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ABSTRACT
In autonomous systems, planning and decision making rely on the
estimation of the system state across time. In this work, we use a
preference model to implement a fault management strategy that
selects a unique estimated state at each time point. If this strategy
is not carefully designed, it can lead to incomplete estimators that
meet a dead-end in some scenarios. Our goal is to detect such sce-
narios at design time and to be able to blame a subset of preferences
causing them; those can be proposed to the designer for revision.
To do so, we propose a method for detecting dead-end scenarios,
introduce preference relaxation, and apply a consistency-based
meta-diagnosis approach for identifying the sets of “faulty” prefer-
ences for a given dead-end scenario. We build upon SAT solvers for
checking estimator incompleteness, and for consistency checking
during meta-diagnosis.
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1 INTRODUCTION
Autonomous robots executing various tasks in a diversity of en-
vironments must handle unexpected aleas, both internal (failures,
wear) and external (perturbations, environmental changes). Aleas
impact the system’s health, the goals that can be reached, and the
way these goals can be reached.

Conformant and non-deterministic planning can cope to some
extent with uncertainty on the state of the robot and its environ-
ment [4, 8, 11], and can be integrated with model-based diagnosis at
execution time [15], or in self-healing plans [5]. In [12], probabilistic
reasoning for decision is fully integrated and deployed.
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This work assumes an approach that separates, on the one hand
state estimation, and on the other hand decision making. We focus
on state estimation and model the system as a partially observed
finite state machine using boolean variables where both permanent
and intermittent faults can be considered. We propose a preference-
based state estimation approach that selects a unique estimate for
the system state at each time step. Such an approach integrates well
with decision functions that require totally defined inputs, which is
the case of many task allocation algorithms for multi-robot systems
[9] and many autonomous decision architectures [7].

2 BACKGROUND AND GOALS
In [13] and [2], the authors define an estimation framework com-
posed of two parts: (1) a behavorial model (represented by logical
constraints) that constrains the possible explanations for a given ob-
served scenario, and (2) a fault management strategy (represented
by a conditional preference model) that specifies which estimation
is to be preferred, and under which conditions. Such a framework
is used to implement rules of the form “if uncertain about fault f ,
and if condition x is met, act as if f was present/absent”. Such rules
can be combined to build elaborate fault management strategies. At
each time step, the automatically generated estimator only keeps
in memory the selected estimation, which makes this approach par-
ticularly scalable for complex robots, multi-robots systems or/and
long-term autonomous missions.

However, in this approach the estimator can be undefined for
some scenarios. More precisely, if it chooses an execution path
different from that of the system, there may be observations for
which it is unable to provide an estimation consistent with the
previous estimation. Such situations are called dead-end scenarios
and the estimator is said to be incomplete, i.e. it is not defined
on all the system’s possible observation sequences. [2] proposes
a procedure that checks at design time whether the estimator is
complete or has dead-ends. This procedure suffers from scalability
and no insight is given on the causes of the existence of the dead-end
scenarios, i.e. if it is due to system’s dynamics, to poor observability,
or to an inappropriate fault management strategy.

We assume that it is not possible to modify the behavioural
model of the system but we allow preferences to be revised. We
use the framework of [2] and our first contribution aims at the
defining an efficient SAT-based procedure for finding dead-end
scenarios of bounded length. Our second contribution targets the
design of a meta-diagnosis procedure that identifies the minimal
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sets of preferences in the fault management strategy that should
be modified in order to eliminate a given dead-end scenario.

3 SYSTEM STATE ESTIMATION
We suppose that the system is governed by discrete dynamics where
each time step lasts the same duration. System variables are parti-
tioned into observed and estimated variables. A system state is an
assignment of truth values to both observed and estimated vari-
ables and we assume that the initial system state is known. An
assignment to observed variables is called an observation.

3.1 Behavioural model
The system state evolution is described as in symbolic model-
checking [3] but we refer to the previous state instead of the next
state. More precisely, we define two set of variables in order to
represent the current and the previous time step. The behavioural
model of the system is then a propositional formula over those two
sets and is interpreted as a set of transitions in the classical way.

3.2 Preference model
State estimation is performed step by step as new observations are
acquired from the system. Given an observation and a previous state,
they may be many possible current states that we call candidates.
In order to select only one estimation among the candidates at each
time step, we follow the approach of [2] and use a preference model
composed of a list of conditional preferences [16]. A conditional
preference is a kind of "soft constraint" relating to one variable: it
is only applied when there exists estimation candidates with both
true and false values for the variable. Each preference favors a value
for its associated variable according to the present observation and
the previous state.

At each time step, the estimation problem consists in finding the
unique valuation of unobserved variables that is consistent with
the behavioural model, the current observation and the previous
estimation, and that is optimal with respect to the conditional
preferences.

4 ESTIMATOR COMPLETENESS
An estimator that produces an estimation sequence for any consis-
tent observation sequence is said to be complete. It happens that
some estimators are not complete, and the remaining of this pre-
sentation propose a method to test estimator completeness.

4.1 Dead-end scenarios
An observation can often be explained by several system states,
and is associated to several estimation candidates. In this case, the
estimator may select an estimation that differs from the system’s
actual state. In some cases, uncertainties may simply disappear as
more observations are received from the system, and the estimator
converges to the correct estimation. However, it can happen that
an observation is inconsistent with the divergent estimation previ-
ously selected by the estimator. In this case, the set of estimation
candidates is empty and the estimator cannot produce any output.
The sequence of observations that led the estimator into it is called
a dead-end scenario.

S0 S1 S2 . . . Sk

0 1 2 k

∆1 ∆2 ∆3 ∆k
state variables

time steps

transition relations

Figure 1: Unfolding transition relation ∆ on k time steps.

4.2 Bounded dead-end detection
We unfold the formula of the behavioural model (denoted ∆) and
for each time step we create a new set S of boolean variables as
described in Figure 1. We use SAT model enumeration [10] to pro-
duce all the observation sequences consistent with the behavioural
model of a fixed length k and we apply preferences with an existing
estimator implementation based on MAX-SAT [13].

5 META-DIAGNOSIS
The problem of meta-diagnosis consists in finding which model
elements are responsible for a particular outcome. In [1], several
classes of elements are considered: inaccurate model of the system,
altered observations, or errors in the reasoning process itself. In
our approach, we use meta-diagnosis to find if a dead-end path can
be caused by a poor fault management strategy. The behavioural
model and observations are assumed to be always correct. Meta-
diagnosis is an instance of a consistency based diagnosis problem
[1, 6]: given a dead-end scenario and a subset of preferences, we
want to know whether the estimator would be able to produce an
estimation sequence if the given preferences were “relaxed”.

5.1 Relaxed preference model
In order to investigate which preferences may have led to a dead-
end, we relax preferences by omitting their constraints on the
estimated state. While in conditional preference models, for a given
previous state and observation, the preferred estimation is always
unique. This is not the case for relaxed models : relaxing preferences
produces additional estimates and estimation sequences.

5.2 Preference meta-diagnosis
Checking whether a relaxed preference model accepts some ob-
servation sequence can be done by a series of consistency checks.
Searching for the smallest set(s) of preferences that eliminate a
dead-end can be done with a classical consistency-based diagnosis
algorithm [14]. To check whether a set of preferences is a meta-
diagnosis, we perform a series of SAT queries that recreate the
possible non-dominated estimation candidates at each time step.
Our algorithms take as input the dead-end sequence, a tested pref-
erence, the behavioural model and the initial state.

6 CONCLUSION
This paper introduces a novel approach for blaming a fault man-
agement strategy. It follows a consistency-based meta-diagnosis
strategy based on relaxation of conditional preferences and build
upon SAT solvers. During our experiments, we noted that many
dead-end scenarios reproduce the same pattern. A perspective is to
identify such patterns for a more compact representation. Another
perspective is to find relaxations that eliminate several dead-ends
at once.
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