
A Property-based Testing Framework for Multi-Agent Systems
Extended Abstract

Clara Benac Earle
ETSIINF, Universidad Politécnica de Madrid

cbenac@fi.upm.es

Lars-Åke Fredlund
ETSIINF, Universidad Politécnica de Madrid

lfredlund@fi.upm.es

ABSTRACT
In this article we describe a framework that we have developed for
testing multi-agent systems written in the Jason agent program-
ming language, using the testing technique known as property-
based testing, a form of randomised automatic model-based testing.

KEYWORDS
Testing; multi-agent systems; Jason

ACM Reference Format:
Clara Benac Earle and Lars-Åke Fredlund. 2019. A Property-based Test-
ing Framework for Multi-Agent Systems. In Proc. of the 18th International
Conference on Autonom ous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 RELATEDWORK
The testing of aspects of multi-agent system (MAS) has received
substantial attention in the past; for a thorough survey see [5].
Many of the works on testing multi-agent systems focus on unit
testing. An example is [7], where a model-based approach is used
to test basic units such as events, plans and beliefs. Another body
of works, such as [4], test agents goals as the smallest testable units
in MAS. In [6], a model-based oracle generation method for unit
testing belief-desire-intention agents is discussed.

2 PROPERTY-BASED TESTING
Property-based testing (PBT) [3] is a testing methodology which
focuses on generating, automatically, test cases from a more ab-
stract description of the behaviour of the system under test (the
property). That is, property-based testing can be considered a form
of model-based testing. In this article the testing tool used is Quviq
QuickCheck (henceforth simply QuickCheck), which uses the Er-
lang programming language [1] to specify models of behaviour.

The basic functionality of QuickCheck is rather simple: to check
e.g. a Java method without side effects we specify generators for
the method arguments. A generator is capable of generating an
infinite number of values of some data type, according to a proba-
bility distribution. Given generators of method parameters, the test
property examines the result of applying the method-under-test to
the generated argument, and judges if the result value (or launched
exception) is correct given the input parameters. Thus, given a set
of generators for input data, and a test property, QuickCheck gen-
erates a random instantiation of the variables, executes the method
under test, and checks that the resulting boolean property is true.

Proc. of the 18th International Conference on Autonom ous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

For checking reactive code, e.g., a multi-agent system, a test case
is not a simple call to a method, but rather a sequence of method
calls (or in the case of multi-agent systems, communications, belief
updates, etc). To generate such test cases, and to judge whether the
execution of a test case is correct, QuickCheck provides a library
which codes generators as state machines, and reuses the same
state machine for judging the correctness of an execution.

Normally QuickCheck computes test cases before testing begins.
However, for testing non-deterministic software (e.g., most multi-
agent systems) this can lead to generating of a large number of “un-
interesting” test cases. Instead, for checking such non-deterministic
software, QuickCheck can interleave the generation of a test case
with its execution, such that after a test case command is derived,
the command is executed, and the next state of the state machine
is computed using the actual result of executing the command.

3 TESTING A MULTI-AGENT SYSTEM
Our approach is to replace a subset of the agents in the multi-
agent system with a QuickCheck state machine. The QuickCheck
state machine plays the role of these agents, interacting with the
remaining real agents by sending messages and modifying the
environment, and judging whether these remaining real agents
are correctly implemented by examining the messages sent to any
replaced agent, and the belief perceptions that they receive.

3.1 Example: a domestic beer serving robot
Our approach to testing multi-agent systems will be illustrated
by focusing on the “domestic robot” multi-agent system, which is
present in the the Jason distribution, and is also explained in [2].
Basically, a domestic robot continuously serves beer to an owner.
To serve a beer a robot should go to the fridge, take out a bottle
of beer, and bring it back to the owner. However, the fridge may
run out of beer, and thus the robot should remember to restock
it by interacting with a “supermarket”. Moreover, the robot agent
protects the owner from getting too drunk: if the number of beers
handed over to the owner exceeds some limit during a day, no more
beers should be provided to the owner.

This is a simple multi-agent system, comprised of just three
agents: the owner, the robot, and the supermarket agents. However,
the code implementing the multi-agent system environment should
also be considered part of the system. The environment implements
a number of environmental actions, including the owner sipping
from a beer (bottle): “sip(beer)” and the robot handing a new beer
to the owner: “hand_in(beer)”. Other environmental actions include
opening and closing the fridge, and so on. In total the environmental
handling code comprises around 230 lines of Java code, while the
code for the agents comprises around 140 lines of Jason code.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1823



Which agents should be modelled by a QuickCheck state machine?
The obvious choice is to replace the owner agent by a QuickCheck
state machine. This entails testing that the combination of the robot
agent, and the supermarket, provides a correct service to the owner.
For example, that beers are eventually provided to an owner which
asks for them, unless the owner has already received too many.

4 EXPERIMENTS
As an experiment we tested both the original Jason code for the
robot and a second, more dynamic, variant.

Checking the original code. The first state machine for the do-
mestic robot example has a single extended state owner (NumSips,
NumHandedIn). The NumSips parameter details how many sips
remain until all beers have been consumed, while NumHandedIn
counts the number of beers that have been handed in to the owner
during the present day. An example transition is the following one:

sip(beer ) when NumSips = 0 =⇒

obs = −!envAction(sip(beer )) ⊃

next-state = owner (NumSips,NumHandedIn)

The meaning of the transition is as follows. For a transition to be ex-
ecuted by the state machine the condition predicate (NumSips = 0)
has to hold in the current state. When the transition is executed the
corresponding action sip(beer ) is issued, and the observable results
obs (i.e., the communications sent to the agents represented by the
state machine, and the new beliefs, etc) are collected. The transition
is deemed correct if exactly −!envAction(sip(beer )) was observed,
and otherwise testing fails. For this transition the state does not
change. This captures the intuition that, if the owner attempts to sip
a beer when there is no beer left, the observable observation should
be the negative achievement action event envAction(sip(beer )).

Testing using QuickCheck revealed two errors in the code: (i)
when the owner had already asked for a beer, and asked for more
beers, the number of sips left was incorrectly calculated; the con-
sequence was that the environmental action “sip(beer)” failed too
soon. Note that this is an error not in a Jason agent itself, but rather
in the environmental Java code; (ii) the robot agent permitted the
owner to ask for one additional beer when the limit was already
reached, due to using the ’>’ operator instead of ’≥’.

Checking a more dynamic domestic robot. The domestic robot
example considered so far is admittedly quite unrealistic as a model
of a MAS as the principal agents tested, the robot and the fridge,
act deterministically. To experiment with a more realistic MAS we
developed a more “caring” robot which asks, non-deterministically,
the owner whether he/she is well. The robot then refrains from pro-
viding beers to the owner until the owner gives a positive answer.
To test this new behaviour (the original state machine quickly sig-
nals an error) we (i) modify all transitions to accept asynchronous
queries by the robot, checkpointing the existing testing state, and
(ii) include a new transition which replies to a robot query, and then
recovers the existing testing state. With these changes the resulting
state machine finds no errors in the modified domestic robot exam-
ple. A second change to introduce more non-determinism is to let
the robot decide unilaterally to modify the limit of the number of
beers permitted per day; such behaviour can easily be handled in
our testing framework through belief inspection.

5 FRAMEWORK DESIGN
The central function of the library is to permit the QuickCheck
state machine, which runs in an Erlang runtime system, to act as a
subset of Jason agents aд1, . . . ,aдn ; we say that the state machine
handles an agent aдi . This entails that the state machine must, on
behalf of each handled agent aдi , be able to communicate with
other Jason agents, and to issue environmental actions. Moreover,
the QuickCheck state machine has to be informed of any observable
event that occurs in any Jason agent aдi it handles.

To accomplish this, each agent handled by the state machine is
instantiated as a generic agent from the Jason agent code proxy.
Such a proxy agent receives events from the MAS, and simply
forwards them to the state machine (the state machines keeps an
ordered queue of events per simulated agent) using the new internal
action fromProxy. The queues of simulated agents are read by the
QuickCheck state machine after invoking an action, to determine
what the observable results of invoking the action are. If the state
machine wishes to communicate with another agent on behalf of
one of its simulated agents, or update the environment, it forwards
a request to the Jason agent proxy, which realises it.

Handling Asynchronous Results. So far we have assumed that the
observable results of actions by the state machine (new beliefs, etc)
can be deterministically returned to the state machine. Unfortu-
nately this is very unrealistic: the library simply cannot know how
long to wait for an observable event which was caused by an action
by a handled agent; maybe the MAS is simply very slow.

To handle such situations the following strategy is used: if the
action is expected to cause observable results, the QuickCheck state
machine tries to read, from the queue of the invoking agent, at least
as many observable events as are expected. A timer is set, which
releases after a relatively long interval, if enough observable events
are not received (leading the state machine to signal a testing error).
If, on the other hand, no observable event is expected as a result of
invoking the action, the state machine only waits a short interval of
time. If, contrary to expectations, an observable action is received, a
testing error is signalled. Waiting only a short interval risks missing
late erroneous observable results. However, this is not catastrophic
in the sense that such observable results will be reported instead
for the next action by the state machine, which likely does not
expect them either (and will thus signal a testing error, which will
be misreported to have been caused by a later action). In a sense
this is unavoidable: due to the autonomous nature of agents we
cannot be sure to always identify errors precisely unless we wait
indefinitely (or a very long time), and this is contrary to the idea of
property testing where we aim to run a large number of tests.

The library provides a number of additional functionalities such
as the possibility to inspect the belief base of agents. This facility is
useful in situations when agents do not announce decisions publicly,
but rather record decisions in their belief base.

The resulting library, excluding QuickCheck, will be released as
open source.

ACKNOWLEDGMENTS
This work has been partially supported by the Comunidad de
Madrid as part of the program S2018/TCS-4339 (BLOQUES-CM)
co-funded by EIE Funds of the European Union.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1824



REFERENCES
[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams. 1996. Concurrent

Programming in Erlang. Prentice-Hall.
[2] Rafael H. Bordini, MichaelWooldridge, and Jomi Fred Hübner. 2007. Programming

Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology).
John Wiley & Sons.

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York,
NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[4] Erdem Eser Ekinci, Ali Murat Tiryaki, Övünç Çetin, and Oguz Dikenelli. 2008.
Goal-Oriented Agent Testing Revisited. In Agent-Oriented Software Engineering
IX, 9th International Workshop, AOSE 2008, Estoril, Portugal, May 12-13, 2008,
Revised Selected Papers, Michael Luck and Jorge J. Gómez-Sanz (Eds.). 173–186.

https://doi.org/10.1007/978-3-642-01338-6_13
[5] Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pavón, and John Thangara-

jah. 2009. Testing in Multi-Agent Systems. In Agent-Oriented Software Engi-
neering X - 10th International Workshop, AOSE 2009, Budapest, Hungary, May
11-12, 2009, Revised Selected Papers. Springer, 180–190. https://doi.org/10.1007/
978-3-642-19208-1_13

[6] L. Padgham, Zhiyong Zhang, J. Thangarajah, and T. Miller. 2013. Model-Based
Test Oracle Generation for Automated Unit Testing of Agent Systems. IEEE
Transactions on Software Engineering 39, 9 (Sept. 2013), 1230–1244. https://doi.
org/10.1109/TSE.2013.10

[7] Zhiyong Zhang, John Thangarajah, and Lin Padgham. 2009. Model based testing
for agent systems. In 8th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2,
Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman
(Eds.). 1333–1334. https://doi.org/10.1145/1558109.1558280

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1825

https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/978-3-642-01338-6_13
https://doi.org/10.1007/978-3-642-19208-1_13
https://doi.org/10.1007/978-3-642-19208-1_13
https://doi.org/10.1109/TSE.2013.10
https://doi.org/10.1109/TSE.2013.10
https://doi.org/10.1145/1558109.1558280

	Abstract
	1 Related work
	2 Property-based Testing
	3 Testing a Multi-Agent System
	3.1 Example: a domestic beer serving robot

	4 Experiments
	5 Framework Design
	Acknowledgments
	References



