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ABSTRACT
A complex family is a particular case of animal family structures that

arises from cooperative breeding. This paper studies the problem of

complex family formation from a game-theoretical perspective and

proposes a characteristic function coalitional game. We investigate

the stability of coalitions and provide theoretical bounds on the

existence of complex families and the size of coalitions. Furthermore,

we empirically examine the proposed framework and show that

our results are consistent with the observed coalition formations,

shedding light on the family compositions in the past.
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1 INTRODUCTION
In wildlife populations, cooperative breeding represents an alter-

native to monogamous pairing and encompasses complex families,
where offsprings receive additional care from group members other

than their parents. A complex family, at its heart, is a heterogeneous

multiagent system, consisting of a central pair of agents (breed-

ers) and multiple secondary agents (helpers) that form a coalition.

Contrary to non-cooperative games that require information about

interactions between group members, a cooperative game theory

posits a coalition as a basic unit and assigns to each coalition a

payoff. Coalitional games provide a solid mathematical framework

for analyzing the group formation strategies with respect to all
agents, and have been extensively applied to various domains in

artificial intelligence [10, 12].

In this paper, we develop a novel model of coalitional games for

complex family formation. We identify the theoretical boundaries

for the stability of the coalitions and provide empirical simulations.

We base our analysis on the principles applied in previous models of

family formation: the comparison of alternatives [5, 11, 17]. More-

over, coalitional game theory enables us to enhance this framework
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by switching from a simple solitary choice to an interdependent set

of choices. Our study is inspired by Arctic foxes fromMednyi Island.

In contrast to mainland populations, this subspecies optionally form

families with several non-breeding female helpers.

2 THE FAMILY FORMATION GAME
Let P = {m ∪ N } be a set of agents with m indicating an adult

breedingmale andN = {1, 2, 3, ...,n} denoting a set of adult females.

Let v : 2
P → R≥0 be a characteristic function for each coalition

C ⊆ P . A coalitional game for family formation is then denoted by

G = (P,v) where v(∅) = 0. A family is a coalition of agents that

occupy a native home range, which can deliver a maximum payoff

(capacity) of 1. Mature offspring of wild animals either disperse and

try to form their own family (migration) or delay dispersal staying

in the family (philopatry). Thus, each agent makes a choice: to stay

with the family or to leave the home range.

We model the characteristic function as a function of the number
of females, n; migration parameter, h; a breeding pair utilization of a

home range capacity, a; and a diminishing factor for the marginal
contribution of each additional female to a family, γ ≥ 0. The mar-

ginal contribution is limited by the maximum capacity of a home

range; it is modeled as an exponentially decreasing function in line

with other biological and financial processes [2, 3, 6, 13, 14]. Given

a diminishing factor γ , y(i) = e−γ (i−1) is a function of diminishing
value for ith additional female.

We consider three types of coalitions: 1) a lone male: migrant; 2)

a group of females: migrants; and 3) one male and at least 1 female:

a family. The characteristic function of game G is written as:

v(C) =


h for C = {m },

h · |C | for ∀C ⊆ P :m < C

f (k ) = a + (1 − a) ·
(
k∑
i=1

y(i ))−y(1)

d−y(1) for ∀C ⊆ P :m ∈ C

(1)

where a ∈ [0, 1],h ∈ [0, 0.5], k = |C | − 1 is a number of females in

C , and d = limk→+∞
k∑
i=1

y(i) = 1

1−e−γ is the normalization factor.

Equation (1) satisfies the principles noted above: the maximum

value of the family is limk→+∞ f (k) = 1; the value of a breeding pair

is f (1) = a; and
f (k )−f (k−1)

f (k−1)−f (k−2) = e−γ , ∀k > 2, the relative contri-

bution of a female compared to the preceding agents decreases expo-

nentially.We also use the helper notations: f (k) = 1 − (1 − a) · e−γ (k−1)

(since

k∑
i=1

y(i) is a geometric series) ; t = 1 − f (n) = (1 − a) · e−γ (n−1):

the remaining capacity of a home range.
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Figure 1: The space of the nonempty core given the parame-
ters. Colors represent the value of ˆh – the maximum h value
of nonempty core; the black line with white dots represent
a∗ – the value of a corresponding to max ˆh given n,γ .

3 STABILITY OF THE COMPLEX FAMILY
In coalitional games, we are interested in measuring whether agents

will be willing to form a grand coalition (a coalition of a male and

n females). If no sub-coalition has an incentive to break away from

the grand coalition, then we say that the game has a nonempty core
[7, 16].

Theorem 3.1. A family formation gamewithn,a,γ has a nonempty
core only if h ≤ ˆh, where ˆh:

ˆh = min

(
t

d − 1

,
1 − t

n + 1

)
(2)

Simply put, Theorem 3.1 sets the conditions for the parameters

of the game that are necessary for the existence of the core.

We intentionally formulated the conditions of Theorem 3.1 in

terms of the migration parameter, h. From the biological standpoint,

parameter h defines the benefits of migration and represents the

external environment to the family: availability of vacant home

ranges nearby and migrant endangerment, which in turn depend on

local population density. Local density is spatially and temporally

variable, so does h – it is fixed for a given family for the given year

but not for a population as a whole. In this context,
ˆh (the maximum

h corresponding to the nonempty core) implies the robustness of the

grand coalition to the spatial variation and temporal changes. As
ˆh

rises, h can vary in a wider range without threats to the stability

of the grand coalition: in other words, the ‘likelihood’ of complex

family formation in a population increases.

Lemma 3.2. Given the number of females n and marginal contri-
bution γ , there exists a threshold a∗(n,γ ) as follows:

a∗(n, γ ) = 1 −
d − 1

e−γ (n−1) · (n + d )
(3)

such that if a > a∗(n,γ ) then ˆh = t
d−1 , and if a < a∗(n,γ ) then

ˆh = 1−t
n+1 .

Theorem 3.3. Given n and γ , the highest likelihood of the complex
family formation (maximum ˆh) is at a =max(a∗, 0).

When a (the payoff to a coalition of a breeding pair) approaches

1, a home range can not afford more agents. If a reaches 0, then a

breeding pair needs helpers to gain sufficient payoff (e.g. to protect

cubs from intruders). As a increases, the contribution of the other

females decreases, on the other hand the total value of the grand

coalition rises. For a < a∗ the second (positive) effect outweighs the
first (negative) and the likelihood of the complex family formation

rises with a; for a > a∗ this relationship is reversed.

4 EMPIRICAL RESULTS
We complement our analytical findings with empirical evaluation

on a real-world case study: Arctic fox subspecies of Mednyi Island.

We ran simulations to investigate the stability of complex families

using the LP formulation of the core [16]. The parameter γ is set

to 0.8 based on reports from Mednyi fox family structures [9].

Fig. 1 illustrates the space where the core is nonempty; the third

dimension, color, represents
ˆh - larger

ˆh is interpreted as a higher

likelihood of complex family formation of size n. When a = a∗, the
likelihood is maximized for any given n,γ (see Theorem 3.3).

Fig. 1 clearly shows the optimum size for the stability of com-

plex family, the number of females n ∈ {2, 3} and the theoretical

maximum size at n ∈ {5, 6}. For a < 0.2 the stability of families

with n = 2 and 3 is nearly identical; hence both structures could

coexist in a population as equals. Our analysis shows that when the

pair utilization parameter a is in the range 0.5 < a < 0.7, families

with 2 females are two times more likely to appear than those with

3 females, and groups with more than 4 females are nearly absent.

These findings interestingly justify the observed family structures

of Mednyi Arctic fox subspecies [9]. In the mainland, which do not

have complex families, a should be much higher (a > 0.8) corre-

sponding to minor intruder pressure: the population density in the

mainland is tens of times smaller than the Mednyi Island [9].

Lastly, we evaluated the Shapley value (for γ = 0.8 and h = ˆh) to
measure the importance of agents in the family formation game.

Intriguingly, a male agent’s power increases as n and a grow, and

a female’s contribution can exceed that of the male’s when n = 2

and n = 3 for cases of a < 0.50 and a < 0.25, respectively.

5 CONCLUDING REMARKS
We provide a viable model for the analysis of coalitions in a variety

of ecological multiagent systems. It enables researchers to study

the model’s parameters in order to predict future ramifications of

resource scarcity on animal behavior and estimate the sensitivity of

populations to ecological changes. In particular, we can model the

families of Mednyi foxes before a disease outbreak that wiped out

90% of the population in 1970–1980 [8]. The extra high population

density before the outbreak implies low pair utilization (a < 0.2 as

we believe), which corresponds to the family composition with the

equal representation of groups with 2 and 3 females.

Lastly, our model may be adopted in other multiagent settings

where team formation with agents of various types is key [1, 4].

For example, in most rescue operations, teams have a minimum

threshold for their size and a set of skills with diminishing returns

of additional members [15]. In the future, we plan to further gen-

eralize our model to other application domains and extend it to

environments with uncertain parameters.
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