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ABSTRACT
This work is an attempt at solving the problem of decentralized
team formation and reformation under uncertainty with partial
observability. We describe a model coined Team-POMDP, derived
from the standard Dec-POMDPmodel, and we propose an approach
based on the computation of team power indices using the Elo
rating system to determine the most fitting team of agents in every
situation. We couple this to a Monte-Carlo Tree Search algorithm
to efficiently compute joint policies.
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1 INTRODUCTION
The decentralized POMDP (Dec-POMDP) is the standard model for
sequential cooperative multi-agent planning where agents have
partial observability of their environment and no way to commu-
nicate with each other [3, 9, 13]. Dec-POMDPs consider dynamic,
stochastic environments, but do not account for the dynamics of the
team of agents. In many real-life scenarios however, it is important
to form the right team of agents to solve a task optimally. Moreover,
it is also necessary to dynamically re-form the team of agents as the
task evolves over time. Some related work exists, but the problem
of team reformation planning under uncertainty, where agents can
go in and out of the system on the fly, is novel in itself. The various
aspects of agent openness in multi-agent systems have only been
seldom studied [1, 5, 11, 12, 15–18].

This paper extends the Dec-POMDP model by introducing a
model coined Team-POMDP, allowing to plan for different teams of
agents. Because Dec-POMDPs – and, thus, Team-POMDPs – are
computationally hard to solve [3], we need to mitigate the complex-
ity of having to plan for a large number of admissible teams. We
notice that, in some states, some compositions of agents are more
efficient that others. This observation allows us to prune the policy
space by avoiding using bad teams and, hence, bad joint actions.
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Figure 1: Depiction of the flow of the Team-POMDP model.
A transition from decision epochs t to t + 1 is represented.

We use the Elo rating system to provide and update power indices
to rank each team of agents. We then wire this rating system to a
Monte-Carlo Tree Search inspired planning algorithm to compute
joint policies.

2 THE TEAM-POMDP MODEL
A team-formation Partially Observable Markovian Decision Process
(Team-POMDP) [6, 7] is a tuple

(N ,C,S, {AC }, {OC }, {P
aC ,oC
s,s ′ }, {R

aC
s },b

0,H )

where N is a population of n agents, C ⊆ 2N the set of admissible
teams, S the set of states, AC = ×i ∈CAi the set of joint actions of
teamC andAi the set of individual actions of agent i ,OC = ×i ∈COi
the set of joint observations of team C and Oi the set of individual
observations of agent i , PaC ,oCs,s ′ is the probability for the system to
transit to s ′ ∈ S and emitting observation oC ∈ OC when team
C takes joint action aC ∈ AC in s ∈ S , RaCs is the reward for
taking joint action aC ∈ AC in s ∈ S , b0 is the initial belief state
(a probability distribution over S), and H is the planning horizon.
Figure 1 depicts how a Team-POMDP unfolds upon execution. The
process starts at t = 0 with the system in an initial state s0 sampled
from b0. At each time step t , the system is in a state st . A team
Ct ∈ C is selected and chooses a joint action at ∈ AC t according
to some policy. The system then transits from st to st+1. A reward
r t+1 = Ra

t

s t+1 is generated and a joint observation ot+1 ∈ OC t is
emitted to the agents of Ct . A new team Ct+1 ∈ C (it can be the
same as Ct ) is then selected, with some agents leaving the agent
pool, and some other rejoining it. This process repeats for a period
of H time steps, until t = H − 1.
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3 POWER INDICES
When considering teams of agents, it is clear that, in some situations,
some agents will be more efficient than others to help solving a
task. This is due to the fact that an agent possesses its own set
of individual actions (that can be unique among the whole pool
of agents) and thus its own characteristics and abilities. Even if
all the agents are homogeneous (i.e. if they all share the same
individual actions), using the largest team (composed of the whole
populationN ) can turn out to be counter productive, because agents
can interfere with each other or generate more costs than profits.
Being able to quickly identify efficient compositions of agents is
then of primary importance.

At a certain joint history of observations, determining the most
fitting team for the situation can be seen as finding the winner of a
competition between all the admissible teams of C. The winning
team at a joint history is the one that will accrue the largest long-
term reward when employed at the current joint history. We use the
Elo rating system [10] to compute the relative utilities of the teams.
Consider two teams C1,C2 ∈ C and a joint history ®o. The teams
respectively start with initial Elo ratings E ®oC1

= E ®oC2
∈ R. Those

values are iteratively updated in order to fit the true relative value
of the teams. The update equation we use to update a team’s rating
is the equation traditionally used in official chess competitions:

E ®oC1
← E ®oC1

+ κ(WC1,C2 − LC1,C2 ) (1)

where κ is a constant, WC1,C2 is the actual result of the match
between C1 and C2, and LC1,C2 is the expected result of the match
between C1 and C2.

By running a sufficient number of matches against the other
teams and updating a team’s Elo rating with Equation 1, the system
is known to converge to the team’s true skill rating.

4 MONTE-CARLO PLANNING
Our algorithm is based on the famous Monte-Carlo Tree Search
(MCTS) method [4, 8]. This algorithm has proven particularly effec-
tive in solving problems and games that can be represented using
tree structures.

In the context of a Team-POMDP, we beginwith a directed rooted
tree, called the search tree, made of a single node, the root. A node
in the search tree corresponds to a joint history of observations
and stores four pieces of information: a joint observation o ∈ O, an
array of count numbers, counting how many times each joint action
has been tried by each team, an array of aggregated values, which
are the sums of the expected cumulative rewards obtained for using
each joint action, and finally an array of Elo ratings, one for each
team.

The search tree is grown by following and repeating five steps.
(1) Tree policy. We descend the search tree by selecting promis-

ing teams and joint actions [2],
(2) Parallel simulations. We select a joint action for each team

and run independent parallel random simulations until the
planning horizon is reached.

(3) Pairwise matches. We then compare the rewards accrued after
each simulation and do pairwise matches between all the
teams. A team wins against another team if it has generated
a larger reward. The Elo ratings are updated via equation 1.

(4) Tree expansion. We expend the search tree with the team
having generated the largest reward after its random simu-
lation.

(5) Reward backpropagation. Finally, we back-propagate this
reward to the nodes visited during the Tree policy.

One iteration of those five steps is called a playout, and a repetition
of multiple playouts constitutes the MELO algorithm. By running a
sufficient number of playouts, one can expect that a node which
was often visited during the Tree policy will store an accurate
estimation of the value of each team and promising joint actions.
A deterministic joint policy can be then extracted from the search
tree by selecting, at each node, the best average joint action.

5 EXPERIMENTAL EVALUATION
As the problem of team reformation planning under uncertainty has
not been studied before, we need new benchmarks to evaluate our
approach. We introduce the Disaster domain, which is an extension
of the Firefighting domain, a benchmark used in the evaluation of
Dec-POMDP planning algorithms [14]. In this new scenario, illus-
trated on figure 2, a wild fire started and now threatens to destroy
the houses of a neighborhood. Two types of agents, excavators and
firefighters, each having their specific abilities, need to form and
re-form in teams in order to clear the construction debris and fight
the fire. Preliminary results show that the MELO algorithm is able

Figure 2: The Disaster domain. An excavator is clearing the
way to the first house while the fire truck is extinguishing
the fire at the third house. The second house is blocked and
needs to have its way cleared before the fire truck can go put
out the fire.

to quickly identify irrelevant teams and rule them out of the final
joint policy. Teams composed of excavators only will rarely be used
because it is more rewarding to extinguish a fire rather than to clear
the access to a house. Further experiments need to be done in order
to fully confirm our methods, as some of our tests showed that the
Elo rating system can unfortunately also exclude good teams.

6 CONCLUSION
The Team-POMDP framework allows to model the process of dy-
namic teams adjusting to the situation as time goes on. The problem
of team reformation planning under uncertainty represents a chal-
lenging but promising field of research for the years to come. Our
work is an attempt dedicated at breaking the inherent complexity
of the model, though more work remains to be done to efficiently
compute optimal separable joint policies.
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