block any global transition

from occurring, since all global synchronous actions are enabled in

the initial state. Further, since only global synchronous actions are

enabled at the initial state, the new agent has to wait in this state

until it performs one such action. After performing this action, it

will be in the same state as all the other agents. Thus, this ensures

that the joining agent cannot enable any new behaviours of the sys-

tem. This intuition can be used to build a stuttering simulation [21]

and show the desired result. □

Algorithm 1 IOIS Decision Procedure

Input: IOIS O, IACTLK\X formula ϕ
Output: Whether or not O |= ϕ

1: if ModelCheckClosed ( ¯O,ϕ) , undefined then
2: return ModelCheckClosed ( ¯O,ϕ)
3: end if
4: c ←IdentifyCutoff(O)
5: if c , undefined ∧CheckGSCompliant (O) then
6: for k ← 0 to c do
7: if ¯O(k) ̸|= ϕ then
8: return false

9: end if
10: end for
11: return true

12: end if
13: return undefined

The combination of Theorem 4.2 and Theorem 4.5 gives us a

sound but incomplete decision procedure for solving the OMCP

on IOIS, shown in Algorithm 1. Given an IOIS O and a formula

ϕ that we wish to check, we construct
¯O and attempt to verify

¯O |=c ϕ using existing incomplete procedures for parameterised

model checking. If we can either verify that
¯O |=c ϕ or

¯O ̸|=c ϕ then

by Theorem 4.2 we are done. Otherwise, if we can identify a cutoff

for O, e.g. by using existing cutoff identification procedures [19, 21]

and also check that it is GS-compliant, then we know that this is

also a cutoff for
¯O. We can use this to check

¯O |=c ϕ by checking all

concrete systems of increasing size up to the cutoff and return this

as a result. If neither of the above checks passes, then the procedure

does not return any result. Note that Algorithm 1 is agnostic with

respect to the particular cutoff procedure used. It is therefore in

general possible that a cutoff could be found for O and not for
¯O,

depending on the choice of cutoff procedure.

We now show that this incomplete decision procedure is correct.

Corollary 4.6. Algorithm 1 is a sound decision procedure for the
OMCP.

Proof. Suppose we return on line 2. Then, this return value is

correct by Theorem 4.2. Now suppose we return on line 8. Then,

it is clear that
¯O ̸|=c ϕ so once again the return value is correct

by Theorem 4.2. Finally, suppose we return on line 11. Then, O is

GS-compliant by the check on line 5. Thus, since c is a cutoff for

O, it follows by Theorem 4.5 that it is also a cutoff
¯O. So, since we

checked all systems
¯O(k) for k ≤ c it follows that ¯O |=c ϕ and, by

Theorem 4.2 our return value is once again correct. □

5 EVALUATION
The techniques described in the previous sections were imple-

mented into an experimental open toolkit called MCMAS-OP, which
is released as open-source [28]. MCMAS-OP is composed of two parts.

The first part, MCMAS-OPCOIS, is a checker that extends MCMAS [25]
by implementing the (previously purely theoretical and unimple-

mented) parameterised verification techniques described in [20].

These were further extended to model the open aspect of the sys-

tem and support COIS by constructing the transformed template
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(as described in Definition 3.3) and using it to verify the specifica-

tions according to Theorem 3.4. The second part, MCMAS-OPIOIS, is
built on MCMAS-P [21] to support IOIS. As described in Section 4,

MCMAS-OPIOIS constructs the transformed template and uses Theo-

rem 4.2 to check the specification under analysis.

We tested our toolkit on two different examples, one for COIS

(autonomous robots) and one for IOIS (train-gate controller).

Autonomous Robots. In the autonomous robots scenario [15,

21], an arbitrary number of robots move synchronously along a

track of length n. For the purposes of testing our toolkit we fixed
n = 4. Each robot is equipped with a sensor reporting its position

with a potential error of up to 1 unit. The robot begins at the start

of the track and at each time step may either choose to halt or to

continue moving forward. The robot’s goal is to stop within the

target region (which we fixed to {2, 3}), and not enter the forbidden

region (fixed to {4}). We encoded this scenario into a COIS, and

then considered the following specifications:

ϕ1 ≡ ∀x : AG ((goal_region,x) → AG((alv,x) → (goal_region,x)))

ϕ2 ≡ ∀x,y : AG Kx AG ¬(forbidden_region,y)

ϕ3 ≡ ∀x : AG ((halted,x) → (goal_region,x))

The first property encodes the fact that once in the goal region,

an agent stays in the goal region as long as it remains alive. The

second property represents that every agent always knows that

every other agent cannot ever be in the forbidden region. The third

property encodes that an agent that has halted is in the goal region.

We would expect all three properties to hold.

Train-GateController. In the train-gate controller scenario [17],
a number of trains wish to enter a tunnel and a controller has to

ensure that only one train is in the tunnel at any given point. We

encoded this as an IOIS, in a similar way to Example 2.7. In particu-

lar, the trains are encoded as agents, and the controller is encoded

in an environment with two states: red representing that a train is

in the tunnel, and дreen representing that the tunnel is empty. We

considered the following properties:

ψ1 ≡ ∀x : AG ((lE = green) → ¬(in_tunnel,x)

∧ (in_tunnel,x) → (lE = red))

ψ2 ≡ ∀x,y : AG ((in_tunnel,x) → ¬(in_tunnel,y))

ψ3 ≡ ∀x : AG ((lE = red) → AF (lE = green))

The first property expresses that if the environment is in state

дreen, then no train is in the tunnel and, conversely, if a train is in

the tunnel then it is in state red . The second property expresses

that two trains cannot be in the tunnel at the same time. The third

property encodes the liveness property that if the light is red, it

will always eventually turn green again. We would expect the first

two properties to hold. However, the third should not hold since if

an agent leaves the system while it is in the tunnel, this will cause

the light to remain red forever.

Experimental Results. The results obtained when checking

these two scenarios (with MCMAS-OPCOIS and MCMAS-OPIOIS, respec-
tively) are recorded in Table 1. We also measured the time and

memory usage to obtain these results on a machine with an i7-6700

processor and 16GB of RAM, running Linux kernel version 4.4.0.

Note that both the protocols generate an unbounded state space

and cannot be tackled using traditional verification techniques.

Autonomous Robot Train-Gate Controller

(MCMAS-OPCOIS) (MCMAS-OPIOIS)

Property

1 Satisfied Satisfied

2 Satisfied Satisfied

3 Satisfied Not Satisfied

Model Build Time 30 sec 0.0023 sec

Memory Usage 199MB 31MB

Reachable States 1.49 million 45

Table 1: MCMAS-OP verification results obtained on our two ex-
amples, along with the build time, memory usage and num-
ber of reachable states for the model.

The results of the experiments confirmed our intuition on the

satisfiability or unsatisfiability of the specifications in question on

the models. The results confirmed that our toolkit can be used to

analyse open multi-agent systems in cases where we have identified

the problem to be decidable. For the simple scenarios we considered,

the timing results obtained were attractive. No comparison to other

toolkits is provided as we are not aware of other methods capable

of verifying open multi-agent systems as we do here.

6 CONCLUSIONS
There has been considerable progress over the past decade on ver-

ification methods for multi-agent systems. This work has found

application in a number of areas including services, robotics, au-

tonomous systems, and security. One key limitation of this body

of work concerns the assumption that the number of agents does

not change during an execution of the system. As we argued in the

Introduction, this is often an unrealistic assumption. Open systems

such as auctions, negotiation protocols, robot swarms, etc., have

as a key feature precisely the fact that agents may join or leave

the system at run-time. With the exception of the work previously

discussed [3], we are not aware of existing research in this area.

In this paper we have contributed towards a solution to this

problem by defining a semantics for open multi-agent systems and

their corresponding verification problem, which we called the open

model checking problem. We showed that the problem is unde-

cidable in general. We then proceeded to identify two noteworthy

large classes of systems which admit verification procedures. As we

discussed, these classes are of interest on their own and can model

systems of practical value. We have implemented the procedure for

checking the open verification problem into a toolkit and used it to

assess specifications on MAS scenarios. The results demonstrated

the correctness of the toolkit and its good performance. We are not

aware of any other method or toolkit for assessing similar problems

formally; so no comparison could be conducted with other tools.

In future work we intend to identify further decidable classes

of OMAS, and further apply these results to swarm systems and

auction systems. Another possible extension of this work is to

consider stronger specification logics that incorporate aspects such

as strategic behaviour [12, 29].
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