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ABSTRACT
Online social networks are used to diffuse opinions and ideas among

users, enabling a faster communication and a wider audience. The

way in which opinions are conditioned by social interactions is

usually called social influence. Social influence is extensively used

during political campaigns to advertise and support candidates.

We consider the problem of exploiting social influence in a net-

work of voters to change their opinion about a target candidate

with the aim of increasing his chance to win or lose the election in

a wide range of voting systems. We introduce the Linear Threshold

Ranking, a natural and powerful extension of the well-established

Linear Threshold Model, which describes the change of opinions

taking into account the amount of exercised influence. We are able

to maximize the score of a target candidate up to a factor of 1− 1/e
by showing submodularity. We exploit such property to provide a

1

3
(1 − 1/e)-approximation algorithm for the constructive election

control problem and a
1

2
(1 − 1/e)-approximation algorithm for the

destructive control problem. The algorithm can be used in arbitrary

scoring rule voting systems, including plurality rule and borda count.
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1 INTRODUCTION
Recently, there has been a growing interest on the relationship

between social networks and political campaigning. Political cam-

paigns nowadays use social networks to lead elections in their favor;

for example, they can target specific voters with fake news [1]. A

real-life example of political intervention in this context occurred

in the US Congressional elections in 2010, where a set of users were
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encouraged to vote with a message on Facebook. These messages

directly influenced the real-world voting behavior of millions of

people [2]. Another example is that of French elections in 2017,

where automated accounts in Twitter spread a considerable portion

of political content trying to influence the outcome [5].

There exists an extensive literature on manipulating elections

without considering the underlying social network structure of the

voters; we point the reader to a recent survey [4]. Nevertheless,

there are only few studies that exploit opinion diffusion in social

networks to change the outcome of elections. Independent Cas-

cade Model (ICM) [6] has been considered as diffusion process in

the problem of constructive/destructive election control [8], that

consists in changing voters’ opinions with the aim of maximiz-

ing/minimizing the margin of victory of some target candidate. A

variant of the Linear Threshold Model (LTM) [6] with weights on

the vertices has been considered on a graph in which each node

represents a cluster of voters with a specific list of candidates and

there is an edge between two nodes if they differ by the ordering

of a single pair of adjacent candidates [3].

In this work we focus on the election control problem via social

influence [8]: Given a social network of voters, we want to select a

subset of voters that, with their influence, will change the opinion

of the network’s users about a target candidate, maximizing its

chances to win/lose (we remark that we consider the scenario in

which only the opinions about a target candidate can be changed).

Previous work only studied plurality rule; moreover, in the diffu-

sion model previously considered, an influenced voter shifts up or

down the position of the target candidate in its ranking by just one

position, regardless of the amount of influence received [8]. We

study the election control problem in arbitrary scoring rule voting

systems; moreover we consider a different diffusion model, that

takes into account the degree of influence that voters exercise on

the others and can describe the scenario in which a high influence

on someone can radically change its opinion. A full version of our

paper can be found at https://arxiv.org/abs/1902.07454.

2 LINEAR THRESHOLD RANKING
We consider the scenario in which a set of candidates are running

for the elections and a social network of voters will decide the

winner. In particular we focus on the general case of scoring rules,

in which each voter expresses his preference as a ranking; each
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candidate is then assigned a score, computed as a function f of the

positions he was ranked.

We represent the underlying social network as a directed graph

G = (V ,E). We define Nv as the set of incoming neighbors for each

v ∈ V . Let C = {c1, . . . , cm } be the set ofm candidates; we refer to

our target candidate, i.e., the one that we want to make win/lose

the elections, as c⋆. Each v ∈ V has a permutation πv of C , i.e.,
its list of preferences for the elections; we denote the position of

candidate ci in the preference list of node v as πv (ci ).
Let B ∈ N be the initial budget, i.e., the maximum size of the set

of active nodesA0 fromwhich the LTM process starts. The diffusion

process unfolds in discrete time steps as follows: A node v becomes

active if the sum of the weights of the edges coming from active

nodes at time t − 1 is greater than or equal to its threshold tv , i.e.,
v ∈ At if and only if v ∈ At−1 or

∑
u ∈At−1:(u,v)∈E buv ≥ tv . After

the LTM process stops, i.e., no more nodes are being activated, the

position of c⋆ in the preference list of each node changes according

to a function of its incoming active neighbors. Let A be the set of

active nodes at the end of LTM. The threshold tv of each nodev ∈ V
models its strength in retaining its original opinion about candidate

c⋆: The higher is the threshold the lower is the probability that v is

influenced by its neighbors. The weight on an edge buv measures

the influence that node u has on node v . We define the number of

positions that c⋆ goes up in πv as

π
↑
v (c⋆) := min

©«πv (c⋆) − 1,


α(πv (c⋆))

tv

∑
u ∈A, (u,v)∈E

buv

ª®¬ ,
where α : {1, . . . ,m} → [0, 1] is a function that depends on the

position of c⋆ in πv and models the rate at which c⋆ shifts up. We

call this process the Linear Threshold Ranking (LTR).
After LTR, the new position of c⋆ will be π̃v (c⋆) := πv (c⋆) −

π
↑
v (c⋆); the candidates overtaken by c⋆ will shift one position down.

In the problem of election control we want to maximize the

chances of the target candidate to win the elections under LTR.
To achieve that, we maximize its expected Margin of Victory (MoV)

w.r.t. the most voted opponent, akin to that defined in [8].

Let c and c̃ be the candidates, different from c⋆, with the highest

score before and after LTR, respectively. We define the margin, i.e.,

difference in score between the most voted opponent and c⋆ before

and after LTR, as:

µ(∅) :=
∑
v ∈V

[f (πv (c)) − f (πv (c⋆))],

µ(A0) :=
∑
v ∈V

[f (π̃v (c̃)) − f (π̃v (c⋆))],

where f : {1, . . . ,m} → N is a non-increasing scoring function that

assigns a score to each position. Thus, the election control problem

is formalized as

maxA0
E [MoV(A0)] := E [µ(∅) − µ(A0)]

s.t. |A0 | ≤ B.

3 MAXIMIZING THE MARGIN OF VICTORY
To solve the problem of maximizing theMoV we focus on the score

of the target candidate. We first prove that the score of the target

candidate is a monotone submodular function w.r.t. the initial set

of seed nodesA0: This allows us to get a (1− 1/e)-approximation of

the maximum score through the use of a greedy algorithm (that we

denote as Greedy) that iteratively selects the node that maximizes

the increment in score [7]. As in influence maximization problems,

we define an alternative random process based on live-edge graphs,

called Live-edge Dice Roll (LDR), and show its equivalence to LTR;
then we use LDR to compute the score of c⋆.

Definition 3.1. Live-edge Dice Roll process (LDR):

(1) Each node v ∈ V selects edge (u,v) with probability buv ,
and no edge is selected with probability 1 −

∑
u ∈Nv buv .

(2) Each node v with πv (c⋆) > 1 that is reachable from A0 rolls

a biased πv (c⋆)-sided dice and changes the position of c⋆ in

its list according to the outcome, i.e., picks a random number

sv in [0, 1] and sets π̃v (c⋆) as follows

π̃v (c⋆) =


1 if sv ≤

α (πv (c⋆))
πv (c⋆)−1

,

ℓ if
α (πv (c⋆))
πv (c⋆)−ℓ+1

< sv ≤
α (πv (c⋆))
πv (c⋆)−ℓ

,

for ℓ = 2, . . . ,πv (c⋆) − 1,

πv (c⋆) if sv > α(πv (c⋆)).

We show that LTR and LDR have the same distribution.

Theorem 3.2. Given a set of initially active nodes A0 and a node

v ∈ V , let π̃LTRv (c⋆) and π̃LDRv (c⋆) be the position of node v at

the end of LTR and LDR, respectively, both starting from A0. Then,

P
(
π̃LTRv (c⋆) = ℓ

)
= P

(
π̃LDRv (c⋆) = ℓ

)
, for each ℓ = 1, . . . ,πv (c⋆).

Thanks to Theorem 3.2 we are able to write the score of c⋆
as a non-negative linear combination of reachability functions in

the live-edge graphs; we can also show that these functions are

monotone and submodular w.r.t. A0. Then, we can use Greedy to

find a setA0 that approximates the optimum not worse than 1−1/e .
Moreover, given the equivalence of LDR with LTR, we can for-

mulate our objective function as the averageMoVG′ computed on a

sampled live-edge graphG ′
, namelyE [MoV(A0)] = E [MoVG′(A0)].

We use these two properties to obtain a constant-factor approxi-

mation for the problem of maximizing theMoV. In particular, we

use the solution A0 computed by the approximation algorithm for

score maximization and show that we only lose an extra
1

3
approx-

imation factor. Roughly speaking, we get a factor
1

3
because we

can formulate the MoV as the sum of three terms that are lower-

bounded by the score of c⋆.

Theorem 3.3. Greedy gives a
1

3
(1 − 1/e) approximation to the

problem of maximizing MoV in arbitrary scoring rule voting systems.

Destructive election control. As for the constructive case, we

achieve a constant factor approximation also in the destructive

election control problem through a reduction from the destructive to

the constructive case. Given an instance of destructive control, we

build an instance of constructive control in which we simply reverse

the rankings of each node and complement the scoring function

to its maximum value. Roughly speaking, this reduction maintains

invariant the absolute value of the change in margin of the score

of any candidate between the two cases. The reduction allows us

to maximize the score of the target candidate in the constructive

case and then to map it back to the destructive case. Here, though,

we get a factor
1

2
because we can reconstruct the optimum in the

approximation by only lower bounding two terms.
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