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ABSTRACT

Deep Learning and back-propagation has been successfully used to
perform centralized training with communication protocols among
multiple agents in a cooperative environment. In this paper we
present techniques for centralized training of Multi-Agent (Deep)
Reinforcement Learning (MARL) using the model-free Deep Q-
Network as the baseline model and message sharing between agents.
We present a novel, scalable, centralized MARL training technique,
which separates the message learning module from the policy mod-
ule. The separation of these modules helps in faster convergence
in complex domains like autonomous driving simulators. A sec-
ond contribution uses the centrally trained model to bootstrap
training of distributed, independent, cooperative agent policies for
execution and thus addresses the challenges of noise and commu-
nication bottlenecks in real-time communication channels. This
paper theoretically and empirically compares our centralized train-
ing algorithms to current research in the field of MARL. We also
present and release a new OpenAI-Gym environment which can be
used for multi-agent research as it simulates multiple autonomous
cars driving cooperatively on a highway.
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1 INTRODUCTION

We propose two centralized training algorithms for MARL envi-
ronments using DON as the baseline. The first approach extends
the idea of using communication channels for message sharing as
proposed in [2] and extends it to multi-agent same discrete time-
step communication, where the communication protocol is trained
using back propagation [5]. The second approach introduces a
broadcast network which generates a single broadcast message
for all agents in the environment and thus reduces channel band-
width and memory requirements of the algorithm. In the real world
driving environment, communication channels will not always be
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reliable and the messages could be corrupted by noise or delayed
due to latency. Another contribution uses our centralized cooper-
ative policy to bootstrap training of a decentralized cooperative
policy. We evaluate our methods against current state of the art
techniques in MARL on a multi-agent autonomous driving environ-
ment. We have developed an OpenAl Gym environment [1] which
simulates multiple autonomous and adversary cars driving on a
highway.

Effective communication channels in MARL can be trained using
backpropagation [2, 5]. [5] employs a message sharing protocol
where an aggregated message is generated by averaging the mes-
sages from all agents and passing it back as an input to the agents
along with their observation’s hidden state representation to com-
pute the final action-values. This Iterative Message Sharing (IMS)
is iterated P times in a single discrete time-step of the environment
before the final action for all agents at that time-step is computed.
Differentiable Inter-Agent Learning DIAL [2] also trains commu-
nication channels, through back-propagation, for sequential multi-
agent environments. However, the messages exchanged between
the agents are from the past time-steps. This causes a sub-optimal
convergence as we show in our experiments section. Our work
differs from these approaches in two ways. (a) We remove the it-
erative network structure of communication protocol and replace
it with a feed-forward neural network. (b) We use the centralized
structure during training only and train a decentralized policy for
execution as the communication among agents in our environment
is not guaranteed.

2 METHODS
2.1 Multi-Agent Message Sharing Network

MA-MeSN uses a similar network structure to DIAL except we train
agents to learn a negotiation message sharing protocol in the same
discrete time-step. Training with messages from the same discrete
time-step reduces the complexity of the message when compared
to a message generated based on past observations. MA-MeSN
treats the communication as a speech act and thus it separates the
message generation network from the policy network. The message
network is optimized by applying the averaged policy gradients
from the policy networks of all agents. The reduced complexity
of the generated messages along with task decoupling (speech act
and agent policy) allows for faster convergence, stability during
training, and a better final policy when compared to DIAL.
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2.2 Multi-Agent Broadcast Network

MA-BoN is designed as an extension to IMS to achieve a cooperative
MARL policy for homogeneous agents with a reduced communica-
tion channel throughput, when compared to previous approaches.
MA-BoN structure is similar to IMS except we replace the averaging
module with a feed-forward neural network which is trained to
generate a single broadcast message (vs multiple rounds of mes-
sages in IMS). All agents generate an embedding of their private
observation which is concatenated to generate a unified message
using a shared broadcast network. This message is passed back to
the agents which compute a policy using the private observation
and the broadcast message. The central hub for message generation
improves the throughput of the network with a reduced number of
trainable parameters.

2.3 Cooperative Distributed Behavior Cloning

CoDBC is used to achieve a fully decentralized (independent) policy.
MA-BoN and MA-MeSN can be partially decentralized by using
a Gumbel-Softmax [4] approximation of the continuous message
signal. To achieve communication free cooperative policy, we boot-
strap the training of decentralized policy by sampling trajectories
from centralized (MA-MeSN/MA-BoN) policy. We use imitation
learning to train a neural network to imitate the policy of the ex-
pert (MA-MeSN).

3 EXPERIMENTS AND RESULTS

Driving Environment. We have developed a multi-vehicle driving
simulator which simulates multiple autonomous and adversary
vehicles driving on a highway. The adversary’s objective is to hit the
closest car and all cooperative autonomous cars must avoid crashes.
The MARL agents receive a hidden observation of the environment
and a private reward based on distance from the closest agent but
don’t know which car is autonomous or adversary. The agents can
communicate using a discrete limited bandwidth channel.

The results for centralized training of cooperative multi-agents
are shown in Fig. 1(a) (averaged over 20 runs). The IMS and DIAL
algorithm are able to avoid divergence because the messages passed
are trained through back-propagation; however, the learning curve
for DIAL and IMS is slower than MA-MeSN and MA-BoN. DIAL
shows steady improvement in performance, however, the perfor-
mance of the final policy is weak when compared to MA-MeSN,
because the DIAL messages from the past cover a larger message
space and thus can only train on samples of the current episode. The
MA-BoN and MA-MeSN use step-based replay memory (zf , af , rit )
along with m? ; Which provides better indexing of the changing
policies of other agents over time and thus allows for a more stable
training algorithm. As a result, we see a stable learning curve with
faster convergence properties than DIAL and IMS. The MA-BoN
results show comparative performance to MA-MeSN with reduced
communication steps (|[N| X |N| to |N|).

The results for decentralized training are shown in Fig. 1(b).
We compare the performance of our centralized MA-MeSN, decen-
tralized CoDBC, independent DQN and independent DQN with
stabilized experience replay (SER) [3]. As the treadmill environ-
ment does not explicitly reward agents for cooperation, we see
poor performance from DQN and DQN with SER. DQN with SER
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Figure 1: Cumulative reward for (a) Centralized (b) Decen-
tralized training on the Driving Environment.

computes the weight of each sample’s gradient using a linearly de-
caying function based on the episodes elapsed since a sample was
collected. Thus, DON with SER is able to prioritize its training on
the latest samples which represent the latest policies of other agents
and avoid divergence. The CoDBC method outperforms all other
decentralized techniques while achieving cooperative behavior. The
CoDBC algorithm is trained sequentially after MA-MeSN is fully
trained; as opposed to the parallel curves shown in the figure. The
CoDBC achieves an 86.6% accuracy compared to MA-MeSN. We
freeze the final expert MA-MeSN policy for all agents before train-
ing the CoDBC policy, and mitigate the non-stationarity issue in
MARL environments. This approach is ideal for real-time agents in
MARL environments with a goal of cooperation as communication
channels are unreliable and induce a time-latency.
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