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ABSTRACT
Today, automated algorithms, such as machine learning classifiers,

are playing an increasingly pivotal role in important societal deci-

sions such as hiring, loan allocation, and criminal risk assessment.

This motivates the need to probe the outcomes of a prediction

model for discriminatory traits towards specific groups of individ-

uals. In this context, one of the crucial challenges is to formally

define a satisfactory notion of fairness. Our contribution in this

paper is to formalize Proportional Equality (PE) as a fairness notion.
We additionally show that it is a more appropriate criterion than

the existing popular notion called Disparate Impact (DI), which is

used for evaluating the fairness of a classifier’s outcomes.
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1 INTRODUCTION
Recently, algorithmic fairness has been receiving significant at-

tention from a wide spectrum of research communities like social

science, computer science and statistics [3, 4, 6, 8, 11, 15, 18, 22,

23, 27, 30, 32]. Intelligent algorithms are playing an increasingly

decisive role in real-world scenarios such as hiring, loan allocation,

and criminal risk assessment. However, recent studies [1, 29] have

shown that the predictions made by these algorithms often exhibit

discrimination towards (one or more) population subgroups. Depen-

dence on these unfair predictions for societal decisions is not only

unethical, but also, in some cases, punishable by law [1, 7]. Thus,

ensuring freedom from such discriminatory traits in the classifier

predictions is of great importance. This motivates the need to define

a fairness notion which appropriately captures such discriminatory

traits in predictions.

This is precisely the focus of this paper—we formalize a fairness

notion called Proportional Equality (PE).While proportional equality

has been studied and discussed in philosophy [10, 20], to the best of

our knowledge, this paper is the first to formalize PE as a measure

of fairness in classification. We show that PE is a more appropriate

fairness notion than the existing criterion called Disparate Impact
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(DI) [5, 9, 12, 21, 31]. We additionally show that PE satisfies some

desirable properties of fairness notions. In particular, Theorem (3.1)

establishes that a perfectly accurate classifier is always PE-fair.

2 PRELIMINARIES AND NOTATIONS
We use X ⊂ Rm to denote the feature space with m features,

Y = {0, 1} to denote the label space and Z = {0, 1} to denote

the sensitive feature. The training data D = {(xi , zi ,yi )
N
i=1} is as-

sumed to be drawn from an unknown joint distribution P over

X ×Z ×Y. Throughout the paper, the variable X denotes a feature

vector
1
and the variable Y denotes a label.

2.1 Classification Problem
The goal of a classification problem is to learn a function

ˆh : X 7→Y,

defined in some hypothesis spaceH , such that
ˆh minimizes some

target loss function—say, misclassification error:

ˆh := argmin

h∈H
E(X ,Y )∼P [I{h(X ) , Y }].

The performance of the classifier is then measured using a new set

of data, test dataset d = {(x j ,yj )
n
j=1}, by observing how accurate

the predicted labels
ˆh(x j )’s, are with respect to the true labels yj ’s.

The classification problem assumes that both the training and

test datasets are independently and identically drawn from some

unknown distribution P and, consequently, these two datasets rep-

resent the same probability distribution P(X ,Y ) = P(Y ) · P(X |Y ).
However, in practice, this assumption often does not hold true,

i.e., P(X ,Y ) differs between the training and test datasets. This

change is popularly known as dataset shift, which occurs when

either the conditional probability P(X |Y ) or the prior probability
P(Y ) changes. The phenomenon where the prior probability P(Y )
changes between the training and test datasets, but the class con-

ditional probability P(X |Y ) remains unaltered, is known as prior
probability shift [25, 26]. In this work, we focus on prior probability
shifts, as such changes naturally occur in many real-world scenarios.

A typical example of this phenomenon is medical diagnosis. For

instance, the fraction of patients having a certain disease Y may

vary over a period of time (i.e., P(Y = 1) may vary). However, the

likelihood of the series of symptoms that appears when the disease

occurs (i.e., P(X |Y = 1)) remains constant. It is important to be

aware of such phenomenon, ignoring which may result in drastic

performance reduction of the classifiers that rely on the assumption

that the distribution is unaltered between training and test data.

1
Note that the sensitive feature Z is treated separately from the other d features only

when there is a fairness concern with respect to that sensitive feature. In the absence

of such fairness concerns, Z can be thought of as a dimension in the feature space X.

Thus, while defining problems without fairness constraints, we use X to denote all
the features, including sensitive ones (if any).
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We study this phenomenon to address such changes within

groups, differentiated by a sensitive attribute Z , i.e., for each z ∈

{0, 1}, the conditional probability P(X |Y = 1,Z = z) remains con-

stant but the prior probability P(Y = 1|Z = z) changes over a
period of time. Empirically, prior probability shift leads to drasti-

cally different values of true prevalences among training dataset

D and test dataset d (that is, pzD , pzd ). Here, the true prevalence
within each group z ∈ {0, 1} for any dataset d is given as

pzd :=
|{(xi , zi ,yi ) ∈ d | yi = 1, zi = z}|

|{(xi , zi ,yi ) ∈ d | zi = z}|
(1)

In such a situation, minimizing misclassification error may not

be enough and the predictions need to be regulated using some

fairness constraints. One of the popular metrics to identify such

unfair decisions is disparate impact (DI), which we discuss next.

2.2 Disparate Impact as a Fairness Measure
A classifier’s decisions are said to be free from disparate impact if,
for z, z′ ∈ {0, 1}, the prediction prevalence ratio ϱ̂z,z

′

d := ρ̂z/ρ̂z
′

(that is, the ratio of prediction prevalences on the test data of one

group to another) is at least 0.8, where the prediction prevalence

for a group z is given by ρ̂zd :=

���{(xi ,yi ,zi )∈d :
ˆh(xi )=1,zi=z }

���
| {(xi ,yi ,zi )∈d : zi=z } |

. The

threshold 0.8 adheres to the EEOC’s Uniform Guidelines [7], which

suggest a 80% criterion for curbing adverse impact in age, ethnicity,

race and gender discrimination cases.

Informally, a classifier is said to suffer from DI if the outcomes dis-

proportionately benefit a group having certain sensitive attributes

such as belonging to a particular gender, race, ethnicity. This un-

desirable effect may occur if the classifier had been trained using

a dataset D that has extremely uneven fraction of positive labels

among two groups (say, p1D = 0.2 and p0D = 0.7). Such a classifier

may inherit the unjust patterns from training data and provide

discriminatory predictions on the test dataset d , which may have

almost equal prevalences (p1d = 0.6 and p0d = 0.7) due to prior prob-

ability shift. One way is to use ϱ̂z,z
′

D ≥ 0.8 as a constraint, while

minimizing error, which may help reduce such disproportionate

decisions.

The major drawback of using DI is the fixed threshold 0.8, since

the prior probability shifts may not always lead to almost equal

prevalences for two groups. For example, if the true prevalences

are p1d = 0.6 and p0d = 0.8 respectively, (that is, ϱ1,0d = 0.75) then

enforcing DI with threshold 0.8 may have adverse effect on Z = 0

group. This motivates the need to use a correct threshold depending

on the extent of prior probability shift in the test dataset.

3 PROPORTIONAL EQUALITY
To address the intrinsic drawbacks associated with the definition

of disparate impact, we need a fairness metric robust enough to

deal with prior probability shifts. To this effect, we provide a novel

formalization of the fairness notion called proportional equality (PE).

The predictions
ˆh(xi ) on test dataset d is said to be PE-fair if the

true prevalence ratio ϱz,z
′

d := pzd/p
z′
d and the prediction prevalence

ratio ϱ̂z,z
′

d := p̂zd/p̂
z′
d satisfies the following:���ϱz,z′d − ϱ̂z,z

′

d

��� ≤ ϵ for a small number ϵ > 0. (2)

3.1 Desirable Properties of Fairness Notions
We state below some properties (by no means exhaustive) which

are important for a fairness notion to satisfy:

P1 : The fairness concept should be agnostic to distributional

changes within groups, for example, prior probability shifts.

P2 : The fairness concept holds true for a perfect classifier (a classi-
fier with 100% accuracy).

The property P1 is satisfied by PE-fairness since, by definition, it

is aware of the prior probability shift between the training and

the test dataset. Theorem 3.1 establishes an important connection

between the accuracy of a classifier and the PE-fairness notion, and
enables the PE concept to tick off the desirable property P2.

Theorem 3.1. A perfect classifier is always PE-fair.

3.2 Experimental Evaluation
On real-world datasets, COMPAS [28], Adult Income [24] and Ger-

man Credit [19], we evaluate performances of two misclassification-

minimizing classifiers, namely (1) PEC (Proportional Equality en-

suring Classifier) which is aware of the prior probability shift and

aims to ensure PE-fairness, and (2) BASE (a baseline classifier) which
is unaware of such shifts and only minimizes misclassification.

The knowledge of prior probability shift during prediction seems

difficult, since the true labels of the test dataset cannot be used.

However, there exist quantification techniques [2, 13, 14, 16, 17]

to estimate the true prevalences of test datasets in the presence

of prior probability shifts. We employ such techniques to learn

quantifiers for each group using training data and then use those to

estimate the prevalences of each group in the test data. We use these

estimates to ensure PE-fairness on the predictions of test dataset.

Table 1 summarizes the fairness guarantees of PEC and BASE.

Dataset

True ratio

ϱ0,1d

Estimation by

quantifier [2]

PEC

ϱ̂0,1d

BASE

ϱ̂0,1d

COMPAS 0.7584 0.7679 0.7573 0.4617

Adult Income 0.3647 0.3855 0.3759 0.2033

German Credit 0.7463 0.7096 0.7195 0.6588

Table 1: This table shows that the true and estimated preva-
lence ratios are very close. Additionally, we observe that PEC
outperforms BASE in terms of fairness.

Moreover, in terms of accuracy, PEC is close to that of BASE, with
absolute worst case difference of 0.041 over all the datasets. For

analysis, all the values are averaged over 20 iterations, where each

iteration uses a random 70 − 30 train-test split of the datasets.
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